
 

 

Chapter 10  

Object Detection – YOLO  

 

 

 

 

In the ever-evolving landscape of deep learning, object detection stands out as a crucial task with 

wide-ranging applications, from autonomous vehicles to surveillance systems. In this chapter, we 

delve into the intricacies of one of the most influential and efficient object detection algorithms—

You Only Look Once (YOLO). YOLO revolutionized the field by introducing a real-time, one-

pass approach to detecting objects in images, streamlining the detection process significantly. This 

chapter explores the underlying principles of YOLO, detailing its unique architecture and the 

principles that make it stand apart. From its inception (YOLO v1) to a few improved versions 

(YOLO v2 and YOLO v3), we will guide you through the evolution of YOLO, providing insights 

into its strengths, limitations, and practical implementations. 

  

After completing this chapter, one should be able to  

▪ Understand the basic concepts of object detection in computer vision. 

▪ Know the details about the architectures of YOLO versions (YOLO1, YOLO2, YOLO3) 

▪ Understand the loss function of YOLO. 

▪ Implement a YOLO model from scratch in PyTorch. 

▪ Train a YOLO model. 

 

 

 

 

10.1 Introduction 

The task of image classification is to predict an image as one of the pre-defined categories, for 

instance, to classify the picture as “car” or “non-car”. The task of object detection is to deal with 

the situation where multiple objects, possibly in different categories (e.g., cars, pedestrians, etc.), 

may be present in one image. The goal of the detection is to find objects of interest in the image. 

As a result of object detection, each detected object is labeled with a bounding box. An example is 

shown in Fig.10.1. 



 

 

 

Fig.10.1 An example of object detection (generated by YOLO v2) 

A bounding box is a rectangle that surrounds an object, that specifies its location, class (e.g., dog, 

bicycle) and confidence (how likely the object is present in the box). For example, the bounding 

box for the dog in Fig.10.1 shows the location of the dog and a confidence of 0.78. We can 

numerically specify the rectangle either by 1) the coordinates of its top-left corner and bottom right 

corner; or 2) the coordinate of its center and its width and height. In our context, we adopt the 

second one: [x,y, h, w], where the center of the bounding box is at (x, y), and the height and width 

of bounding box are h and w, respectively. The coordinate of the up-left corner of the image is (0,0) 

while the coordinate of the bottom right corner is (1,1). 

 

10.2 YOLO (v1) 

YOLO (You Only Look Once) (v1) was proposed by (Redmon, J. et al., 2015), which achieved 

object detection with a speed of 150 FPS (frames per second) in video streaming and a good mean 

average precision (mAP) (63%) on PASCAL VOC 2007 dataset (see the definition of mAP in 

Section 10.6). Later, YOLO (v2) and YOLO 9000 were proposed by (Redmon, J. et al., 2016), 

which at 67 FPS gave mAP of 76.8% on VOC 2007 dataset. Two years later, Furthermore, in 2018, 

YOLO (v3) (Redmon, J. et al., 2018) was released with further improved object detection accuracy 

and speed. YOLO (v3) introduced a new backbone architecture, called Darknet-53, which 

improved feature extraction and added additional anchor boxes to better detect objects at different 

scales. After YOLO (v3), a few groups developed different versions of YOLO for further 

improvements, up to YOLO (v8) in 2023. In this chapter, we will explore the details of YOLO v1 

to v3. 

The generic architecture of different YOLO versions can be illustrated in Fig.10.2. In general, a 

YOLO architecture consists of three parts: backbone, neck, and head. The backbone is a deep 

convolutional neural network that acts as a feature extractor. The backbone is usually pre-trained 

on a classification image dataset (e.g., ImageNet). The neck is a feature collector that collects 

feature maps from different stages of the backbone. The purpose of the neck is to enhance the 

semantic representation and richness of features extracted for objects of various shapes and sizes. 

The head is used for loss calculation during training and prediction during inference. Non-max 

suppression is an algorithm to select the best bounding box for an object and reject redundant 

bounding boxes. 



 

 

 

Fig.10.2 the generic architecture of YOLO  

Table 10.1 YOLO (v1) architecture (input image size: 448 × 448 × 3) 

Layers filters Size/stride output notes 

Conv 64 7 × 7/2 224 × 224 × 64  
 
 
 
 
 
 
 
 
backbone 

Maxpool  2 × 2/2 112 × 112 × 64 

Conv 192 3 × 3/1 112 × 112
× 192 

Maxpool  2 × 2/2 56 × 56 × 192 

Conv 128 1 × 1/1 56 × 56 × 128 

Conv 256 3 × 3/1 56 × 56 × 256 

Conv 256 1 × 1/1 56 × 56 × 256 

Conv 512 3 × 3/1 56 × 56 × 512 

Maxpool  2 × 2/2 28 × 28 × 512 

Conv 256 1 × 1/1 28 × 28 × 256 

Conv 512 3 × 3/1 28 × 28 × 512 

Conv 256 1 × 1/1 28 × 28 × 256 

Conv 512 3 × 3/1 28 × 28 × 512 

Conv 256 1 × 1/1 28 × 28 × 256 

Conv 512 3 × 3/1 28 × 28 × 512 

Conv 256 1 × 1/1 28 × 28 × 256 

Conv 512 3 × 3/1 28 × 28 × 512 

Conv 512 1 × 1/1 28 × 28 × 512 

Conv 1024 3 × 3/1 28 × 28 × 1024 

Maxpool  2 × 2/2 14 × 14 × 1024 

Conv 512 1 × 1/1 14 × 14 × 512 

Conv 1024 3 × 3/1 14 × 14 × 1024 

Conv 512 1 × 1/1 14 × 14 × 512 

Conv 1024 3 × 3/1 14 × 14 × 1024 

Conv 1024 3 × 3/1 14 × 14 × 1024 

Conv 1024 3 × 3/2 7 × 7 × 1024 

    

