
 

Chapter 11 Introduction to Probabilistic Generative models 

 

 

 

 

 

In supervised learning setting, we have a dataset 𝒟 = {(𝐱(1), 𝐲(1)), (𝐱(2), 𝐲(2)),… , (𝐱(𝑁), 𝐲(𝑁))}, where one 

data sample (𝐱(𝑖), 𝐲(𝑖)) consists of an input 𝐱(𝑖) and a label 𝐲(𝑖). Discriminative models typically estimate 

the conditional distribution 𝑝(𝐲|𝐱) for a classification task. In this chapter, we will introduce a different 

type of models, called generative models, which often estimate the joint probability distribution 𝑝(𝐱, 𝐲). 

Although generative models can be used for classification in a supervised setting, they demonstrate great 

advantages in understanding unlabeled datasets, and thus are widely used in unsupervised learning. As the 

name suggests, we can generate data samples from the distribution learned by the generative models on a 

particular dataset, and thus the generated samples have the approximately same distribution as the 

underlying distribution of the dataset.  

We assume that a dataset 𝒟 = {𝐱(1), 𝐱(2), … , 𝐱(𝑁)} are samples from the underlying distribution 𝑝(𝐱). The 

goal of a generative model is to approximate 𝑝(𝐱) by �̂�(𝐱; 𝛉), given access to the dataset 𝒟, where 𝛉 denotes 

the learnable parameters of the model. With the learned generative model, we can perform the following 

inferences: 1) density estimation – find the probability of a new input x, 2) sampling – generate a new 

sample from the learned distribution, and 3) unsupervised representation learning – learn meaningful 

feature representation of a new data sample. 

In this chapter, we will introduce a visual tool to represent a generative model, which is called probabilistic 

graphical model, or simply called graphical model.  The treatment of Gaussian mixture models (GMMs) 

and its solutions provides a foundation for the subsequent topics such as variational auto-encoders (VAEs) 

and generative adversarial networks (GANs). The expectation-maximization (EM) algorithm is derived to 

learn a GMM, and then is generalized to deal with the intractable scenarios. This generalization leads to the 

development of VAEs.  

This chapter covers: 

o Graph representation for generative models 

o Gaussian mixture models with latent variables 

o EM algorithm for GMMs 

o General EM algorithms 

o Evidence lower bound (ELBO) in EM algorithms 

o Variational auto-encoder (VAE) 

o VAE implementation on MNIST dataset in PyTorch 

 



11.1. Generative Models with Latent Variables 
 

11.1.1 Graph representation 

It is advantageous to represent a joint probability distribution by a graph. In a probabilistic graphical model, 

a graph comprises nodes linked by arcs. In the graph, each node corresponds to a random variable, and the 

arcs specify the probabilistic relationships between the random variables. Let’s start with directed graphical 

models, in which each arc has a particular direction indicated by an arrow. We restrict our discussions to 

directed acyclic graph (DAG), in which there is no closed path that starts and ends at the same node. Node 

a is said to be the parent of node b if there is an arc going from node a to node b, and node b is the child 

node of node a.  A node without any incoming arc is called root node. Each node represents the conditional 

distribution of its corresponding random variable, conditioned on all its parent variables. A root node 

represents the distribution of the random variable without any condition. The joint distribution defined by 

the graph is the product of all conditional distributions of all nodes conditioned on the variables 

corresponding to their parents in the graph.  

For instance, consider the joint distribution 𝑝(𝐱1, 𝐱2, … , 𝐱𝑀) over M variables. By the product rule of 

probability, we can represent the joint distribution as the product of M conditional distributions, 

𝑝(𝐱1, 𝐱2, … , 𝐱𝑀) = 𝑝(𝐱𝑀|𝐱𝟏, … , 𝐱𝑀−1)𝑝(𝐱𝑀−1|𝐱1, … , 𝐱𝑀−2)…𝑝(𝐱2|𝐱1)𝑝(𝐱1)                       (11.1) 

The decomposition in (11.1) results in a graph shown in Fig.11.1. Note that we chose a particular number 

ordering for random variables for the decomposition in (11.1). It is usually convenient to choose an ordering 

such that the arcs go from lower numbered node to a higher numbered node. For a DAG, there exists an 

ordering of the nodes such that there are no arcs that go from any node to any lower numbered node. 

 

Fig.11.1 A fully connected graphical model 

In general, a graphical mode is not necessarily fully connected, in other words the absence of some arcs is 

possible. Thus, for a graph with N nodes, the joint distribution is given by 

𝑝(𝐱1, 𝐱2, … , 𝐱𝑀) = ∏𝑝(𝐱𝑖|𝑝𝑎𝑖)

𝑀

𝑖=1

                                                               (11.2) 

where 𝑝𝑎𝑖 is the set of parent node variables of  𝐱𝑖, as the condition for the conditional distribution of 𝐱𝑖. 

Given a graphical model corresponding to (11.2), we can draw one sample 𝐱 = [�̂�1, �̂�2, … , �̂�𝑀]𝑇from the 

joint distribution as follows. We assume that each node is numbered higher than its parent nodes. First we 

draw a sample �̂�1 from the distribution associated with the lowest-numbered node, 𝑝(𝐱1). Then we 

sequentially draw samples �̂�𝑖 , 𝑖 = 2,3, … ,𝑀, one at a time, from the conditional distribution 𝑝(𝐱𝑖|𝑝�̂�𝑖) 

where the parents 𝑝�̂�𝑖 have been set to the sampled values from �̂�1, �̂�2, … , �̂�𝑖−1. 



In a generative model, the lower-numbered nodes typically correspond to latent variables, whereas the 

higher-numbered terminal nodes represent the observations. As we shall see shortly, the purpose of latent 

variables is to represent or sample a complicated distribution by simpler conditional distributions. 

11.1.2 Gaussian mixture models 

Gaussian mixture models (GMMs) are motivated by the fact that a linear combination of Gaussian 

distributions can provide a stronger expression for a complicated distribution than a single Gaussian 

distribution. In a general mixture model, the joint distribution 𝑝(𝐱), 𝐱 ∈ ℝ𝐷, can be represented by 

𝑝(𝐱) = ∑ 𝜋𝑘

𝐾

𝑘=1

𝑝(𝐱; 𝛉𝑘)                                                                            (11.3) 

where 𝜋𝑘 are mixing coefficients, and 𝑝(𝐱; 𝛉𝑘) is the-k component specified by a pre-selected density 

function parameterized by 𝛉𝑘. For a Gaussian mixture model, 𝑝(𝐱; 𝛉𝑘) is a Gaussian distribution given by 

𝑝(𝐱|𝛉𝑘) = ℕ(𝐱; 𝛍𝑘 , 𝚺𝑘)                                                               (11.4) 

where 𝛍𝑘 is the mean and 𝚺𝑘 denotes the covariance matrix. 

Fig.11.2 plots the density function of a Gaussian mixture model (D=1 and K=2) with 𝜋1 = 0.4, 𝜋2 = 0.6, 

𝛍1 = 5, 𝛍2 = 15, 𝚺1 = 4, 𝚺2 = 16, assuming x is 1-dimensional random variable.  

                                                                                      

       Fig.11.2 An example of GMM distribution          Fig.11.3 The graphic model of Gaussian mixture model 

 

To associate 𝜋𝑘 with a latent (or hidden or unobserved) random variable z, we restrict 𝜋𝑘 by 

0 ≤ 𝜋𝑘 ≤ 1 and ∑ 𝜋𝑘
𝐾
𝑘=1 = 1                                                  (11.5) 

Let z be a discrete random variable and 𝐳 ∈ {1,2,… , 𝐾}, and the discrete random variable z has a probability 

mass function given by {𝜋𝑘, 𝑘 = 1,2,… , 𝐾}. Although we assume the value of z is an integer here, we can 

map z to a vector space in general. Then, component k in (11.3), 𝑝(𝐱; 𝛉𝑘), can be interpreted as the 

conditional probability distribution of x given the value of 𝐳, say k, denoted as 𝑝(𝐱|𝐳 = 𝑘). The joint 

distribution of x and z can be calculated by 

 𝑝(𝐱, 𝐳) = 𝑝(𝐳)𝑝(𝐱|𝐳)                                                                 (11.6) 

Thus, the mixture model (11.3) can be interpreted as the marginal distribution obtained by summing (11.6) 

over all z values. 



𝑝(𝐱) = ∑𝑝(𝐳)𝑝(𝐱|𝐳)

𝐳

 

As a result, we have the Gaussian mixture model 

𝑝(𝐱) = ∑ 𝜋𝑘

𝐾

𝑘=1

ℕ(𝐱; 𝛍𝑘 , 𝚺𝑘)                                                     (11.7) 

Thus, the Gaussian mixture model specified by (11.3) can be represented by a graphic model in Fig.11.3. 

The parameters of the model include the distribution of z, i.e., {𝜋𝑘, 𝑘 = 1,2, … , 𝐾} and the Gaussian 

parameters {(𝛍𝑘 , 𝚺𝑘), 𝑘 = 1,2,… , 𝐾}. To draw a sample from the Gaussian mixture model, we can first 

generate a sample 𝐳(𝑖) from the distribution 𝑝(𝐳), and then draw a sample 𝐱(𝑖) from the conditional 

distribution 𝑝(𝐱|𝐳) given 𝐳 = 𝐳(𝑖). 

Given the Gaussian mixture model defined in (11.7) with unknown parameters and a dataset, our goal is to 

find the optimal values of the parameters to fit the dataset by maximizing the likelihood function. For 

instance, as illustrated in Fig.11.4, we want to estimate the probability density 𝑝(𝐱) (the red solid curve) 

using a data set. If the data set included both the data points 𝐱(𝑛) and the corresponding component sources 

𝐳(𝑛), i.e., the data set is called a complete dataset denoted by {(𝐱(𝑛), 𝐳(𝑛)), 𝑛 = 1,2, … ,𝑁}, then the 

maximization would be reduced to estimate each individual Gaussian component, which is straightforward. 

Fig.11.4 (a) shows a complete data set consisting of 20 data points (8 points from one Gaussian component 

and the remaining 12 points from another Gaussian component, indicated by blue empty circles and black 

solid circles, respectively). We can simply estimate the mixture coefficients as 𝜋1 =
8

20
= 0.4, and 𝜋2 =

12

20
= 0.6, and estimate the first Gaussian distribution by the blue empty-circle data points and the second 

Gaussian distribution by the black solid-circle data points. With this complete dataset setting, we have a 

closed-form analytical solution. 

However, in practice, the data set is typically incomplete, i.e., we are only given the data points 𝐱(𝑛) in the 

dataset, and the latent variable z is not observable, as illustrated in Fig.11.4 (b), where all data points are 

labeled as a red empty-circle. Since we don’t know which Gaussian component shall be responsible for a 

particular data point in the dataset, the estimation of each Gaussian component should depend on all data 

points, and thus is much more complicated than the case with a complete dataset. The maximization of the 

likelihood function for an incomplete data set will be treated shortly. 

 

                                       (a) complete data set                              (b) incomplete data set 

Fig.11.4 Complete data set versus incomplete data set 



Now consider a question: given the value of x sampled from the underlying distribution 𝑝(𝐱) , how likely 

does x originate from the k-th Gaussian component? Or how much responsibility that the k-th component 

takes for “representing” the sampled x? By Bayes’ theorem, we have the posterior probability 

𝑝(𝐳 = 𝑘|𝐱) =
𝑝(𝐳 = 𝑘) 𝑝(𝐱|𝐳 = 𝑘)

𝑝(𝐱)
=

𝜋𝑘ℕ(𝐱;𝛍𝑘 , 𝚺𝑘)

∑ 𝜋𝑗
𝐾
𝑗=1 ℕ(𝐱; 𝛍𝑗, 𝚺𝑗)

                      (11.8) 

The quantity of this posterior probability plays an important role in the methods of learning the generative 

models, as we shall see shortly. 

 

 

11.2. EM Algorithm 
 

11.2.1 EM algorithm for GMMs 

The expectation maximization algorithm (or EM algorithm) is a general technique for finding maximum 

likelihood solutions for probabilistic models with latent variables. First, we derive the EM algorithm for 

Gaussian mixture models as an instance of EM algorithm in this section, and then provide a treatment for 

the general EM algorithm applicable to more complex models in the next section. The concepts in EM 

algorithm provide a foundation for  

Suppose we have a dataset 𝒟 = {𝐱(1), 𝐱(2), … , 𝐱(𝑁)}, 𝐱(𝑛) ∈ ℝ𝐷, and each sample 𝐱(𝑛) is drawn 

independently from the probabilistic model 𝑝(𝐱;𝝅, 𝝁, 𝚺) in (11.7). Alternative, the dataset can be 

represented by an 𝑁 × 𝐷 matrix X, in which the nth row is given by (𝐱(𝑛))
𝑇
. The model parameters 

{𝜋𝑘, 𝑘 = 1,2,… , 𝐾} and {(𝝁𝑘 , 𝜮𝑘), 𝑘 = 1,2,… , 𝐾} are denoted by 𝝅, 𝝁, 𝚺, respectively. Our goal is to 

maximize the log likelihood function, which is represented by 

ln 𝑝(𝐗;𝝅, 𝝁, 𝚺) = ln∏𝑝(𝐱(𝑛); 𝝅, 𝝁, 𝚺)

𝑁

𝑛=1

= ∑ ln [∑ 𝜋𝑘ℕ(𝐱(𝑛); 𝝁𝒌, 𝜮𝒌)

𝐾

𝑘=1

] 

𝑁

𝑛=1

                            (11.9) 

where a Gaussian component is given by 

ℕ(𝐱; 𝝁𝒌, 𝜮𝒌) =
1

(2𝜋)
𝐷
2 |𝜮𝒌|

1
2

𝑒𝑥𝑝 {−
1

2
(𝐱 − 𝝁𝒌)

𝑇𝜮𝒌
−1(𝐱 − 𝝁𝒌)}      where   𝐱 ∈ ℝ𝐷               (11.10) 

First, let’s calculate the derivative of the log likelihood function with respect to the parameter 𝝁𝒌 and set it 

to zero. 

𝜕 ln 𝑝(𝐗;𝝅, 𝝁, 𝚺)

𝜕𝝁𝑘
= ∑ {

𝜋𝑘ℕ(𝐱(𝑛); 𝝁𝒌, 𝜮𝒌)

∑ 𝜋𝑗ℕ(𝐱(𝑛); 𝝁𝒋, 𝜮𝒋)
𝐾
𝑗=1

𝜮𝒌
−1(𝐱(𝑛) − 𝝁𝒌)}

𝑁

𝑛=1

= 0                         (11.11) 

Using the posterior probability (11.8), we rewrite (11.11) as 

∑{𝑝(𝐳 = 𝑘|𝐱(𝑛))𝜮𝒌
−1(𝐱(𝑛) − 𝝁𝒌)}

𝑁

𝑛=1

= 0                                              (11.12) 



 

Assuming 𝜮𝒌 is nonsingular, by solving for 𝝁𝒌, we have 

𝝁𝒌 =
𝟏

∑ 𝑝(𝐳 = 𝑘|𝐱(𝑛))𝑵
𝒏=𝟏

∑ 𝑝(𝐳 = 𝑘|𝐱(𝑛))𝐱(𝑛)

𝑵

𝒏=𝟏

=
𝟏

𝑵𝒌
∑ 𝑝(𝐳 = 𝑘|𝐱(𝑛))𝐱(𝑛)

𝑵

𝒏=𝟏

                     (11.13) 

where 

𝑵𝒌 = ∑ 𝑝(𝐳 = 𝑘|𝐱(𝑛))

𝑵

𝒏=𝟏

                                                            (11.14) 

𝑵𝒌 can be interpreted as the effective number of data points belonging to the k-th Gaussian component. 

𝑝(𝐳 = 𝑘|𝐱(𝑛)) is the weight for 𝐱(𝑛) to be counted for the k-th Gaussian component. Note that (11.14) is 

not a closed-form solution for 𝝁𝒌 because the terms at the right-hand side, 𝑵𝒌 and 𝑝(𝐳 = 𝑘|𝐱(𝑛)), depends 

on parameters 𝝅,𝝁, 𝚺.    

Similarly, by setting the derivative of the log likelihood function, with respect to 𝜮𝒌, to zero, we have 

𝜮𝒌 =
𝟏

𝑵𝒌
∑ 𝑝(𝐳 = 𝑘|𝐱(𝑛))

𝑵

𝒏=𝟏

(𝐱(𝑛) − 𝝁𝒌)(𝐱
(𝑛) − 𝝁𝒌)

𝑻
                                              (11.15) 

To maximize the log likelihood function (11.9) with respect to 𝜋𝑘, we need to consider a constraint defined 

by (11.5). Thus, maximizing (11.9) is equivalent to maximize the Lagrangian function 

𝐿 = ln𝑝(𝐗;𝝅, 𝝁, 𝚺) + 𝜆 (∑ 𝜋𝑘

𝐾

𝑘=1

− 1)                                                        (11.16) 

By setting 
𝜕𝐿

𝜕𝜋𝑘
= 0 and 

𝜕𝐿

𝜕𝜆
= 0, we have the solution 

 𝜆 = −𝑁                                                                                           (11.17) 

𝜋𝑘 =
𝑵𝒌

𝑁
                                                                                        (11.18) 

Again, neither (11.15) nor (11.18) is a closed-form solution because some terms at their right-hand side 

depend on the model parameters. However, (11.13), (11.15) and (11.18) suggest a simple iterative scheme, 

known as the expectation-maximization (EM) algorithm. In the EM algorithm, each iteration consists of 

two steps: E-step and M-step. In the E-step, we evaluate the posterior probability 𝑝(𝐳 = 𝑧𝑘|𝐱
(𝑛)), i.e., the 

responsibility of component k for sample 𝐱(𝑛), based on the current model parameters. In the M-step, the 

model parameters are updated in the order of (11.13), (11.15) and (11.18), based on the newest values. For 

instance, we use the result from (11.13) for  𝝁𝒌 in (11.15).   

The EM algorithm for GMMs is summarized as follows. Suppose we have a GMM 𝑝(𝐗;𝝅, 𝝁, 𝚺) defined in 

(11.7), and a dataset of observations 𝒟 = {𝐱(1), 𝐱(2), … , 𝐱(𝑁)} independently drawn from the GMM. We 

want to estimate the parameters (𝝅, 𝝁, 𝚺) based on the dataset, so that the log likelihood function is 

maximized. The steps in the EM algorithm are described as: 

 



 

Step 1: initialize the parameters {𝜋𝑘 , (𝝁𝑘 , 𝜮𝑘), 𝑘 = 1,2, … , 𝐾} and calculate the initial value of the 

log likelihood function. 

Step 2 (E-step): compute the posterior probabilities of 𝐳 (i.e., responsibilities of 𝑧𝑘 for 𝐱(𝑛)) using 

the current parameters. Note that each sample results in a posterior distribution. 

𝑝(𝐳 = 𝑘|𝐱(𝑛)) =
𝜋𝑘ℕ(𝐱(𝑛); 𝛍𝑘 , 𝚺𝑘)

∑ 𝜋𝑗
𝐾
𝑗=1 ℕ(𝐱(𝑛); 𝛍𝑗 , 𝚺𝑗)

         𝑛 = 1,2, . . , 𝑁, 𝑘 = 1,2, … , 𝐾            (11.19) 

Step 3 (M-step): update the parameters using the current posterior distributions ( or responsibilities) 

in the following order. 

𝑵𝒌 = ∑ 𝑝(𝐳 = 𝑘|𝐱(𝑛))

𝑵

𝒏=𝟏

                                                                               (11.20) 

𝝁𝒌
𝒏𝒆𝒘 =

𝟏

𝑵𝒌
∑ 𝑝(𝐳 = 𝑘|𝐱(𝑛))𝐱(𝑛)

𝑵

𝒏=𝟏

                                                             (11.21) 

𝜮𝒌
𝒏𝒆𝒘 =

𝟏

𝑵𝒌
∑ 𝑝(𝐳 = 𝑘|𝐱(𝑛))

𝑵

𝒏=𝟏

(𝐱(𝑛) − 𝝁𝒌
𝒏𝒆𝒘)(𝐱(𝑛) − 𝝁𝒌

𝒏𝒆𝒘)
𝑻
           (11.22) 

𝜋𝑘
𝑛𝑒𝑤 =

𝑵𝒌

𝑁
                                                                                                 (11.23) 

                                     𝝁𝒌 ← 𝝁𝒌
𝒏𝒆𝒘,  𝜮𝒌 ← 𝜮𝒌

𝒏𝒆𝒘, 𝜋𝑘 ← 𝜋𝑘
𝑛𝑒𝑤 

Step 4: compute the log likelihood using (11.9) and check whether either the parameters or the log 

likelihood is converged. If not, return to step 2. 

 

 

 

To get more insight into the EM algorithm of Gaussian mixture model, specified by (11.13), (11.14), 

(11.15), and (11.18), we revisit at the maximum likelihood (ML) solution to the Gaussian mixture model 

for a complete data set, and then show how we can generalize the ML result to the EM algorithm for 

incomplete data set scenarios. Given a complete data set {(𝐱(𝑛), 𝐳(𝑛)), 𝑛 = 1,2,… ,𝑁}, we can partition the 

data set into K subsets according to the value of 𝐳(𝑛) so that each subset is associated with one particular 

value of the latent variable z, then we estimate the parameters for each Gaussian component using the 

corresponding subset. Specifically, the result can be summarized by 

◼ Count the number of data points in each subset k, k=1,2,…,K. 

𝑵𝒌 = ∑(𝐳(𝑛) == 𝑘)

𝑵

𝒏=𝟏

= ∑ 𝑧𝑛𝑘

𝑵

𝒏=𝟏

                                                                       (11.24)  



where  

(𝐳𝑛 == 𝑘) = {1                  𝑖𝑓 𝐳(𝑛) = 𝑘 
0                  𝑒𝑙𝑠𝑒             

                                                          (11.25)        

For a purpose of comparison later, we map 𝐳(𝑛) ∈ {1,2,… , 𝐾} to a K-dimensional binary one-

hot vector denoted by  

𝐳(𝑛)⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [

𝑧𝑛1
𝑧𝑛2

⋮
𝑧𝑛𝐾

]           where    𝑧𝑛𝑘 = {1           𝑖𝑓  𝐳(𝑛) = 𝑘           
0            𝑒𝑙𝑠𝑒                       

                                  (11.26) 

Thus, 𝐳𝑛⃗⃗⃗⃗  represents an assignment of Gaussian component for sample 𝐱(𝑛) by its “1” element. 

◼ Estimate the mixture coefficient. 

𝜋𝑘 =
𝑵𝒌

𝑁
                                                                                                               (11.27) 

◼ Estimate the mean and covariance for each subset. 

𝝁𝒌 =
𝟏

𝑵𝒌
∑ 𝑧𝑛𝑘  𝐱

(𝑛)

𝑵

𝒏=𝟏

                                                                               (11.28) 

𝜮𝒌 =
𝟏

𝑵𝒌
∑ 𝑧𝑛𝑘

𝑵

𝒏=𝟏

(𝐱(𝑛) − 𝝁𝒌)(𝐱
(𝑛) − 𝝁𝒌)

𝑻
                                         (11.29) 

When the value of 𝐳(𝑛) is available, i.e., given by a complete dataset, then 𝐳(𝑛)⃗⃗ ⃗⃗ ⃗⃗  ⃗ is a binary one-hot vector 

with the k-element 𝑧𝑛𝑘 = 1 for 𝐳(𝑛) = 𝑘.  