Conv 1024 3 × 3/1 7 × 7 × 1024 

Conv 1024 3 × 3/1 7 × 7 × 1024 

     

FC   4096  
neck FC   1470 

reshape   7 × 7 × 30 head 

 



 

 

10.2.1 Architecture of YOLO v1 

YOLO v1 has 24 convolutional layers followed by 2 fully connected layers (FC), as specified in 

Table 10.1.  Leaky ReLU activation is used for all layers except the final layer that uses a linear 

activation function. The last convolutional layer generates a tensor with a shape (7, 7, 1024), shown 

in Fig.10.3. This tensor is then flattened to feed the subsequent fully connected layer. The last fully 

connected layer generates the final prediction tensor with a shape (7, 7, 30), i.e., 2 bounding box 

predictions per location, given 20 classes in the dataset, shown in Fig.10.4. 

The backbone is composed of 24 convolutional layers and 4 Maxpooling layers. It generates a 

feature map tensor with a shape of ሺ7,7,1024ሻ, from an input image of ሺ448,448,3ሻ. Each cell in 

the feature map tensor, with a shape of ሺ1,1,1024ሻ, is the extracted feature vector corresponding 

to one grid cell in the image, illustrated in Fig.10.3. 

 

Fig.10.3 the backbone extracts one feature vector for each cell in the image grid (7 × 7). 

 

       

                       (a) tensor shape                                                      (b) example for x,y,w,h  

Fig.10.4 the prediction tensor of YOLO v1. 

The feature map, output by the backbone convolutional neural network, is then passed through two 

fully connected layers, which delivers the bounding box prediction on each grid cell. The prediction 

is a tensor of ሺ7,7,30ሻ, illustrated in Fig.10.4 (a). The prediction tensor can be viewed as 49 

vectors, and each vector has 30 elements. Each vector is responsible for predicting two bounding 

boxes for one grid cell of the image. Each bounding box is specified by five parameters: confidence 

(c) (or objectness score), box center (x,y) and its size (w,h). The confidence score reflects how 

confident the model is that the box contains an object and also how accurate it thinks the box is that 

it predicts. If no object exists in the cell, the confidence should be zero. If an object is predicted, 



 

 

the confidence represents the IOU between the predicted box and any ground truth box. The 

coordinates (x, y) represent the center of the box relative to the bounds of the grid cell. The width 

(w) and height (h) are normalized with respect to the whole image. Thus, 𝑥, 𝑦, 𝑤, ℎ ∈ ሾ0,1ሿ. Fig.10.4 

(b) illustrates an example in which an apple is detected in the grid cell (2,3) (i.e., column 2 and row 

3). 

Each cell also predicts a set of class probabilities, conditioned on the grid cell containing an object, 

𝑝ሺ𝑐|𝑜𝑏𝑗𝑒𝑐𝑡ሻ, c=1,2,…20, where 20 is the total number of classes.  

At test time, the class-specific confidence scores for each box are the products of the conditional 

class probability and the box confidence. Note that YOLO v1 predicts only one object per grid cell.  

For a convenience of further discussions on different YOLO versions, we denote grid size as 𝑆 × 𝑆, 

B as the number of bounding boxes per grid cell, and C as the number of classes. Thus, the shape 

of prediction tensor for YOLO v1 is 𝑆 × 𝑆 × ሺ5 × 𝐵 + 𝐶ሻ = 7 × 7 × ሺ5 × 2 + 20ሻ. 

 

10.2.2 Training and loss function 

Before training the entire architecture of YOLO v1, the authors pretrained the first 20 convolutional 

layers followed by an average-pooling layer and a fully connected layer, for classification on 

ImageNet 1000 classes, with input size of 224 × 224, achieving a top-5 accuracy of 88%.   

Then, they convert the pretrained architecture for object detection by discarding the average pool 

and the fully connected layer and adding four convolutional layers and two fully connected layers 

with randomly initialized weights. Thus, the resulting architecture is specified in Table 10.1, with 

the first 20 convolutional layers pretrained. 

The model is further trained for object detection on datasets from PASCAL VOC 2007 and 2012, 

based on the loss function (discussed below), with the input resolution increased to 448 × 448. It 

is essential to understand the loss function used for YOLO training. Object detection can be treated 

as a regression problem of target area prediction and category prediction. Specifically, the loss 

function of YOLO v1 can be divided into three parts: localization loss, confidence loss, and 

classification loss. 