Since the value of 𝐳(𝑛) is not available in an incomplete dataset 𝒟 = {𝐱(1), 𝐱(2), … , 𝐱(𝑁)}, we don’t have 

exact binary correspondence (0 or 1) between a data point 𝐱(𝑛) and Gaussian components. Instead, each 

data point 𝐱(𝑛) is associated with Gaussian component k in some degree specified by the posterior 

probability �̂�𝑛𝑘= 𝑝(𝐳 = 𝑘|𝐱(𝑛)), i.e., the responsibility of Gaussian component k for 𝐱(𝑛). Thus,  𝐳(𝑛)⃗⃗ ⃗⃗ ⃗⃗  ⃗ can 

be generalized from a binary one-hot vector to the posterior probability distribution of 𝐳(𝑛) over k, for a 

given 𝐱(𝑛). As a result, the one-hot vector in (11.26) (i.e., hard assignment) will blur to a probability 

distribution {�̂�𝑛𝑘 , 𝑘 = 1,2, … , 𝐾}, i.e., a soft assignment. To generalize the ML solution (11.24) - (11.29) for 

a complete dataset to the EM algorithm for an incomplete data set, we just simply replace 𝑧𝑛𝑘 in (11.24-

11.29) with the estimated responsibility �̂�𝑛𝑘, and obtain (11.13), (11.14), (11.15), and (11.18). In the EM 

algorithm, the E-step evaluates the responsibilities of Gaussian components for datapoints using the current 

model parameters, and then the M-step maximizes the log likelihood function based on the estimated 

responsibilities. The iterations of (E-step, M-step) result in the convergence of the solution. 

11.2.2 EM Algorithm for Latent Variable Models in General 

In this section, we provide a formal treatment of EM algorithm for a general latent variable model. A latent 

variable model is a probabilistic model for which certain variables are never observed. For example, random 

variable z in GMMs is a latent variable while x is an observed variable. In our subsequent context, the latent 

variable and the observed variable are denoted by z and x, respectively. All parameters of the model are 



denoted by 𝜃 ∈ Θ.  In GMMs, for instance, 𝜃 includes all elements in {𝜋𝑘 , (𝝁𝑘 , 𝜮𝑘), 𝑘 = 1,2, … , 𝐾}. The 

joint probability distribution of the model is 𝑝(𝐱. 𝐳|𝜃). 

Problem formulation 

We denote a complete dataset by {(𝐱(𝑛), 𝐳(𝑛)), 𝑛 = 1,2,… ,𝑁}, and an incomplete data set as 𝐗 =

{𝐱(1), 𝐱(2), … , 𝐱(𝑁)}. In a learning problem, we are given the incomplete data set X, and the goal is to find 

the maximum likelihood estimate (MLE) of the model parameters, 

𝜃 = argmax
𝜃

𝑝(𝐗|𝜃)                                                                               (11.30) 

In an inference problem, given a new datapoint (or sample) x, we want to find the conditional distribution 

over z, 

𝑝(𝐳|𝐱, 𝜃)                                                                                        (11.31)  

In practice, it is usually convenient to maximize the log likelihood,  

𝜃 = argmax
𝜃

ln(𝑝(𝐗|𝜃))                                                                         (11.31) 

Note that the gradient descent method is typically not a good option to solve (11.31) (see exercise11.1). 

Since the complete data log-likelihood is typically easy to optimize by max
𝜃

ln 𝑝(𝐗, 𝐳|𝜃) (e.g., GMM for 

complete dataset), if we had a distribution 𝑞(𝐳) for the latent variable z, then we would maximize the 

expected complete data log-likelihood, i.e., 

 𝜃 = 𝑎𝑟𝑔max
𝜃

𝔼
𝐳~𝑞(𝐳)

[ln 𝑝(𝐗, 𝐳|𝜃)] =  𝑎𝑟𝑔max
𝜃

∑ 𝑞(𝐳) ln 𝑝(𝐗, 𝐳|𝜃)𝑧                             (11.32)    

Of course, the effectiveness of the result depends on how close 𝑞(𝐳) is to the true underlying distribution 

𝑝(𝐳). 

Jesen’s inequality and DL divergence 

The derivation of EM algorithm involves two math concepts: Jensen’s inequality and Kullback-Leibler 

(KL) divergence. The Jensen’s inequality is stated as: if function 𝑓 is a convex function, and x is a random 

variable, then 

𝔼[𝑓(𝐱)] ≥ 𝑓(𝔼[𝐱])                                                                             (11.33) 

If the function f is a concave function, then the direction of inequality in (11.33) is reversed.  Furthermore, 

if the function is strictly convex or concave, the equality holds if only if x is a constant. (proof, see exercise, 

and Bishop pp.56) 

KL divergence is defined to measure how different two distribution functions are, say 𝑝(𝐳) and 𝑞(𝐳), which 

is given by 

𝐾𝐿(𝑝||𝑞) = ∑𝑝(𝐳)

𝑧

ln
𝑝(𝐳)

𝑞(𝐳)
                                                             (11.34) 

Using Jensen’s inequality, we can prove that 1) 𝐾𝐿(𝑝||𝑞) ≥ 0, ∀ 𝑝, 𝑞; and 2) 𝐾𝐿(𝑝||𝑞) = 0, if and only if 

𝑝(𝐳) = 𝑞(𝐳), ∀𝐳. (see exercise) 



Evidence lower bound (ELBO) 

Now let’s find the lower bound of the marginal log-likelihood ln(𝑝(𝐗|𝜃)) using Jensen’s inequality. Since 

the marginal log-likelihood on a data set is equal to the sum of the marginal log-likelihoods over samples 

ln(𝑝(𝐗|𝜃)) = ∑ ln(𝑝(𝐱(𝑛)|𝜃))

𝑁

𝑛=1

                                                                        (11.35) 

Since the number of samples in the dataset is not essential for our exposition of EM algorithm, we consider 

a single sample x for simplicity, and then obtain the final results by adding the operation of summation over 

the data samples. 

Given a data sample x, by Jesen’s inequality, for any choice of a distribution 𝑞(𝐳), we have 

ln(𝑝(𝐱|𝜃)) = ln {∑𝑝(𝐱, 𝐳|𝜃)

𝐳

} = ln {∑𝑞(𝐳)
𝑝(𝐱, 𝐳|𝜃)

𝑞(𝐳)
𝐳

} ≥ ∑𝑞(𝐳) ln [
𝑝(𝐱, 𝐳|𝜃)

𝑞(𝐳)
]

𝐳

= 𝑙𝑞(𝜃)     (11.36) 

The quantity 𝑙𝑞(𝜃) is called the evidence lower bound (ELBO) given a single sample x.  Any choice of  

𝑞(𝐳) results in a different lower bound curve 𝑙𝑞(𝜃) which is a function of 𝜃. Furthermore, ln(𝑝(𝐱|𝜃)) can 

be decomposed into two components: the lower bound and the KL divergence for a given 𝑞(𝐳), 

ln(𝑝(𝐱|𝜃)) = [∑𝑞(𝐳)

𝐳

] ln(𝑝(𝐱|𝜃)) = ∑[𝑞(𝐳) ln (
𝑝(𝐱, 𝐳|𝜃)

𝑞(𝐳)

𝑞(𝐳)

𝑝(𝐳|𝐱, 𝜃)
)]

𝐳

= ∑𝑞(𝐳) ln [
𝑝(𝐱, 𝐳|𝜃)

𝑞(𝐳)
]

𝐳

+ ∑𝑞(𝐳)

𝐳

ln (
𝑞(𝐳)

𝑝(𝐳|𝐱, 𝜃)
)                                                           

= 𝑙𝑞(𝜃) + 𝐾𝐿(𝑞(𝐳)||𝑝(𝐳|𝐱, 𝜃))                                                                                 (11.37) 

The decomposition (11.37) implies that the gap between the log-likelihood and the ELBO is equal to the 

divergence between the “guessed” distribution 𝑞(𝐳) and the true posterior probability distribution over z 

given x. To make the lower bound tight (i.e., ln(𝑝(𝐱|𝜃)) = 𝑙𝑞(𝜃), or equivalently 𝐾𝐿(𝑞(𝐳)||𝑝(𝐳|𝐱, 𝜃)) =

0), it is sufficient and necessary to set the distribution 𝑞(𝐳) to be the true posterior distribution 𝑝(𝐳|𝐱, 𝜃) 

𝑞(𝐳) = 𝑝(𝐳|𝐱, 𝜃)                                                                                          (11.38) 

Adding the summation operation on (11.37) over all samples in the dataset, we have the log-likelihood on 

the data set X, 

ln(𝑝(𝐗|𝜃)) = ∑ 𝑙𝑞𝑛
(𝜃)

𝑁

𝑛=1

+ ∑ 𝐾𝐿 (𝑞𝑛(𝐳)||𝑝(𝐳|𝐱(𝑛), 𝜃))

𝑁

𝑛=1

                                                                                

= ℒ𝑞(𝜃) + 𝐾𝐿(𝑞(𝐳)||𝑝(𝐳|𝐗, 𝜃))                                                                                        (11.39) 

where  

ℒ𝑞(𝜃) = ∑ 𝑙𝑞𝑛
(𝜃)

𝑁

𝑛=1

                                                     𝑖𝑠 𝐸𝐿𝐵𝑂                                                          



𝑙𝑞𝑛
(𝜃) = ∑𝑞𝑛(𝐳) ln [

𝑝(𝐱(𝑛), 𝐳|𝜃)

𝑞𝑛(𝐳)
]

𝐳

                       𝑖𝑠 𝐸𝐿𝐵𝑂 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝐱(𝑛)      

𝑞𝑛(𝐳)                                    𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑧 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝐱(𝑛)                     

𝐾𝐿(𝑞(𝐳)||𝑝(𝐳|𝐗, 𝜃)) = ∑ 𝐾𝐿 (𝑞𝑛(𝐳)||𝑝(𝐳|𝐱(𝑛), 𝜃))

𝑁

𝑛=1

      𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝐾𝐿 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛    

                                                                                                              𝑞𝑛(𝐳) 𝑎𝑛𝑑 𝑝(𝐳|𝐱(𝑛), 𝜃), 𝑛 = 1,2,… ,𝑁   

Since the GMM is an example of latent variable models, we can visualize the ELBO using a particular 

GMM. Consider the Gaussian mixture model in Fig.11.2. The dataset consists of 20 data samples, 𝐗 =

{𝐱(1), 𝐱(2), … , 𝐱(20)}, as shown in Fig.11.4(b). The parameters of the underlying model are 𝜋1 = 0.4, 𝜋2 =

0.6, 𝜇1 = 5, Σ1 = 4, 𝜇2 = 15, Σ2 = 16. For simplicity, we only learn one parameter 𝜇1 denoted by 𝜃, 

assuming all remaining model parameters, i.e., 𝜋1, 𝜋2, Σ1, 𝜇2, Σ2, are known. The red solid curve in Fig.11.5 

shows the log-likelihood on the dataset. The black dotted curve is the ELBO for an arbitrarily particular set 

of distributions {𝑞𝑛(𝑧), 𝑧 ∈ {1,2}, 𝑛 = 1,2, … ,𝑁}. There is always a gap between the log-likelihood and 

this ELBO instance, which implies that the KL in (11.39) is more than zero, i.e., 𝑞(𝐳) is not the same as 

𝑝(𝐳|𝐗, 𝜃), for any 𝜃.   

 

Fig.11.5 The log-likelihood and a few lower bounds 

To find an ELBO curve that touches the log-likelihood curve at some point, say 𝜃𝑜𝑙𝑑, i.e., KL is zero at 

𝜃𝑜𝑙𝑑, we need to choose the posterior probabilities for the distributions 𝑞(𝐳), denoted as 𝑞𝑜𝑙𝑑(𝐳), given by 

𝑞𝑛
𝑜𝑙𝑑(𝐳) = 𝑝(𝐳|𝐱(𝑛), 𝜃𝑜𝑙𝑑)                                                                  (11.40) 

Note that for each sample there is a posterior probability distribution. 

Thus, the corresponding ELBO on the data set is a function of 𝜃, 

ℒ𝑞𝑜𝑙𝑑(𝜃) = ∑ ∑𝑞𝑛
𝑜𝑙𝑑(𝐳) ln [

𝑝(𝐱(𝑛), 𝐳|𝜃)

𝑞𝑛
𝑜𝑙𝑑(𝐳)

]                                             (11.41)

𝐳

𝑁

𝑛=1

 

and 



ln (𝑝(𝐗|𝜃𝑜𝑙𝑑)) = ℒ𝑞𝑜𝑙𝑑(𝜃𝑜𝑙𝑑)                                                              (11.42) 

As a result, the blue dash-dot curve in Fig.11.5 corresponds to the ELBO ℒ𝑞𝑜𝑙𝑑(𝜃), with 𝑞(𝐳) specified by 

(11.40) and 𝜃𝑜𝑙𝑑 = 0. However, as shown in Fig.11.5, 𝜃𝑜𝑙𝑑 = 0 does not get the maximum of ELBO 

ℒ𝑞𝑜𝑙𝑑(𝜃). If we can find 

𝜃𝑛𝑒𝑤 = 𝑎𝑟𝑔max
𝜃

ℒ𝑞𝑜𝑙𝑑(𝜃)                                                                   (11.43) 

then we have 

 ln(𝑝(𝐗|𝜃𝑛𝑒𝑤)) > ℒ𝑞𝑜𝑙𝑑(𝜃𝑛𝑒𝑤)                 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑                             

> ℒ𝑞𝑜𝑙𝑑(𝜃𝑜𝑙𝑑)                    𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝜃𝑛𝑒𝑤 = 𝑎𝑟𝑔max
𝜃

ℒ𝑞𝑜𝑙𝑑(𝜃)                       

                 = ln (𝑝(𝐗|𝜃𝑜𝑙𝑑))             𝑠𝑒𝑒 (11.42)                                                                                 

Thus, we have  

ln(𝑝(𝐗|𝜃𝑛𝑒𝑤)) > ln (𝑝(𝐗|𝜃𝑜𝑙𝑑))                                                          (11.44)   

(11.44) implies that the update of 𝜃 in (11.43) always makes the log-likelihood monotonically increase. 

Therefore, by replacing the value of 𝜃𝑜𝑙𝑑 in (11.40) with the value of 𝜃𝑛𝑒𝑤 calculated in (11.43), and repeat 

(11.40), (11.41) and (11.43), we can achieve the convergence of  𝜃 to a local maximum. Since this approach 

is susceptible to local optima, it is common practice to reinitialize  𝜃 at different points. 

Back to Fig.11.5, we can obtain the maximum point of ℒ𝑞𝑜𝑙𝑑(𝜃)  at 𝜃 = 𝜃𝑛𝑒𝑤 = 3.446 by a closed form 

(11.21) for the GMM. Then we plot a new ELBO ℒ𝑞𝑛𝑒𝑤(𝜃) curve (the dashed green curve) based on a new 

distribution 𝑞(𝐳) specified by (11.40) using 𝜃𝑜𝑙𝑑 = 3.446. The maximum point of the new ELBO is closer 

to the maximum point of the log-likelihood, compared to the old ELBO. 

[Lemma] Suppose we have found a global maximum of ℒ𝑞(𝜃), 

ℒ𝑞∗(𝜃
∗) ≥ ℒ𝑞(𝜃), ∀𝑞, 𝜃                                                                      (11.45) 

Then 𝜃∗ is a global maximum of ln(𝑝(𝐗|𝜃)), i.e.,  

ln(𝑝(𝐗|𝜃∗)) ≥ ln(𝑝(𝐗|𝜃)) , ∀𝜃                                                      (11.46) 

 

Proof: let 𝑞∗(𝐳) = 𝑝(𝐳|𝐗, 𝜃∗), we have 

ln(𝑝(𝐗|𝜃∗)) = ℒ𝑞(𝜃
∗) + 𝐾𝐿(𝑞(𝐳)||𝑝(𝐳|𝐗, 𝜃∗)) = ℒ𝑞∗(𝜃

∗) + 𝐾𝐿(𝑞∗(𝐳)||𝑝(𝐳|𝐗, 𝜃∗)) = ℒ𝑞∗(𝜃
∗) 

for any 𝜃′, let 𝑞′(𝐳) = 𝑝(𝐳|𝐗, 𝜃′), we have  

ln(𝑝(𝐗|𝜃′)) = ℒ𝑞(𝜃
′) + 𝐾𝐿(𝑞(𝐳)||𝑝(𝐳|𝐗, 𝜃′)) 

= ℒ𝑞′(𝜃′) + 𝐾𝐿(𝑞′(𝐳)||𝑝(𝐳|𝐗, 𝜃′)) = ℒ𝑞′(𝜃′) ≤ ℒ𝑞∗(𝜃
∗)  

Thus,  ln(𝑝(𝐗|𝜃∗)) ≥ ln(𝑝(𝐗|𝜃′)) , for any 𝜃′. 



EM algorithm 

The analysis of ELBO above suggests an iteration algorithm, called the EM algorithm, to find the model 

parameters maximizing the log-likelihood for a general latent variable model. The EM algorithm for GMMs 

in Section 11.2.1 is a special case of the EM algorithm. In a general EM algorithm, each iteration consists 

of two consecutive steps: E-step and M-step, as illustrated by Fig.11.6.  

Suppose the current parameters is denoted by 𝜃𝑜𝑙𝑑. In E-step, our goal is to maximize the lower bound over 

𝑞(𝒛) with fixed parameters 𝜃𝑜𝑙𝑑. Since the log-likelihood function ln 𝑝(𝐗|𝜃) does not depend on 𝑞(𝒛), the 

maximum of the lower bound occurs when 𝐾𝐿(𝑞||𝑝) is equal to zero, i.e., 𝑞(𝒛) is equal to the posterior 

distribution of the latent variable at current parameters. Thus, we calculate the posterior distribution, and 

compute the expectation of the log-likelihood under the posterior distribution, i.e., the ELBO.  

In M-step, holding q fixed, we update the model parameters by maximizing ℒ𝑞(𝜃) over the parameters, 

where 𝑞 is the one computed in the E-step, i.e., the posterior distribution at current parameters 𝜃𝑜𝑙𝑑, 

𝑝(𝐳|𝐗, 𝜃𝑜𝑙𝑑). Substituting 𝑞(𝒛) = 𝑝(𝐳|𝐗, 𝜃𝑜𝑙𝑑) into (11.36), we have 

ℒ𝑞(𝜃) = ∑𝑝(𝒛|𝑿, 𝜃𝑜𝑙𝑑) ln
𝑝(𝑿, 𝒛|𝜃)

𝑝(𝒛|𝑿, 𝜃𝑜𝑙𝑑)
𝑧

                                                                                                               

= ∑𝑝(𝒛|𝑿, 𝜃𝑜𝑙𝑑) ln 𝑝(𝑿, 𝒛|𝜃)

𝑧

− ∑𝑝(𝒛|𝑿, 𝜃𝑜𝑙𝑑) ln 𝑝(𝒛|𝑿, 𝜃𝑜𝑙𝑑)

𝑧

                         (11.47) 

Since the second term in (11.47) is independent of 𝜃,  the quantity to be maximized in M-step is the first 

term in (11.47), which is the expectation of the complete-data log likelihood function with respect to the 

posterior distribution of z. Thus, we have 

𝜃𝑛𝑒𝑤 = argmax
𝜃

ℒ𝑞(𝜃) = argmax
𝜃

∑𝑝(𝒛|𝑿, 𝜃𝑜𝑙𝑑) ln 𝑝(𝑿, 𝒛|𝜃)

𝑧

                        (11.48) 

The updated parameters 𝜃𝑛𝑒𝑤 leads to a larger lower bound value ℒ𝑞(𝜃
𝑛𝑒𝑤) and a non-zero KL divergence, 

and thus resulting in an increased log likelihood value  ln 𝑝(𝐗|𝜃𝑛𝑒𝑤). 

 

Fig.11.6 Illustration of EM algorithm 



Suppose we are given a latent variable model (but the model parameters are unknown) and a dataset 𝐗 =

{𝐱(1), 𝐱(2), … , 𝐱(𝑁)}. The goal is to find the values of model parameters that maximize the likelihood 

function on the dataset. The steps in the EM algorithm are described as: 

 

Step 1: choose the initial parameters 𝜃𝑜𝑙𝑑     

Step 2 (E-step):  

◼ Choose an optimal distribution, which is the posterior probability, based on the dataset and 

current parameters 𝜃𝑜𝑙𝑑 

𝑞𝑛(𝐳):= 𝑎𝑟𝑔max
𝑞

ℒ𝑞(𝜃
𝑜𝑙𝑑) = 𝑝(𝐳|𝐱(𝑛), 𝜃𝑜𝑙𝑑), 𝑛 = 1,2,… , 𝑁                 (11.49) 

◼ compute the expectation of the log-likelihood, i.e., the current ELBO 

ℒ𝑞(𝜃):= ∑ ∑𝑞𝑛(𝐳) ln [
𝑝(𝐱(𝑛), 𝐳|𝜃)

𝑞𝑛(𝐳)
]                                               (11.50)

𝐳

𝑁

𝑛=1

 

Step 3 (M-step): update the parameters by maximizing the current ELBO. 

𝜃𝑛𝑒𝑤:= 𝑎𝑟𝑔max
𝜃

ℒ𝑞(𝜃)                                                                     (11.51) 

Step 4: check whether either the parameters or the log likelihood function is converged. If not, 

𝜃𝑜𝑙𝑑 ← 𝜃𝑛𝑒𝑤, and return to step 2. 

Note that if the latent variable is continuous, our discussion will apply equally well by replacing the sum 

over z with the corresponding integral.  

Convergence of EM algorithm can be described as follows. Let 𝜃𝑖 be the value of EM algorithm after i 

steps. We define the transition function M( ) such that 𝜃𝑖+1 = 𝑀(𝜃𝑖). Suppose the log-likelihood function 

ln(𝑝(𝐗|𝜃)) is differentiable. Let S be the set of stationary points of ln(𝑝(𝐗|𝜃)). For any starting point 𝜃0, 

we have 

lim
𝑖→∞

𝜃𝑖 = 𝜃∗ ∈ 𝑆 

𝜃∗ = 𝑀(𝜃∗) 

ln (𝑝(𝐗|𝜃𝑖)) monotonically increases to ln(𝑝(𝐗|𝜃∗)) as 𝑖 → ∞. 

For GMMs, both E-step (11.49, 11.50) and M-step (11.51) have a closed-form analytical solution. In 

practice, it may be difficult to compute (11.50) and (11.51) if the model is such that working with the true 

posterior distribution is intractable. Our strategy is to make the computation of E-step and M-step easy by 

reasonable approximation. For example, in E-step we restrict the 𝑞𝑛(𝐳) in (11.50) in a subset of distributions 

ℚ (not posterior distribution) so that it is easy (tractable) to work with (11.50) and we select  𝑞𝑛(𝐳) from ℚ 

by 

𝑞𝑛(𝐳) = 𝑎𝑟𝑔min
𝑞∈ℚ

𝐾𝐿 (𝑞||𝑝(𝐳|𝐱(𝑛), 𝜃𝑜𝑙𝑑))                                                 (11.52) 



For M-step, instead of finding the maximum point of the current ELBO in (11.51), we just need to find a 

better new point such that  

ℒ𝑞(𝜃
𝑛𝑒𝑤) ≥ ℒ𝑞(𝜃

𝑜𝑙𝑑)                                                                            (11.53) 

11.3. Variational Auto-encoder (VAE) 
Variational auto-encoder (VAE) (Kingma and Welling, 2014) refers to a framework that extends the EM 

algorithm to more complex models by neural networks. In the framework of VAE, we approximate the 

intractable underlying posterior distribution 𝑝(𝐳|𝐱(𝑛)) by a family of distributions that are easy to work 

with (e.g., parameterized Gaussian distributions). Since neural networks are used to approximate the 

relevant distributions, the gradient-based optimization can be easily applied using a standard framework 

such as TensorFlow or PyTorch. 