YOLO v1 predicts two bounding boxes per grid cell. For training purposes, we only want one 

bounding box predictor to be responsible for each object. We assign one box to be “responsible” 

for predicting an object based on which box has the highest current IOU (i.e., Intersection Over 

Union) with the ground truth. The IOU between two boxes is defined as the ratio of their 

intersection area to their union area. IOU with a value “1” implies a perfect match while a small 

value close to zero means a small overlap. Thus, IOU can be used to measure how close the 

predicted bounding box is to the ground truth bounding box, and also can be applied to detect the 

redundant bounding boxes for one object in non-max suppression (discussed later).                                                                

                                                                          (10.1)  

 



 

 

A) Localization loss 

The localization loss measures the errors in the predicted boundary box locations and sizes. It 

only penalizes the bounding box localization error if that box is “responsible” for the ground 

truth box (i.e., the box has the highest IOU with the ground truth box in that grid cell). 
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where  

𝕀𝑖𝑗
𝑜𝑏𝑗

= 1 if the j-th bounding box in cell i is responsible for detecting the object, otherwise 

0. In other words, localization error is added to loss only for the responsible boxes. 

The hat over a variable indicates that the variable is a prediction (e.g., 𝑥
^

𝑖). A variable 

without a hat is a ground truth (e.g., 𝑥𝑖). 

𝜆𝑐𝑜𝑜𝑟𝑑 (Default is set to 5) increases the weight for the loss in bounding box coordinates. 

Sum-squared error equally weights errors in large boxes and small boxes. The desired loss 

should reflect that the same deviation in large boxes matters less than in small boxes. To 

partially address this, we predict the square root of the bounding box width and height 

instead of the width and height directly. 

B) Confidence loss 

For the boxes that are responsible for detecting an object, the confidence loss is 
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where  

𝐶
^

𝑖 is the box confidence score for the box j in cell i. Note that the ground truth box 

confidence score 𝐶𝑖 for the box with an object is defined to be 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ by the original 

paper. However, the ground truth confidence score is simply set to 1 in many 

implementation examples.  

For the boxes that are not responsible for detecting an object, the confidence loss is 
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where  

𝕀𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 is the complement of  𝕀𝑖𝑗
𝑜𝑏𝑗

, i.e., that the box j in grid cell i is not responsible for 

detection. 



 

 

𝐶
^

𝑖 is the box confidence score for the box j in cell i. Note that the ground truth box 

confidence score 𝐶𝑖 for the box without an object is defined to be 0. 

𝜆𝑛𝑜𝑜𝑏𝑗 (=0.5 by default) decreases the loss from confidence predictions for boxes that don’t 

contain objects. Since most boxes do not contain any objects, we train the model to detect 

background more frequently than detecting objects. To remedy this imbalance, 𝜆𝑛𝑜𝑜𝑏𝑗 is 

used to limit the loss from background detections. 

C) Classification loss 

If an object appears in cell i, the sum-squared error of the predicted class conditional 

probabilities in cell i is counted for the loss function, 
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where  

𝕀𝑖
𝑜𝑏𝑗

=1 if an object appears in cell i. This implies that 𝑝
𝑖
ሺ𝑐ሻ is conditional. 

𝑝
^

𝑖
ሺ𝑐ሻ denotes the predicted conditional class probability for class c in cell i.  Given that the 

ground truth object belongs to a class, the ground truth probability is 1.0 for that class, and 

0.0 for all others. 

D) Total loss 

The total loss function is given by the sum of (10.2), (10.3a), (10.3b) and (10.4), i.e., 
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Note that the loss function penalizes classification error only if an object is present in that grid cell. 

It also only penalizes bounding box coordinate error if that box is responsible for the ground truth 

box. It penalizes the confidence score errors for both object-present boxes and non-object-present 

boxes, but with different weights (non-object-present boxes have less weight).  



 

 

The model, with the first 20 convolutional layer pretrained, was further trained for object detection 

on datasets PASCAL VOC 2007 and 2012, based on the loss function (10.5). The detailed training 

settings and tricks can be found in the original paper (Redmon, J. et al., 2015). 

10.2.3 Inference and non-maximal suppression (NMS) 

In inference, the YOLO v1 network predicts confidence score, center coordinates, width and height 

for each bounding box and conditional class probabilities for each grid cell, as shown in Fig.10.4. 

There are totally 98 bounding boxes. Finally, non-max suppression (NMS) is performed for each 

class separately to discard the redundant detected boxes while keeping the best one for a detected 

object. 

Consider an example in Fig.10.5. We assume that only one class (e.g., car) is considered in our 

discussion for simplicity. In this example five bounding boxes have confidence scores above a pre-

defined threshold (e.g., 0.6). Obviously, three of them are associated with one car while the other 

two bounding boxes with another car, as shown in Fig.10.5 (left). After non-max suppression, only 

two best bounding boxes, one per car, should be kept, as shown in Fig.10.5 (right). The NMS 

algorithm rejects those bounding boxes which are too close to a high confident bounding box. 

 

Fig.10.5 Non-max suppression (the number associated with each box is confidence score). 

 

The non-max suppression algorithm can be described below. 

Algorithm: non-max suppression  

Given:  the output tensor (i.e., a list of bounding boxes), a pre-defined threshold for confidence 

score, a pre-defined threshold for IOU. 

Output: a final list that consists of qualified bounding boxes. 

Step 1: Remove any bounding box with confidence less than a threshold (e.g., 0.6). Put the 

remaining boxes into a list, called remain_list, in descending order of confidence score. 

Step 2: Do the following by looping over remain_list until remain_list is empty: 

1. From remain_list, move the first box (i.e., one with the highest confidence), 

𝑏𝑚𝑎𝑥, to final_list.  

2. From remain_list, delete any remaining box (for the same class as  𝑏𝑚𝑎𝑥) with 

IOU≥ a threshold (e.g. 0.5) with the output box, 𝑏𝑚𝑎𝑥. 

 



 

 

10.3 YOLO (v2) 

YOLO v2 (or YOLO9000) is the second version of the YOLO with the objective of improving the 

accuracy significantly while making it faster. Compared to YOLO v1, YOLO v2 makes the 

improvements through the following aspects: 

• Batch normalization. Batch normalization leads to significant improvements in 

convergence while eliminating the need for other forms of regularization (e.g., dropout). 

Batch normalization is added to all convolutional layers in YOLO v2, leading to 2% mAP 

improvement. 

• Higher resolution classifier. YOLO v1 was pre-trained for classification network by images 

with resolution 224 × 224, and then for detection by images with resolution 448 × 448. 

In YOLO v2, the classifier is fine-tuned by the resolution 448 × 448, which leads to 4% 

mAP improvement. 

• Architecture for fine-grained features and more bounding boxes per grid cell.  

• Anchor boxes. YOLO v2 doesn’t predict the bounding box parameters directly, instead it 

predicts the pre-defined anchor boxes. 

• Multi-scale training.  

YOLO v2 gives state-of-the-art detection accuracy on PASCAL VOC and COCO. It can run on 

varying sizes offering a tradeoff between speed and accuracy. At 67 FPS, YOLO v2 can give an 

accuracy of 76.8 mAP while at 40 FPS the detector gives an accuracy of 78.6 mAP, on VOC dataset. 

 

10.3.3 Architecture of YOLO v2 

The overall architecture of YOLO v2 is described in Table 10.2. YOLO v2 adopts a model, called 

Darknet-19, for its backbone network.  

Darknet-19 has 19 convolutional layers and 5 maxpooling layers. Inspired by GoogleNet and 

Network-in-Network, we use 3 × 3 filters and 1 × 1 filters alternatively. The 1 × 1 filters compress 

the feature representation between 3 × 3 convolutional layers. The number of channels is doubled 

while the feature map size is halved, by each maxpooling layer. This results in an output feature 

map size 13 × 13 for an input image 416 × 416 after 5 maxpooling layers (note:  
416

25 = 13). 

In Darkent-19, the last convolutional layer 1 × 1 × 1000 and the avgpool layer are only used to 

train the backbone on ImageNet 1000 dataset. Please note that it was initially trained on images 

224 × 224, and then fine-tuned on images 448 × 448.  

To construct YOLO v2 network for object detection, we modify the pretrained Darknet-19 by 

removing the last convolutional layer and the avgpool layer, and adding 3 convolutional layers with 

filter 3 × 3 and 1024 channels per layer and a final 1 × 1 convolutional layer with 125 channels, 

as described in Table 10.2. The 125 channels are responsible for 5 bounding boxes. In addition, the 

output from the final 3 × 3 × 512  layer is reshaped to 13 × 13 × 2048,  and concatenated with 

the output of the third to the last convolutional layer so that the model can use fine grain features, 

as shown in Fig.10.6. 

 



 

 

 

Table 10.2 YOLO v2 architecture (input image size: 416 × 416 × 3) 

Layers filters Size/stride Output  

Conv 32 3 × 3 416 × 416  
 
 
 
 
 
 
 
 
        
 
 
             Backbone 
 
                
 
          
                    Reshape to (13 × 13 × 2048) 

Maxpool  2 × 2/2 208 × 208 

Conv 64 3 × 3 208 × 208 

Maxpool  2 × 2/2 104 × 104 

Conv 128 3 × 3 104 × 104 

Conv 64 1 × 1 104 × 104 

Conv 128 3 × 3 104 × 104 

Maxpool  2 × 2/2 52 × 52 

Conv 256 3 × 3 52 × 52 

Conv 128 1 × 1 52 × 52 

Conv 256 3 × 3 52 × 52 

Maxpool  2 × 2/2 26 × 26 

Conv 512 3 × 3 26 × 26 

Conv 256 1 × 1 26 × 26 

Conv 512 3 × 3 26 × 26 

Conv 256 1 × 1 26 × 26 

Conv 512 3 × 3 26 × 26 

Maxpool  2 × 2/2 13 × 13 

Conv 1024 3 × 3 13 × 13 

Conv 512 1 × 1 13 × 13 

Conv 1024 3 × 3 13 × 13 

Conv 512 1 × 1 13 × 13 

Conv 1024 3 × 3 13 × 13 

For backbone pre-training For detection 

Layers Filters Size/stride output layers filters Size/stride output 

Conv  1000 1 × 1 13 × 13 Conv 1024 3 × 3 13 × 13 

Avgpool   Global 1000 Conv 1024 3 × 3 13 × 13 

Softmax     Concat  
3072 

  
13 × 13 

    Conv  1024 3 × 3 13 × 13 

    Conv 125 1 × 1 13 × 13 

 

 

The YOLO v2 model was trained on COCO and VOC datasets. For an input image 416 × 416, 

YOLO v2 divides it into an 13 × 13 grid and predicts 5 bounding boxes per grid cell. Each 

bounding box prediction includes 25 elements: 1 for confidence score, 4 for coordinates, and 20 

for conditional class probabilities of 20 classes. Thus, the prediction tensor of YOLO v2 has a shape 

of 13 × 13 × 125, as illustrated in Fig.10.7. In general, the YOLO v2 prediction tensor has a shape 

of 13 × 13 × (𝐵 × ሺ5 + 𝐶ሻ), where B is the number of bounding boxes per grid cell, C is the total 

number of classes. 