11.3.1 Variational Lower Bound 

In general, our latent variable model can be represented by a joint distribution 𝑝𝜃(𝐱, 𝐳) over both the 

observed variables x and the latent variables z. The marginal distribution over the observed variables 𝑝𝜃(𝐱) 

is given by  

 𝑝𝜃(𝐱) = ∫𝑝𝜃(𝐱, 𝐳)𝑑𝐳                                                               (11.54)  

For a datapoint x, 𝑝𝜃(𝐱) is called the marginal likelihood or the model evidence. If z is discrete and 𝑝𝜃(𝐱|𝐳) 

is a Gaussian distribution, then 𝑝𝜃(𝐱) is a mixture Gaussian distribution. For continuous latent variables z, 

𝑝𝜃(𝐱) can be viewed as an infinite mixture.  

The simplest and most common latent variable model is the one with the following factorization 

𝑝𝜃(𝐱, 𝐳) = 𝑝𝜃(𝐳)𝑝𝜃(𝐱|𝐳)                                                            (11.55) 

The goal of maximum likelihood learning is to look for the parameter values that maximize the likelihood 

or (equivalently the log-likelihood) on the dataset 𝐗 = {𝐱(1), 𝐱(2), … , 𝐱(𝑁)}, 

𝜃𝑀𝐿 = 𝑎𝑟𝑔max
𝜃

∑ ln𝑝𝜃(𝐱
(𝒏))

𝑁

𝑛=1

 

Like the EM algorithm, the optimization objective of the VAE is equivalently the ELBO. For any choice of 

distribution 𝑞(𝐳), we have the log-likelihood on a single datapoint 

ln 𝑝𝜃(𝐱) = 𝔼𝑞(𝐳)[ln𝑝𝜃(𝐱)]                                                                   

= 𝔼𝑞(𝐳) [ln
𝑝𝜃(𝐱, 𝐳)

𝑞(𝐳)
] + 𝔼𝑞(𝐳) [ln

𝑞(𝐳)

𝑝𝜃(𝐳|𝐱)
] 

= ℒ𝐪(𝜃; 𝐱) + 𝐾𝐿(𝑞(𝐳)||𝑝𝜃(𝐳|𝐱))                                                              (11.56𝑎) 

The best choice of 𝑞(𝐳) should be the true posterior distribution 𝑝𝜃(𝐳|𝐱) of z for a given datapoint x, such 

that the KL divergence is zero, i.e., the log-likelihood is equal to the ELBO. However, the true posterior 

distribution is intractable in general.  



In the VAE framework, we use a neural network to generate 𝑞𝜙(𝐳|𝐱), which approximates 𝑝𝜃(𝐳|𝐱). This 

approximation makes the problem tractable. Furthermore, we don’t need to computer a posterior 

distribution per datapoint. Instead, the neural network generates different posterior distribution 

approximation per input x, with the shared variational inference parameters 𝜙 across the datapoints. This 

variational inference is called amortized variational inference that can improve the computing efficiency.  

For any choice of inference model 𝑞𝜙(𝐳|𝐱), including the form of 𝑞𝜙(𝐳|𝐱) and the variational parameters 

𝜙, we have  

ln 𝑝𝜃(𝐱) = 𝔼𝑞𝜙(𝐳|𝐱)[ln 𝑝𝜃(𝐱)]                                                                   

= 𝔼𝑞𝜙(𝐳|𝐱) [ln
𝑝𝜃(𝐱, 𝐳)

𝑞𝜙(𝐳|𝐱)
] + 𝔼𝑞𝜙(𝐳|𝐱) [ln

𝑞𝜙(𝐳|𝐱)

𝑝𝜃(𝐳|𝐱)
] 

= ℒ(𝜃, 𝜙; 𝐱) + 𝐾𝐿 (𝑞𝜙(𝐳|𝐱)||𝑝𝜃(𝐳|𝐱))                                                       (11.56𝑏) 

The first term in (11.56b) is the variational lower bound or (ELBO). The ELBO can be written as 

ℒ(𝜃, 𝜙; 𝐱) = 𝔼𝑞𝜙(𝐳|𝐱) [ln
𝑝𝜃(𝐱, 𝐳)

𝑞𝜙(𝐳|𝐱)
] = 𝔼𝑞𝜙(𝐳|𝐱)[ln 𝑝𝜃(𝐱, 𝐳) − ln 𝑞𝜙(𝐳|𝐱)]                         (11.57𝑎) 

Or  

ℒ(𝜃, 𝜙; 𝐱) = 𝔼𝑞𝜙(𝐳|𝐱) [ln
𝑝𝜃(𝐱, 𝐳)

𝑞𝜙(𝐳|𝐱)
] = 𝔼𝑞𝜙(𝐳|𝐱)[ln 𝑝𝜃(𝐱|𝐳) ] − 𝐾𝐿 (𝑞𝜙(𝐳|𝐱)||𝑝𝜃(𝐳))    (11.57𝑏) 

The second term in (11.56b) is the KL divergence between 𝑞𝜙(𝐳|𝐱) and 𝑝𝜃(𝐳|𝐱), which is non-negative. 

From our previous analysis, we conclude that 1) for a fixed 𝜃, maximizing ℒ(𝜃, 𝜙; 𝐱) over 𝜙 leads to 

minimizing the KL divergence in (11.56b); 2) for a fixed 𝜙, maximizing ℒ(𝜃, 𝜙; 𝐱) over 𝜃 will increase the 

likelihood 𝑝𝜃(𝐱). The global maximum of ℒ(𝜃, 𝜙; 𝐱) corresponds to the global maximum of 𝑝𝜃(𝐱) (see 

Lemma). Therefore, maximization of the ELBO ℒ(𝜃, 𝜙; 𝐱), w.r.t. the parameters 𝜃 and 𝜙, will 

simultaneously and approximately maximize the likelihood 𝑝𝜃(𝐱) and minimize the KL divergence 

between the approximation 𝑞𝜙(𝐳|𝐱) and the true posterior 𝑝𝜃(𝐳|𝐱). 

The ELBO on the dataset is given by the sum of ELBOs over datapoints, 

ℒ(𝜃, 𝜙; 𝐗) = ∑ ℒ(𝜃, 𝜙; 𝐱(𝒏))

𝑁

𝑛=1

                                                         (11.58) 

11.3.2 Gradients of Variational Lower Bound 

An important property of the ELBO is that it can be jointly optimized w.r.t. all parameters 𝜃 and 𝜙 using 

stochastic gradient ascent. The gradients of the individual datapoint ELBO w.r.t. the generative model 

parameters 𝜃 can be estimated unbiasedly by 

∇𝜃ℒ(𝜃, 𝜙; 𝐱) = ∇𝜃𝔼𝑞𝜙(𝐳|𝐱)[ln 𝑝𝜃(𝐱, 𝐳) − ln 𝑞𝜙(𝐳|𝐱)] = 𝔼𝑞𝜙(𝐳|𝐱)[∇𝜃(ln𝑝𝜃(𝐱, 𝐳))]               (11.59) 

However, computing the gradient of the ELBO w.r.t. the inference model parameters 𝜙 is tricky because 

the expectation 𝔼𝑞𝜙(𝐳|𝐱) in (11.57) is taken w.r.t. the distribution 𝑞𝜙(𝐳|𝐱), which depends on 𝜙. In general, 



∇𝜙𝔼𝑞𝜙(𝐳|𝐱)[𝑓(𝑧)] ≠ 𝔼𝑞𝜙(𝐳|𝐱)[∇𝜙𝑓(𝑧)]                                                               (11.60) 

Reparameterization trick 

To compute the gradients of the ELBO straightforwardly, a technique called reparameterization trick is 

introduced to represent the ELBO in an expectation taken w.r.t. another distribution 𝑝(𝛜), which is 

independent of 𝜙 and x. Suppose there exists an invertible transformation on 𝛜 

𝒛 = 𝑔(𝛜, 𝜙, 𝐱)                                                                                 (11.61) 

where random variable 𝛜~𝑝(𝛜), such that 𝒛~𝑞𝜙(𝐳|𝐱). For example, if 𝛜~𝒩(𝟎, 𝐈), then 

𝐳~𝒩 (𝛍, diag(𝛔𝟐)) with the transformation 

𝒛 = 𝑔(𝛜, 𝛍, 𝛔) = 𝛍 + 𝛔 ⊙ 𝛜                                                         (11.62) 

where 𝛍, 𝛔 are the mean vector and standard deviation vector, respectively. ⊙ denotes the element-wise 

product. The covariance matrix diag(𝛔𝟐) is a full rank diagonal matrix whose diagonal entries are σ𝑖
𝟐. 

With the transformation (11.61), for a function 𝑓(𝑧) we have 

𝔼𝑞𝜙(𝐳|𝐱)[𝑓(𝑧)] = 𝔼𝑝(𝛜)[𝑓(𝑔(𝛜, 𝜙, 𝐱))]                                               (11.63) 

The gradient of 𝔼𝑞𝜙(𝐳|𝐱)[𝑓(𝑧)]  w.r.t. 𝜙 can be computed by 

∇𝜙𝔼𝑞𝜙(𝐳|𝐱)[𝑓(𝑧)] = ∇𝜙𝔼𝑝(𝛜)[𝑓(𝑔(𝛜, 𝜙, 𝐱))] = 𝔼𝑝(𝛜)[∇𝜙𝑓(𝑔(𝛜,𝜙, 𝐱))]                (11.64) 

Fig.11.7 illustrates the backpropagation of gradients after the reparameterization trick is applied. 

 

Fig.11.7 Backpropagation after a reparameterization trick 

Then we can perform a simple Monte Carlo (MC) estimator on the RHS of (11.64) where we draw samples 

𝛜~𝑝(𝛜). As a result, ∇𝜙𝔼𝑞𝜙(𝐳|𝐱)[𝑓(𝑧)] can be estimated by 

∇𝜙𝔼𝑞𝜙(𝐳|𝐱)[𝑓(𝑧)] ≃ ∇𝜙𝑓(𝑔(𝛜,𝜙, 𝐱))                                                               (11.65) 

where 𝑓(𝑔(𝛜,𝜙, 𝐱)) is a Monte Carlo estimation of 𝑓(𝑔(𝛜, 𝜙, 𝐱)) 

𝑓(𝑔(𝛜,𝜙, 𝐱)) =
1

𝐿
∑𝑓 (𝑔(𝛜(𝒍), 𝜙, 𝐱))        𝑤ℎ𝑒𝑟𝑒 𝐿 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑀𝐶,  𝛜(𝒍)~𝑝(𝛜).        (11.66) 

𝐿

𝑙=1

 



Stochastic Gradient Variational Bound (SGVB) Estimator 

With the reparameterization trick, the single datapoint ELBO in (11.57) can be rewritten as 

ℒ(𝜃, 𝜙; 𝐱) = 𝔼𝑝(𝛜)[ln 𝑝𝜃(𝐱, 𝐳) − ln 𝑞𝜙(𝐳|𝐱)]                                                    (11.67𝑎) 

ℒ(𝜃, 𝜙; 𝐱) = 𝔼𝑝(𝛜)[ln𝑝𝜃(𝐱|𝐳) ] − 𝐾𝐿 (𝑞𝜙(𝐳|𝐱)||𝑝𝜃(𝐳))                              (11.67𝑏) 

where 𝛜~𝑝(𝛜), 𝒛 = 𝑔(𝛜, 𝜙, 𝐱), so that 𝒛~𝑞𝜙(𝐳|𝐱). 

We perform an MC estimation on the ELBO in (11.67a) on datapoint 𝐱(𝒏) 

ℒ(𝜃, 𝜙; 𝐱(𝒏)) ≃ ℒ �̃�(𝜃, 𝜙; 𝐱(𝒏)) =
1

𝐿
∑[ln𝑝𝜃(𝐱

(𝒏), 𝐳(𝒏,𝒍)) − ln 𝑞𝜙(𝐳(𝒏,𝒍)|𝐱(𝒏))]

𝐿

𝑙=1

                    (11.68) 

where 𝐳(𝒏,𝒍) = 𝑔(𝛜(𝒏,𝒍), 𝜙, 𝐱), and 𝛜(𝒏,𝒍)~𝑝(𝛜). 