 

 

 

Fig.10.6 Concatenation for the passthrough layer 

 

 

Fig.10.7 Prediction tensor of YOLO v2 

10.3.2 Anchor boxes 

An important ingredient of YOLO v2 is the concept of anchor boxes, which improves performance 

and has been applied in the subsequent YOLO models. YOLO v1 predicts the coordinates of 

bounding boxes directly using fully connected layers on top of the convolutional feature extractor. 

Instead of predicting coordinates directly, YOLO v2 predicts a bounding box relative to a pre-

defined bounding box, called anchor box. In other words, the model uses the anchor boxes as the 

initial values of bounding boxes, and then learns to adjust the bounding box for fitting the detected 

object closely. This idea makes it easier for the model to learn. Furthermore, the use of a set of 

anchor boxes enables a model to detect multiple objects, objects of different scales, and overlapping 

objects.  

The number of anchor boxes and their aspect ratios can be determined by a statistical analysis on 

the target datasets. For example, k-means clustering on the dimensions of objects in VOC and 

COCO datasets suggests that k = 5 (i.e., 5 different shapes for anchor boxes) give a good tradeoff 

between the recall and the complexity. As the result, a widely used set of anchor boxes ሺ𝑝𝑤 , 𝑝ℎሻ 

is given in yolov2.cfg (provided by YOLO v2 paper authors) as {(0.57273, 0.677385), 

(1.87446, 2.06253), (3.33843, 5.47434), (7.88282, 3.52778), (9.77052, 9.16828)}, drawn in 

Fig.10.8. Note that 𝑝
𝑤

, 𝑝
ℎ
 are the width and the height, respectively, and they are normalized 

by the grid cell size. Alternatively, the size of bounding box or anchor box is usually 

normalized by the image size in YOLO algorithms.  Thus, divided by 13, the above set of 



 

 

anchor boxes can be specified, relative to the image size, as anchors={(0.04405615, 

0.05210654), (0.14418923, 0.15865615), (0.25680231, 0.42110308), (0.60637077, 0.27136769), 

(0.75157846, 0.70525231)}. 

The geometric relationship between an anchor box and the corresponding bounding box is defined 

by eq (10.6) and illustrated in Fig.10.9. 

 

Fig.10.8 Five anchor boxes in YOLO v2 

(normalized by the grid cell size in black [yolov2.cfg by YOLO v2 authors])    

 

 

Fig.10.9 Bounding box prediction from the output tensor of YOLO v2 

10.3.3 Predictions from YOLO v2 

The prediction tensor ሺ13 × 13 × 125ሻ generated by YOLO v2 model is illustrated in Fig.10.7. To 

understand the predictions, we imagine that the image is divided into a 13 × 13 grid. For each grid 

cell, there is a prediction 125-element vector consisting of 5 bounding boxes, which corresponds 

to 5 anchor boxes, respectively. The prediction of each bounding box includes box coordinates (4 

numbers), confidence (1 number) and conditional class probabilities (20 numbers). 

Now let’s focus on the bounding box prediction, corresponding to an anchor boxሺ𝑝𝑤 , 𝑝ℎሻ in a 

specific grid cell (𝑐𝑥 , 𝑐𝑦), where 0 ≤ 𝑐𝑥 ≤ 12, 0 ≤ 𝑐𝑦 ≤ 12 are the index of the grid cell, for 



 

 

instance, cellሺ3,2ሻ is the grid cell where the bounding box center point is located, as illustrated in 

Fig.10.9.  

Suppose 𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ, 𝑡𝑜 are the data from the prediction tensor of YOLO v2. Then, the actual 

parameters of the bounding box can be obtained by the following transformation: 

𝑏𝑥 = 𝜎ሺ𝑡𝑥ሻ + 𝑐𝑥                                                             (10.6 a) 

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦                                                            (10.6 b) 

𝑏𝑤 = 𝑝
𝑤

𝑒𝑡𝑤                                                                    (10.6 c) 

𝑏ℎ = 𝑝
ℎ

𝑒𝑡ℎ                                                                     (10.6 d) 

𝑜𝑏𝑗𝑒𝑐𝑡𝑠𝑐𝑜𝑟𝑒 = 𝑃𝑟ሺ𝑜𝑏𝑗𝑒𝑐𝑡ሻ × 𝐼𝑂𝑈ሺ𝑏, 𝑜𝑏𝑗𝑒𝑐𝑡ሻ = 𝜎ሺ𝑡𝑜ሻ                                       (10.6 e) 

where 

𝜎ሺ⬚ሻ is the sigmoid function. 

𝑏𝑥, 𝑏𝑦 are the coordinates of the bounding box center point. 

𝑏𝑤, 𝑏ℎ are the width and the height of the bounding box.  

Note that 𝜎ሺ𝑡𝑥ሻ, 𝜎(𝑡𝑦) ∈ ሺ0,1ሻ are the offsets of the bounding box center point relative to the left-

top corner of the grid cell. 𝑡𝑤, 𝑡ℎ are used to scale the anchor box to get the bounding box size. 

Object score represents the probability that an object is contained inside a bounding box, and it is 

obtained by passing 𝑡𝑜 through a sigmoid function. Note that the box position parameters such as 

𝑐𝑥 , 𝑐𝑦, 𝑏𝑥, 𝑏𝑦, 𝑏𝑤 , 𝑏ℎ, 𝑝𝑤 , 𝑝ℎare numerically normalized relative to the grid size (width or height), 

i.e., their units are the grid size.  