Since the KL divergence in (11.67b) can be integrated into a closed form in some typical situations (we will 

see later), we only need to sample the first term at the RHS of (11.67b) for the ELBO estimate. This gives 

us a second way to the estimate of ELBO, according to (11.67b), 

ℒ(𝜃, 𝜙; 𝐱(𝒏)) ≃ ℒ �̃�(𝜃, 𝜙; 𝐱(𝒏)) = −𝐾𝐿 (𝑞𝜙(𝐳|𝐱(𝒏))||𝑝𝜃(𝐳)) +
1

𝐿
∑ln𝑝𝜃(𝐱

(𝒏)|𝐳(𝒏,𝒍))

𝐿

𝑙=1

         (11.69)  

where 𝐳(𝒏,𝒍) = 𝑔(𝛜(𝒏,𝒍), 𝜙, 𝐱), and 𝛜(𝒏,𝒍)~𝑝(𝛜). Please note that the estimators in (11.68) and (11.69) are 

unbiased. 

Given a minibatch ℳ = {𝐱(1), 𝐱(2), … , 𝐱(𝑀)}, which is randomly drawn from the full dataset X, we can 

construct an estimator of the full dataset ELBO, based on the minibatch datapoints, 

ℒ(𝜃, 𝜙; 𝐗) ≃ ℒ̃ℳ(𝜃, 𝜙;𝓜) =
𝑁

𝑀
∑ ℒ̃(𝜃, 𝜙; 𝐱(𝒏))

𝑀

𝑛=1

                                   (11.70) 

where ℒ̃(𝜃, 𝜙; 𝐱(𝒏)) is equal to either ℒ �̃�(𝜃, 𝜙; 𝐱(𝒏)) in (11.68) or ℒ �̃�(𝜃, 𝜙; 𝐱(𝒏)) (11.69). 

Taking the gradients of ℒ̃ℳ(𝜃, 𝜙;𝓜) in (11.70), we can use gradient-based optimization techniques to 

maximize the ELBO over parameters 𝜃, 𝜙. 

The minibatch version of the variational auto-encoding algorithm can be described below. 

Initialize parameters 𝜃, 𝜙 

Repeat 

ℳ Random minibatch of M datapoints drawn from the full dataset 

Random samples from noise distribution 𝛜(𝒏,𝒍)~𝑝(𝛜) 

Estimate the ELBO ℒ̃ℳ(𝜃, 𝜙;𝓜) =
𝑁

𝑀
∑ ℒ̃(𝜃, 𝜙; 𝐱(𝒏))𝑀

𝑛=1       (11.70) 

𝑔 ← ∇𝜃,𝜙ℒ̃ℳ(𝜃, 𝜙;𝓜) (gradients of the ELBO) 

Update parameters 𝜃, 𝜙 using the gradients 𝑔. 

Until convergence of parameters 𝜃, 𝜙 

Return 𝜃, 𝜙 



11.3.3 Variational Auto-Encoder 

Posterior Encoder 

Since the true posterior distribution 𝑝𝜃(𝐳|𝐱) is intractable in general, we use a neural network called 

encoder to learn 𝑞𝜙(𝐳|𝐱), which is the approximation to 𝑝𝜃(𝐳|𝐱), but tractable. A common choice of 

𝑞𝜙(𝐳|𝐱) is a multivariate Gaussian with a diagonal covariance matrix, 

𝑞𝜙(𝐳|𝐱) = 𝒩 (𝐳; 𝛍𝒛, 𝑑𝑖𝑎𝑔((𝛔𝒛)
𝟐)) = ∏𝒩(z𝒌; μ𝒌, σ𝒌

2)

𝐾

𝑘=1

                                 (11.71) 

where 𝐳 ∈ ℝ𝐾 , 𝐱 ∈ ℝ𝐷. 𝛍𝒛 ∈ ℝ𝐾 and 𝛔𝒛 ∈ ℝ𝐾 are the mean and standard deviation vectors, respectively, 

and they are output of the encoder, i.e., 

(𝛍𝒛, ln 𝛔𝒛
𝟐) = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑁𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡(𝐱; 𝜙)                                                      (11.72) 

Note the neural network delivers ln 𝛔𝒛
𝟐, instead of 𝛔𝒛, because we allow the neural network to output both 

negative and positive values. 

An example of EncoderNeuralNet is given by (Kingma 2014) as below, 

𝐡 = 𝑡𝑎𝑛ℎ(𝑊1𝐱 + 𝑏1)                                                                        (11.73𝑎) 

𝛍𝒛 = 𝑊2𝐡 + 𝑏2                                                                                   (11.73𝑏) 

ln 𝛔𝒛
𝟐 = 𝑊3𝐡 + 𝑏3                                                                            (11.73𝑐) 

where the weights and biases {𝑤1, 𝑤2, 𝑤3,𝑏1, 𝑏2, 𝑏3} are the variational parameters 𝜙.  

Sampling Latent Variables 

Based on the prediction ( 𝛍𝒛, 𝛔𝒛) from the encoder on the posterior distribution, we sample the laten 

variables 𝐳(𝑙)~𝑞𝜙(𝐳|𝐱) using the reparameterization trick, 

𝐳(𝑙) = 𝑔𝜙(𝐱, 𝛜(𝑙)) = 𝛍𝒛 + 𝛔𝒛 ⊙ 𝛜(𝑙) where   𝛜(𝒍)~ 𝒩(𝛜;  𝟎, 𝐈)                     (11.74) 

 

Decoder  

The lower bound is our objective to be maximized. One way to approximate the ELBO is (11.69), copied 

below, 

ℒ(𝜃, 𝜙; 𝐱(𝒏)) ≃ −𝐾𝐿 (𝑞𝜙(𝐳|𝐱(𝒏))||𝑝𝜃(𝐳)) +
1

𝐿
∑ln𝑝𝜃(𝐱(𝒏)|𝐳(𝒏,𝒍))

𝐿

𝑙=1

                  (11.75) 

The first term in (11.75) is a KL divergence that can be computed analytically. We assume that both the 

prior 𝑝𝜃(𝐳) and the posterior 𝑞𝜙(𝐳|𝐱) are Gaussian such that 𝑝𝜃(𝐳) = 𝒩(𝐳; 𝟎, 𝐈) and 𝑞𝜙(𝐳|𝐱) =

𝒩(𝐳; 𝛍𝒛, 𝑑𝑖𝑎𝑔(𝛔𝒛)), where 𝛍𝒛, 𝛔𝒛 are the outputs of the encoder neural network. Let K be the dimension 

of z, then we have (see exercise for proof), 

∫𝑞𝜙(𝐳|𝐱) ln 𝑝𝜃(𝐳) 𝑑𝑧 =  ∫𝒩(𝐳; 𝛍𝒛, 𝑑𝑖𝑎𝑔(𝛔𝒛
2)) ln𝒩(𝐳; 𝟎, 𝐈) 𝑑𝒛                                                         



= −
1

2
ln(2𝜋) −

1

2
∑(𝜎𝑧𝑘

2 + 𝜇𝑧𝑘
2 )

𝐾

𝑘=1

                                                                  (11.76) 

∫𝑞𝜙(𝐳|𝐱) ln 𝑞𝜙(𝐳|𝐱) 𝑑𝑧 = ∫𝒩(𝐳; 𝛍𝒛, 𝑑𝑖𝑎𝑔(𝛔𝒛
2)) ln𝒩(𝐳; 𝛍𝒛, 𝑑𝑖𝑎𝑔(𝛔𝒛

2))𝑑𝒛                                 

= −
1

2
ln(2𝜋) −

1

2
∑(1 + ln𝜎𝑧𝑘

2 )

𝐾

𝑘=1

                                                         (11.77) 

Substituting (11.76) and (11.77) into the KL divergence in (11.75), we have 

−𝐾𝐿 (𝑞𝜙(𝐳|𝐱)||𝑝𝜃(𝐳)) = ∫𝑞𝜙(𝐳|𝐱) ln 𝑝𝜃(𝐳) 𝑑𝑧 − ∫𝑞𝜙(𝐳|𝐱) ln 𝑞𝜙(𝐳|𝐱) 𝑑𝑧                        

=
1

2
∑(1 − 𝜎𝑧𝑘

2 − 𝜇𝑧𝑘
2 + ln𝜎𝑧𝑘

2 )

𝐾

𝑘=1

                                                          (11.78) 

The second term in (11.75) is the Monte Carlo estimate of the reconstruction likelihood ln 𝑝𝜃(𝐱
(𝒏)|𝐳(𝒏)). 

We can use another neural network, denoted by 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑁𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡(𝐳; 𝜃), to approximate 𝑝𝜃(𝐱|𝐳).  

Similar to the EncoderNeuralNet, we can have the following structure for the DecoderNeuralNet, assuming 

𝑝𝜃(𝐱|𝐳) is multivariate Gaussian, for example, 

𝐡 = 𝑡𝑎𝑛ℎ(𝑊4𝐳 + 𝑏4)                                                                        (11.79𝑎) 

𝛍𝒙 = 𝑊5𝐡 + 𝑏5                                                                                  (11.79𝑏) 

ln 𝛔𝒙
𝟐 = 𝑊6𝐡 + 𝑏6                                                                            (11.79𝑐) 

ln 𝑝𝜃(𝐱|𝐳) = ln𝒩 (𝐱; 𝛍𝒙, 𝑑𝑖𝑎𝑔(𝛔𝒙
𝟐))                                        (11.79𝑑) 

where the weights and biases {𝑤4, 𝑤5, 𝑤6, 𝑏4, 𝑏5, 𝑏6} are the decoder parameters 𝜃.  

If 𝐱 is a binary random vector 𝐱 ∈ {0,1}𝑫 , i.e., 𝑝𝜃(𝐱|𝐳) is a multivariate Bernoulli distribution, a fully 

connected neural network with a single hidden layer is suggested for 𝑝𝜃(𝐱|𝐳) as 

𝐲 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑[𝑊8𝑡𝑎𝑛ℎ(𝑊7𝐳 + 𝑏7) + 𝑏8]                                       (11.80𝑎) 

ln 𝑝𝜃(𝐱|𝐳) = ∑[𝑥𝑖 ln 𝑦𝑖 + (1 − 𝑥𝑖) ln(1 − 𝑦𝑖)]

𝐷

𝑖=1

                          (11.80𝑏) 

Overall Architecture of VAE 

We want to use the observations x to understand the latent variables z. The goal of VAE is to learn two 

distributions 𝑞𝜙(𝐳|𝐱) and 𝑝𝜃(𝐱|𝐳), so that we can sample the latent variable samples 𝐳~𝑞𝜙(𝐳|𝐱) to generate 

new samples 𝑥′~𝑝𝜃(𝐱|𝐳). The architecture of VAE is illustrated by Fig. 11.7. The encoder 𝑞𝜙(𝐳|𝐱), also 

called inference network or recognition model, maps an observation to the latent space by modelling the 

approximate posterior distribution. The decoder aims to reconstruct the observation through sampling its 

estimated distribution 𝑝𝜃(𝐱|𝐳). Note that if 𝛍𝒙 and 𝛔𝒙
𝟐 are estimated by the decoder if x is a continues 

multivariate random variable. If x is a binary-valued vector random variable, then (11.80) with Bernoulli 

distribution is applied, and thus the output of the decoder is 𝐲 (defined by (11.80a)), instead of 𝛍𝒙 and 𝛔𝒙
𝟐. 



 

Fig.11.8 Architecture of variational auto-encoder (VAE) 

The learning process is to maximize the ELBO or equivalently minimize the loss which is defined as the 

negative of the ELBO. 

(𝜙∗, 𝜃∗) = 𝑎𝑟𝑔max
𝜙,𝜃

𝐸𝐿𝐵𝑂(𝜃, 𝜙;𝒟) = 𝑎𝑟𝑔min
𝜙,𝜃

(−𝐸𝐿𝐵𝑂(𝜃, 𝜙;𝒟))             (11.81) 

In our VAE, the ELBO for a single sample x is approximated by ℒ̃(𝜃, 𝜙; 𝐱) given below. 

𝐸𝐿𝐵𝑂(𝜃, 𝜙; 𝐱) = ln 𝑝𝜃(𝐱) − 𝐾𝐿 (𝑞𝜙(𝐳|𝐱)||𝑝𝜃(𝐳|𝐱))                                                                  (11.82𝑎) 

= 𝔼𝑞𝜙(𝐳|𝐱)[ln 𝑝𝜃(𝐱|𝐳) ] − 𝐾𝐿 (𝑞𝜙(𝐳|𝐱)||𝑝𝜃(𝐳))                                               (11.82𝑏) 

≃
1

𝐿
∑ln𝑝𝜃(𝐱|𝛍𝒛 + 𝛔𝒛 ⊙ 𝛜(𝑙))

𝐿

𝑙=1

+
1

2
∑(1 − 𝜎𝑧𝑘

2 − 𝜇𝑧𝑘
2 + ln𝜎𝑧𝑘

2 )

𝐾

𝑘=1

≡ ℒ̃(𝜃, 𝜙; 𝐱)      (11.82𝑐) 

where 𝛍𝒛, 𝛔𝒛 are the outputs of the encoder 𝑞𝜙(𝐳|𝐱), 𝑝𝜃(𝐱|𝐳) is the decoder defined by (11.79) or (11.80), 

and L is the Monte Carlo length (a hyperparameter).The first term in (11.82c) is the reconstruction term, 

which calculates the ability of the VAE to recover the input data correctly. It can be proved that maximizing 
1

𝐿
∑ ln𝑝𝜃(𝐱|𝛍𝒛 + 𝛔𝒛 ⊙ 𝛜(𝑙))𝐿

𝑙=1  is equivalent to minimizing the regular auto-encoder reconstruction MSE 

loss ‖𝐱 − �̂�‖2. The second term, the KL divergence, defines the difference between the estimated posterior 

distribution 𝑞𝜙(𝐳|𝐱) and the prior distribution 𝑝𝜃(𝐳). 

The full dataset ELBO can be estimated, based on a minibatch ℳ = {𝐱(1), 𝐱(2), … , 𝐱(𝑀)} 

ℒ̃ℳ(𝜃, 𝜙;𝓜) =
𝑁

𝑀
∑ ℒ̃(𝜃, 𝜙; 𝐱(𝒏))

𝑀

𝑛=1

                                                         (11.83) 

where N is the total number of samples, and M is the number of samples in each minibatch. 



11.4. VAE on MNIST Dataset in PyTorch 
 

In this section, we will show an example of VAE on the MNIST Dataset. The VAE learns from the MNIST 

Dataset without using the labels, and the trained decoder in the VAE can generate a handwritten digit given 

a random value of the latent variable.  

11.4.1 Architecture of VAE 

 

The architecture of our variational auto-encoder is shown in Fig.11.9.  Since the size of images in MNIST 

is 28 × 28 = 784, the input x is a vector ℝ784. There are three fully connected (FC) layers in both the 

encoder and the decoder. The last FC layer in the encoder, without any activation function, generates a mean 

vector and a log-variance vector. The last FC layer in the decoder uses the sigmoid activation to generate 

the reconstructed input. All other FC layers use ReLU activation. The “sampling” box performs the 

reparameterization trick. We select 2 as the dimension of the latent variable z.  

 
Fig.11.9 Architecture of the VAE 

 

 

11.4.2 Implementation in PyTorch 

First, we import required packages. 

 

# Package imports 

import numpy as np 

import matplotlib.pyplot as plt 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import torch.optim as optim 

from torchvision import datasets, transforms 

from torch.autograd import Variable 

from torchvision.utils import save_image 

 

Prepare the data loaders. 

# MNIST Dataset 

train_dataset = datasets.MNIST(root='../torch_tutorial/data', train=True, transform=tr

ansforms.ToTensor(), download=True) 

test_dataset = datasets.MNIST(root='../torch_tutorial/data/', train=False, transform=t

ransforms.ToTensor(), download=True) 

 



bs=128 

# Data Loader 

train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=bs, shuff

le=True) 

test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=bs, shuffle

=False) 

 

Construct model VAE. 

class VAE(nn.Module): 

    def __init__(self, x_dim, h_dim1, h_dim2, z_dim): 

        super(VAE, self).__init__() 

         

        # encoder 

        self.encoder = nn.Sequential( 

            nn.Linear(x_dim, h_dim1), 

            nn.LeakyReLU(0.2), 

            nn.Linear(h_dim1, h_dim2), 

            nn.LeakyReLU(0.2) 

            ) 

         

        # latent mean and variance  

        self.mean_layer = nn.Linear(h_dim2, z_dim) 

        self.logvar_layer = nn.Linear(h_dim2, z_dim) 

   

        # decoder 

        self.decoder = nn.Sequential( 

            nn.Linear(z_dim, h_dim2), 

            nn.LeakyReLU(0.2), 

            nn.Linear(h_dim2, h_dim1), 

            nn.LeakyReLU(0.2), 

            nn.Linear(h_dim1, x_dim), 

            nn.Sigmoid() 

            ) 

  

    def encode(self, x): 

        x = self.encoder(x) 

        mu, log_var = self.mean_layer(x), self.logvar_layer(x) 

        return mu, log_var 

     

    # sample z from q(z/x) by reparameterization trick 

    def reparameterization(self, mu, log_var): 

        std = torch.exp(0.5*log_var) 

        eps = torch.randn_like(std) 

        z = eps.mul(std).add_(mu) 

        return z  

   

    def decode(self, x): 

        return self.decoder(x) 

    

    def forward(self, x): 

        mu, log_var = self.encode(x.view(-1, 784)) 

        z = self.reparameterization(mu, log_var) 

        y = self.decode(z) 

        return y, mu, log_var 

  

 

Set the architecture parameters and instantiate the VAE. 

h_dim1 = 512 

h_dim2 = 256 



z_dim = 2 

vae = VAE(x_dim=784, h_dim1=h_dim1, h_dim2=h_dim2, z_dim=z_dim) 

if torch.cuda.is_available(): 

    vae.cuda()   

 

Define the optimizer and loss function. Although MNIST is real-valued, it is constrained between 0 and 1. 

We can view the output of the decoder 𝑝𝜃(𝐱|𝐳) as the reconstructed datapoint �̂� obtained by independently 

sampling each dimension as 𝑥𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑥𝑖), where 𝑥𝑖 is the MNIST input pixel. Thus, we use the Binary 

Cross Entropy (BCE) loss for the decoder 𝑝𝜃(𝐱|𝐳). This is not quite what the VAE prescribes but works 

well in practice. 

optimizer = optim.Adam(vae.parameters(), lr=0.001) 

# loss_function returns reconstruction error + KL divergence losses 

def loss_function(recon_x, x, mu, log_var): 

    BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum') 

    KLD = 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) 

    return BCE - KLD 

 

Define the train loop. 

def train(epoch): 

    vae.train() 

    train_loss = 0 

    for batch_idx, (data, _) in enumerate(train_loader): 

         

        optimizer.zero_grad() 

         

        recon_batch, mu, log_var = vae(data) 

        loss = loss_function(recon_batch, data, mu, log_var) 

         

        loss.backward() 

        #train_loss += loss.item() 

        optimizer.step() 

         

        if batch_idx % 100 == 0: 

            print('Epoch {} , Batch {}   \tLoss: {:.6f}'.format( 

                epoch, (batch_idx), loss.item() / len(data))) 

 

Compute the loss on the test dataset for a monitoring purpose. 

def test(): 

    vae.eval() 

    test_loss= 0 

    with torch.no_grad(): 

        for data, _ in test_loader: 

            #data = data.cuda() 

            recon, mu, log_var = vae(data) 

             

            # sum up batch loss 

            test_loss += loss_function(recon, data, mu, log_var).item() 

         

    test_loss /= len(test_loader.dataset) 

    print('=> Test set average loss per batch: {:.4f}'.format(test_loss)) 

 

Run training loops and test for 9 epochs. 

for epoch in range(1, 10): 



    train(epoch) 

    test() 

 

Generate random samples. The result is shown in Fig.11.10. 

with torch.no_grad(): 

    z = torch.randn(64, z_dim)  

    sample = vae.decode(z)  

    # generate 64 samples 

    save_image(1-sample.view(64, 1, 28, 28), './samples/sample_weidong_z2' + '.png') 

 

Fig.11.10 Generated samples (sample_weidong_z2.png) 

Plot the generated samples in the Z space (2D). The result is shown in Fig.11.11. 

def plot_reconstructed(model, scale=1.0, n=21, digit_size=28, figsize=10): 

    # display a n*n handwritten digits in the 2D latent space 

    figure = np.zeros((digit_size * n, digit_size * n)) 

 

    # construct a grid in the 2D Z space 

    grid_x = np.linspace(-scale, scale, n) 

    grid_y = np.linspace(-scale, scale, n)[::-1] #reverse the order 

 

    for i, yi in enumerate(grid_y): 

        for j, xi in enumerate(grid_x): 

            z_sample = torch.tensor([[xi, yi]], dtype=torch.float) 

            x_decoded = model.decode(z_sample) 

            digit = x_decoded[0].detach().cpu().reshape(digit_size, digit_size) 

            figure[i * digit_size : (i + 1) * digit_size, j * digit_size : (j + 1) * d

igit_size,] = 1-digit 

 

    plt.figure(figsize=(figsize, figsize)) 

    plt.title('Generated samples') 

    start_range = digit_size // 2 

    end_range = n * digit_size + start_range 

    pixel_range = np.arange(start_range, end_range, digit_size) 

    sample_range_x = np.round(grid_x, 1) 

    sample_range_y = np.round(grid_y, 1) 

    plt.xticks(pixel_range, sample_range_x) 

    plt.yticks(pixel_range, sample_range_y) 

    plt.xlabel("z [0]") 

    plt.ylabel("z [1]") 

    plt.imshow(figure, cmap="Greys_r") 

    plt.show() 

 

plot_reconstructed(vae, scale=4.) 

 



 

          (a) z: (-4,-4) to (4,4)                                            (b) z: (-2,-2) to (2,2)  (zoom-in) 

Fig.11.11 Generated samples in Z-space 

Plot the datapoints from the test dataset in the latent z-space, as shown in Fig.11.12. We can see that the 

datapoints for the same digit (indicated by the color) distribute roughly in a cluster.  

def plot_latent(vae, data, num_batches=100): 

    for i, (x, y) in enumerate(data): 

        mu, log_var = vae.encode(x.view(-1, 784)) 

        z = vae.reparameterization(mu, log_var) 

        z = z.detach().numpy() 

        plt.scatter(z[:, 0], z[:, 1], c=y, cmap='tab10') 

        if i > num_batches: 

            break 

    plt.colorbar() 

    plt.xlabel("z [0]") 

    plt.ylabel("z [1]") 

    plt.show() 

plot_latent(vae, test_loader) 

 

Fig.11.12 Test dataset mapped into z-space 

 



11.4.3 Conditional VAE 

To generate a sample for a particular class, we can extend the VAE to a conditional VAE. In the conditional 

VAE setting, we are given a complete dataset {(𝐱(𝑛), 𝐜(𝑛)), 𝑛 = 1,2, … ,𝑁}, where 𝐜(𝑛) is the label. By 

adding the condition c to (11.82), the resulting ELBO can be represented by 

      𝐸𝐿𝐵𝑂(𝜃, 𝜙; 𝐱, 𝐜) = ln 𝑝𝜃(𝐱|𝐜) − 𝐾𝐿 (𝑞𝜙(𝐳|𝐱, 𝐜)||𝑝𝜃(𝐳|𝐱, 𝐜))                                                 (11.84𝑎) 

= 𝔼𝑞𝜙(𝐳|𝐱,𝐜)[ln 𝑝𝜃(𝐱|𝐳, 𝐜) ] − 𝐾𝐿 (𝑞𝜙(𝐳|𝐱, 𝐜)||𝑝𝜃(𝐳|𝐜))                                               (11.84𝑏) 

where 𝑝𝜃(𝐳|𝐜) is assumed to be a standard Gaussian distribution. Thus, we add the label as a part of both 

the inputs of the encoder and the decode. The architecture of conditional VAE is illustrated by Fig. 11.12.  