The loss function defined in equation (10.5) for YOLO v1 can be applied to YOLO v2, in general. 

Since anchor boxes are used for bounding box prediction, the ground truth parameters used in the 

loss function can be obtained by the inverse transform of (10.6) based on the label bounding boxes. 

10.4 YOLO (v3) 

YOLO (v3) introduced a new backbone architecture, called Darknet-53, which improved feature 

extraction and added additional anchor boxes to better detect objects at different scales. This model 

features multi-scale detection, a stronger feature extraction network, and a few changes in the loss 

function.        

10.4.1 Architecture of YOLO v3 

The neural network of YOLO v3 consists of three parts: Darknet-53, neck, and detection head, as 

shown in Fig.10.10. Darknet-53 is used as the backbone to extract features from the input images. 

The combination of Darknet-53 and the up-sample neck network results in a feature pyramid 

network in which a feature map gradually decreases in spatial dimension but increases later again 

and is concatenated with previous feature maps with corresponding sizes. The different sized 

feature maps are then fed to a distinct detection head. Each head is implemented by a few 

convolutional layers and generates predictions at a different grid scale.  



 

 

Our presentation is based on the following settings for YOLO v3: three scale predictions (13x13, 

26x26, 52x52 for an input image 416x416, three anchor boxes (B=3) for each scale prediction, and 

the number of classes C. The prediction for each grid cell is a vector with 𝑀 elements, where 𝑀 =
𝐵 × ሺ5 + 𝐶ሻ. Thus, M=75 for C=20 while M=255 for C=80. 

              

Fig.10.10 Overall architecture of YOLO v3 

A) Backbone: Darknet-53 

The backbone network, Darknet-53, is illustrated in Fig.10.11. Darknet-53 has 53 trainable layers 

(52 convolutional layers and one fully connected layer).  The last three layers (avgpool, full 

connected, softmax) are designed for pre-training, and thus being removed when it is adopted for 

YOLO feature extraction. Darknet-53 was pre-trained on ImageNet dataset with the input size 

256 × 256. In Fig.10.11, the shape of the tensor from each block is specified as [channel, w, h] 

while a convolutional layer is specified as Conv(channel, kernel size, kernel size, stride, padding). 

Note that all convolutional layers are followed by batch normalization (BN) and leakyReLU 

activation (L).  

                      

               (a) architecture of Darknet-53                                           (b) residual_block(Ch) 

Fig.10.11 Darknet-53 



 

 

 

Darknet-53 has 23 residual blocks. Each residual block contains one 1 ×1 and one 3×3 

convolutional layer. At the end of each residual unit, an element-wise addition is performed 

between the input tensor and the output tensor from the second convolutional layer. The shape of 

the output tensor of a residual block is the same as the input tensor. 

The down-sample step is performed by five separate convolutional layers with a stride of 2.   

B) Neck: up-sample network  

To detect objects at different scales, YOLO v3 adopts a Feature Pyramid Network (FPN) to extract 

the feature maps at different grid scales. The architecture of YOLO v3 is detailed by Fig.10.12 

where we list all convolutional layers (or blocks) and the corresponding output tensor shapes, 

assuming that the input is a batch of images, i.e., [N, 3, 416, 416]. All convolutional layers, except 

the last Conv2d layer in each detection head, are followed by a batch normalization and leakyReLU.  

We count any one of the following items as one layer: convolutional layer, shortcut pass, input 

route from a distant layer,  upsample (), concatenate (after upsample), and  yolo detection.  Thus, a 

residual block counts for 3 layers. The entire YOLO model consists of 107 layers. All layers are 

labeled in an order from layer 0 to layer 106.    

                     

Fig.10.12 Architecture of YOLO v3 (all conv layers are followed by BN and leakyReLU, except that the 

last conv layer in each detection head. We define the first conv layer as layer 0 and count three layers for 

each Res_block). 



 

 

The entire Darknet-53 down-samples the input image 416 × 416 by a factor of 32, and thus 

generates feature maps at the grid scale 13 × 13. A set of convolutional layers (layers 75 to layers 

82: 1 × 1 and 3 × 3 alternatively) process the feature map and generate the prediction [N,13,13, 

M] at grid scale 13 × 13. Note that M=255 when C=80, for instance. 

Layers 83 to 94 are responsible to generate the prediction at grid scale 26 × 26. First, we 

concatenate the feature map [N,512,26,26] from the last residual block (512) in Darknet-53 and the 

up-sampled (with a factor of 2) feature map [N,256,26,26] from the neck of scale 13 × 13. Then 

the merged feature map [N,768,26,26] will be passed through a series of convolutional layers, 

which are similar to those convolutional layers used for the scale 13 × 13, but the number of 

channels is halved. The prediction is a tensor [N,26,26, M]. The up-sample operation is illustrated 

in Fig.10.13. 

 

Fig.10.13 Up-sample by a factor of 2 using “nearest mode (default)” 

Similarly, layers 95 to 106 are designed to predict at grid scale 52 × 52. Specifically, we 

concatenate the feature map [N,256,52,52] from the last residual block (256) in Darknet-53 and the 

up-sampled (with a factor of 2) feature map [N,128,52,52] from the neck of scale 26 × 26. Then 

the merged feature map [N,384,52,52] will be passed through a set of convolutional layers to 

generate the prediction [N,52,52, M]. 

C) Understand predictions at three grid scales. 