 

Fig.11.13 Conditional VAE 

In our implementation of the conditional VAE on MNIST dataset, we use a 10-element one-hot code for 

each label. The label is concatenated with x (or z) to generate the input for the encoder (or the decoder).  

def one_hot(labels, class_size): 

    targets = torch.zeros(labels.size(0), class_size) 

    for i, label in enumerate(labels): 

        targets[i, label] = 1 

    return targets 

 

class CVAE(nn.Module): 

    def __init__(self, x_dim, h_dim1, h_dim2, z_dim, class_size): 

        super(CVAE, self).__init__() 

         

        # encoder 

        self.encoder = nn.Sequential( 

            nn.Linear(x_dim+class_size, h_dim1), 

            nn.LeakyReLU(0.2), 

            nn.Linear(h_dim1, h_dim2), 

            nn.LeakyReLU(0.2) 

            ) 

         

        # latent mean and variance  

        self.mean_layer = nn.Linear(h_dim2, z_dim) 

        self.logvar_layer = nn.Linear(h_dim2, z_dim) 

   

        # decoder 

        self.decoder = nn.Sequential( 

            nn.Linear(z_dim+class_size, h_dim2), 

            nn.LeakyReLU(0.2), 

            nn.Linear(h_dim2, h_dim1), 

            nn.LeakyReLU(0.2), 



            nn.Linear(h_dim1, x_dim), 

            nn.Sigmoid() 

            ) 

    

    def encode(self, x, c):    #q(z|x,c) 

        x = torch.cat([x, c], 1) # (bs, feature_size+class_size) 

        x = self.encoder(x) 

        mu, log_var = self.mean_layer(x), self.logvar_layer(x) 

        return mu, log_var 

     

    # sample z from q(z/x) by reparameterization trick 

    def reparameterization(self, mu, log_var): 

        std = torch.exp(0.5*log_var) 

        eps = torch.randn_like(std) 

        z = eps.mul(std).add_(mu) 

        return z  

   

    def decode(self, z, c):    # p(x|z, c) 

        x = torch.cat([z, c], 1) # (bs, latent_size+class_size) 

        return self.decoder(x) 

    

    def forward(self, x, c): 

        mu, log_var = self.encode(x.view(-1, 784), c) 

        z = self.reparameterization(mu, log_var) 

        y = self.decode(z,c) 

        return y, mu, log_var 

 

The conditional VAE can be trained in the similar way in Section 11.4.2. (see Exercise) After 5 epochs, the 

results are shown in Fig.11.14.  

   

(a) original (1st row) and generated samples (2nd row)          (b) generated samples for given labels                                                   

Fig.11.14 The samples generated by the conditional VAE 

 

 

Summary and Further Reading 

This chapter serves as an introduction to generative models. The major theme of this chapter is the 

expectation-maximization (EM) algorithm for Gaussian mixture models and the development of variational 

auto-encoders.  

First, we briefly introduced the basics of generative models, including graphical models, latent variables, 

Bayes’ inference, evidence lower bound, etc., which form a foundation for advanced generative models 

such as variational auto-encoders (VAEs) and generative adversarial networks (GANs). The Gaussian 

mixture model is a good introductory example of generative models for us to present these basics. Given a 

Gaussian mixture model, the EM algorithm was derived to learn the probability distribution of a dataset, 

i.e., to find the optimal values for the parameters of the Gaussian mixture model, by an iterative scheme. 



Then, the general EM algorithm was presented. The goal of the general EM algorithm is to maximize the 

evidence lower bound (ELBO) iteratively by selecting a currently optimal (or a better) inference distribution 
𝑞(𝐳) and searching currently optimal (or better) parameter values 𝜃. To deal with the intractability, we use 

neural networks to perform approximate inference. This leads to the framework of variational auto-encoder. 

Finally, we implement a variational auto-encoder (VAE) on MNIST dataset in PyTorch. To generate a 

sample for a given class, we extended the basic VAE to a conditional VAE.  

A comprehensive treatment of Gaussian mixture models and EM algorithm are given by Chapter 9 in the 

book (Bishop 2009). The relation between K-means and EM is discussed. The VAE was originally proposed 

by Kingma and Welling (2014), and extensively treated later by Kingma and Welling (2019). 

Files:  

 C:\Users\weido\ch11_generative\ 

  Ch11_cvae_weidong.ipynb, ch11_vae_weidong.ipynb, gmm.ipynb, 

 C:\Users\weido\ch11_generative\samples\ 

  Some results 
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Exercises 

11.1 Discuss why the gradient descent (or ascent) method cannot be directly applied to maximize the 

log-likelihood of a Gaussian mixture model. 

ln 𝑝(𝐗; 𝝅, 𝝁, 𝚺) = ln∏𝑝(𝐱(𝑛); 𝝅, 𝝁, 𝚺)

𝑁

𝑛=1

= ∑ ln [∑ 𝜋𝑘ℕ(𝐱(𝑛); 𝝁𝒌, 𝜮𝒌)

𝐾

𝑘=1

] 

𝑁

𝑛=1

                             

 

11.2 Assume that we have a Gaussian mixture model in (11.7), re-written here as 

𝑝(𝐱) = ∑ 𝜋𝑘

𝐾

𝑘=1

ℕ(𝐱; 𝛍𝑘 , 𝚺𝑘)                                                                                  (11.7) 

Given a complete data set 𝑆 = {(𝐱𝑛, 𝐳𝑛), 𝑛 = 1,2,… ,𝑁}. Find the solution (i.e., 𝜋𝑘 𝛍𝑘 , 𝚺𝑘) for 

maximizing the log likelihood function in (11.9) 

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1906.02691


ln 𝑝(𝐗;𝝅, 𝝁, 𝚺) = ln∏𝑝(𝐱𝑛; 𝝅, 𝝁, 𝚺)

𝑁

𝑛=1

                                                            (11.9) 

(ref: Bishop pp.442 (9.37), and pp.93 (2.121), pp.94 (2.122)) 

 

11.3 Prove Jensen’s inequality. The Jensen’s inequality is stated as: if function 𝑓 is a convex function, 

and x is a random variable, then 

𝔼[𝑓(𝐱)] ≥ 𝑓(𝔼[𝐱])                                                                               

 

11.4 The KL divergence is defined as 

𝐾𝐿(𝑝||𝑞) = ∑𝑝(𝐳)

𝑧

ln
𝑝(𝐳)

𝑞(𝐳)
                                                              

Prove that 1) 𝐾𝐿(𝑝||𝑞) ≥ 0, ∀ 𝑝, 𝑞; and 2) 𝐾𝐿(𝑝||𝑞) = 0, if and only if 𝑝(𝐳) = 𝑞(𝐳), ∀𝐳.   

 

11.5 Generate a dataset by sampling a Gaussian mixture model. Suppose we know all the parameters 

for the Gaussian mixture model, assuming K=3, 𝑥 ∈ ℝ 

𝑝(𝐱) = ∑ 𝜋𝑘

𝐾

𝑘=1

ℕ(𝐱; 𝛍𝑘 , 𝚺𝑘)                                                      

 

1) Specify any reasonable values for 𝜋𝑘𝛍𝑘, 𝚺𝑘, k=1,2,3. 

2) Sample 10 datapoints from each Gaussian component, and obtain a complete dataset 

consisting of 30 datapoints by combining all these samples and an incomplete dataset for the 

same 30 datapoints. 

3) Plot the probability density function 𝑝(𝐱) and the datapoints of the dataset generated in 2), 

similar to Fig.11.4. 

 

11.6 Given the complete dataset generated in Exercise 11.5 and the Gaussian mixture model (K=3) 

(but all parameters are unknown), estimate the parameters 𝜋𝑘𝛍𝑘, 𝚺𝑘, k=1,2,3. (hint: use maximal 

likelihood estimate). 

11.7 Given the incomplete dataset generated in Exercise 11.5 and the Gaussian mixture model (K=3) 

(all parameters are unknown). 

1) write a Python program to implement the EM algorithm to estimate the parameters 𝜋𝑘𝛍𝑘, 𝚺𝑘, 

k=1,2,3. 

2) In the same coordinate system, plot the true log likelihood ln(𝑝(𝐗|𝜃)) using the parameters 

you used in Exercises 11.5 and the ELBO curve ℒ𝑞𝑜𝑙𝑑(𝜃) (see equation (11.41)) for a 

particular set of values of 𝜃𝑜𝑙𝑑 (you arbitrarily select a set of appropriate numerical values 

for 𝜃𝑜𝑙𝑑). (refer to Fig.11.5) 

11.8 If u~𝑈(0,1), what is the pdf of x = −
1

𝜆
ln(1 − u)? 



11.9 The reparameterization trick in our text is applied to the factorized Gaussian posterior 𝑞𝜙(𝐳|𝐱) , 

i.e., we assume that the covariance matrix is diagonal, 𝑞𝜙(𝐳|𝐱) = 𝒩(𝐳; 𝛍𝒛, 𝑑𝑖𝑎𝑔(𝛔𝒛
2)) 

𝒛 = 𝛍𝒛 + 𝛔𝒛 ⊙ 𝛜         𝐰𝐡𝐞𝐫𝐞        𝛜~𝒩(𝟎, 𝐈)                                         

In this exercise, we extend the reparameterization trick for a full covariance Gaussian posterior. 

Specifically, we assume the Gaussian posterior 𝑞𝜙(𝐳|𝐱) = 𝒩(𝐳; 𝛍, 𝚺). A reparameterization trick 

of this distribution is given by 

𝒛 = 𝛍 + 𝐋 ⊙ 𝛜         𝐰𝐡𝐞𝐫𝐞        𝛜~𝒩(𝟎, 𝐈)                                         

where L is a lower (or upper) triangular matrix, with non-zero entries on the diagonal. The off-

diagonal elements define the correlations (covariances) of the elements in z. 

Find the matrix L in terms of 𝚺.  (refer, Kingma, D. P. and Welling M. (2019)) 

11.10 Prove (11.76) and (11.77). 

∫𝑞𝜙(𝐳|𝐱) ln 𝑝𝜃(𝐳) 𝑑𝑧 =  ∫𝒩(𝐳; 𝛍𝒛, 𝑑𝑖𝑎𝑔(𝛔𝒛
2)) ln𝒩(𝐳; 𝟎, 𝐈) 𝑑𝒛                                                         

= −
1

2
ln(2𝜋) −

1

2
∑(𝜎𝑧𝑘

2 + 𝜇𝑧𝑘
2 )

𝐾

𝑘=1

                                                                  (11.76) 

∫𝑞𝜙(𝐳|𝐱) ln 𝑞𝜙(𝐳|𝐱) 𝑑𝑧 = ∫𝒩(𝐳; 𝛍𝒛, 𝑑𝑖𝑎𝑔(𝛔𝒛
2)) ln𝒩(𝐳; 𝛍𝒛, 𝑑𝑖𝑎𝑔(𝛔𝒛

2))𝑑𝒛                                 

= −
1

2
ln(2𝜋) −

1

2
∑(1 + ln𝜎𝑧𝑘

2 )

𝐾

𝑘=1

                                                         (11.77) 

11.11 Compute the KL divergence between two Gaussian distributions 

𝐾𝐿(𝒩(𝐱; 𝛍𝟎, 𝚺0)||𝒩(𝐱; 𝛍𝟏, 𝚺1)) in a closed form. 

 (ans: Tutorial on Variational Autoencoders, CARL DOERSCH  

https://arxiv.org/pdf/1606.05908.pdf) 

11.12 Train and test the conditional VAE given in Section 11.4.3. 

 

https://arxiv.org/pdf/1606.05908.pdf