YOLO v3 generates a prediction tensor at each grid scale. The tensor shapes are [N, 13, 13, M], 

[N, 26, 26, M], and [N, 52, 52, M] for three grid scales, respectively, where N is the batch size, 

𝑀 = 𝐵 × ሺ5 + 𝐶ሻ, B is the number of anchor boxes for one grid cell, C is the number of classes. YOLO v3 

predicts three bounding boxes at each grid cell across all different scales (i.e., B=3). As an example, Fig.10.14 

shows the prediction tensor at the scale 13 × 13 with C=80.  

 

Fig.10.14 Prediction tensor at scale 13 × 13 for C=80. 



 

 

To determine the anchor boxes, YOLO v3 applies k-means clustering on the COCO dataset and 

select 9 clusters. As a result, the width and height of the nine anchor boxes are: (10×13), (16×30), 

(33×23), (30×61), (62×45), (59×119), (116 × 90), (156 × 198), (373 × 326). These 9 anchor boxes 

are grouped into 3 different groups according to their size. The three smallest anchor boxes are 

assigned to the finer grid scale (e.g., 52x52), The three middle-sized ancho boxes are used for the 

middle fine grid scale (e.g., 26x26), and the three largest anchor boxes are used for the coarse grid 

scale (e.g., 13x13).  Note that the anchor boxes can be normalized to the input image by dividing 

416 or normalized to the grid size by dividing the corresponding stride (e.g., 32 for 13x13 grid 

scale). 

With the information of anchor boxes, the final bounding box parameters and confidence score can 

be obtained by the transformation defined in equation (10.6). The relevant data from the last conv 

layers (i.e., layer 81, 93, 105 in Fig.10.12) need to pass a sigmoid function to form the class 

probabilities. 

Like YOLO v2, the final step in the inference is to apply a non-max suppression on the prediction 

tensor to eliminate unqualified bounding boxes. 

10.4.2 Loss function of YOLO v3 

It is essential to understand the loss function and its implementation for training a YOLO model. 

Pre-trained YOLO v3 models are available in open resources for detecting pre-defined general 80 

classes from COCO dataset. However, in many applications, it is required to train the model based 

on a customized dataset. In practice, we compute the loss at each grid scale independently, and then 

obtain the total loss by adding the losses at three grid scales. 

A) Prediction 

Suppose the prediction at a grid scale s is represented as a tensor with a shape (3, s, s, 85), 

where s is the grid size (e.g., 13, 26, 52), denoted as 𝑝𝑟𝑒𝑑ሺ3, 𝑠, 𝑠, 85ሻ. Thus, one predicted 

bounding box, corresponding to anchor box k (k=0,1,2), at grid cell (i, j), is 𝑝𝑟𝑒𝑑ሾ𝑘, 𝑖, 𝑗, 0: 85ሿ 
that has a format: 

 

Note that all numbers above are generated by the last Conv2d layer, without passing through 

any activation function or a sigmoid function. To match the format of the target (discussed 

later), it is convenient to update the prediction tensor, 𝑝𝑟𝑒𝑑ሺ3, 𝑠, 𝑠, 85ሻ to the following format, 

by applying a sigmoid function to 𝑡𝑥 , 𝑡𝑦, tentatively,  

 

The meanings of the first four items were illustrated in Fig.10.9. 

B) Target 

To compute the loss of a prediction for an input image, we need to generate the target (i.e., 

ground truth) based on the label bounding boxes associated with the image. The label bounding 



 

 

boxes are given in a format per object: ሾ𝑐𝑙𝑎𝑠𝑠, 𝑏𝑥, 𝑏𝑦, 𝑏𝑤, 𝑏ℎሿ, where 𝑏𝑥 and 𝑏𝑦 are the center 

of the box, 𝑏𝑤, 𝑏ℎ are the width and height of the box, and all of them are relative to the image, 

𝑐𝑙𝑎𝑠𝑠 is the index of the object class. The target can be organized as a tensor with a shape (3, 

s, s, 6), illustrated in Fig.10.15 for s=13. 

 

Fig.10.15 Target at grid scale 13 

At each grid scale, we need to pick an anchor box responsible for the ground truth bounding 

box. The selected anchor box (positive sample) should be in the grid cell where the ground 

truth box is located, and also has the highest IOU with the ground truth box among the three 

anchor boxes in that cell. The confidence of the picked anchor box is assigned to 1. If any of 

the remaining two anchor boxes has a high (but not the highest) IOU with the ground truth box 

(e.g, more than an ignore_threshold), then they will be labeled as ignored box by assigning the 

confidence as -1, so that the corresponding prediction will be ignored, i.e., will not contribute 

any loss. All other target boxes (negative samples) are labeled as “no object” by assigning the 

confidence as 0.  

In Fig.10.15, the elements in the target for positive samples are calculated as follows: 

1) Ground truth box location offset to the up-left corner of the cell, relative to the grid cell 

size, 

      {
𝑥 = 𝑏𝑥 ∙ 𝑠 − 𝑖𝑛𝑡ሺ𝑠 ∙ 𝑏𝑥ሻ

�̂� = 𝑏𝑦 ∙ 𝑠 − 𝑖𝑛𝑡ሺ𝑠 ∙ 𝑏𝑦ሻ
                                                                          (10.7) 

2) Scaling parameters for width and height by the inverse function of eq. (10.6 c and 10.6 d) 

       {
�̂�𝑤 = log ቀ

𝑏𝑤

𝑝𝑤
ቁ

�̂�ℎ = log ቀ
𝑏ℎ

𝑝ℎ
ቁ

                                                                                         (10.8) 

where 𝑝𝑤 , 𝑝ℎ are the anchor box width and height relative to the image size, respectively. 

Therefore, we generate the target tensor, denoted as Target (3,s,s,6), shown in Fig.10.15 at each 

grid scale. There are three types of target vectors (each vector has 6 elements): negative sample 

(no object), positive sample (object), ignored sample. In the target tensor, each 6-element 

vector corresponds to a predicted 85-element vector at a grid cell and a particular anchor box. 



 

 

The loss function is defined to measure the mismatch between the target vectors and predicted 

vectors. 

C) Loss function 

Although Equation (10.5) was proposed for the loss function in YOLO v1, it defines the 

framework of loss function for the subsequent YOLO versions. There are many variants for the 

loss function and its implementation for YOLO v3. We introduce one of them below. The loss 

is composed of four parts: “no object” confidence loss, “object” confidence loss, “object” box 

loss, and “object” classification loss. 

1) “no object” confidence loss. If the target has a confidence 0 (i.e., no object at the cell for 

the anchor box), the corresponding prediction only results in a confidence loss, specified 

as the binary cross-entropy loss, 

𝑙𝑜𝑠𝑠𝑛𝑜𝑜𝑏𝑗 = −𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗3

𝑗=0
𝑠×𝑠
𝑖=0 log(1 − 𝜎ሺ𝑡𝑜ሻ)                                  (10.9) 

 

In PyTorch, we can call nn.BCEWithLogitsLoss() to compute 𝑙𝑜𝑠𝑠𝑛𝑜𝑜𝑏𝑗 using the 

confidence in the target (actually 0) and the prediction 𝑡𝑜, for all negative samples. 

2) “object” confidence loss. For a positive sample, the confidence “1” in the target should be 

updated by the IOU between the target box and the predicted box, and then we compute 

the confidence loss as the mean squared error between the IOU and 𝜎ሺ𝑡𝑜ሻ, 

𝑙𝑜𝑠𝑠𝑜𝑏𝑗 = 𝜆𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗3

𝑗=0
𝑠×𝑠
𝑖=0 (𝐼𝑂𝑈 − 𝜎ሺ𝑡𝑜ሻ)

2
                      (10.10) 

 

In PyTorch, we can call nn.MSELoss() to compute 𝑙𝑜𝑠𝑠𝑜𝑏𝑗, using the updated confidence 

scores (shown above) for all positive samples. 

3) “object” box loss. For a positive sample, the box loss defines the location mismatch 

between the ground truth bounding boxes and the predicted bounding boxes. The box loss 

is specified as MSE loss, 

𝑙𝑜𝑠𝑠𝑏𝑜𝑥 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗3

𝑗=0
𝑠×𝑠
𝑖=0 (𝑥 − 𝜎ሺ𝑡𝑥ሻ)

2
+ ቀ�̂� − 𝜎(𝑡𝑦)ቁ

2
+ ሺ�̂�𝑤 − 𝑡𝑤ሻ2 + ሺ�̂�ℎ − 𝑡ℎሻ2൨                                                                                                                      



 

 

(10.11) 

 

In PyTorch, we call nn.MSELoss() to compute 𝑙𝑜𝑠𝑠𝑏𝑜𝑥, based on the coordinates field 

shown above. 

4) “object” classification loss. For a positive sample, the classification loss is specified as 

cross entropy loss, 

𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 = −𝜆𝑐𝑙𝑎𝑠𝑠 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 log (

𝑒𝑥𝑝ሺ𝑑𝑐ሻ

∑ 𝑒𝑥𝑝ሺ𝑑𝑘ሻ𝐶
𝑘=1

)3
𝑗=0

𝑠×𝑠
𝑖=0                                   (10.12) 

 

Note that 𝑑𝑘 , 𝑘 = 1,2, … , 𝐶, are the unnormalized logits from the last Conv2d layer for the 

grid scale prediction in YOLO v3 model. Thus, in PyTorch we can call 

nn.CrossEntropyLoss() to calculate 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠, because nn.CrossEntropyLoss() combines 

the nn.LogSoftmax and nn.NLLLoss functions to compute the loss. 

The total loss at the grid s is the sum of all above loss components (10.9), (10.10), (10.11), 

(10.12) as 

𝐿𝑜𝑠𝑠ሺ𝑠ሻ = 𝑙𝑜𝑠𝑠𝑛𝑜𝑜𝑏𝑗 + 𝑙𝑜𝑠𝑠𝑜𝑏𝑗 + 𝑙𝑜𝑠𝑠𝑏𝑜𝑥 + 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 

 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗3

𝑗=0
𝑠×𝑠
𝑖=0 (𝑥 − 𝜎ሺ𝑡𝑥ሻ)

2
+ ቀ�̂� − 𝜎(𝑡𝑦)ቁ

2
+ ሺ�̂�𝑤 − 𝑡𝑤ሻ2 + ሺ�̂�ℎ − 𝑡ℎሻ2൨ 

               −𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗3

𝑗=0
𝑠×𝑠
𝑖=0 log(1 − 𝜎ሺ𝑡𝑜ሻ)  

               + 𝜆𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗3

𝑗=0
𝑠×𝑠
𝑖=0 (𝐼𝑂𝑈 − 𝜎ሺ𝑡𝑜ሻ)

2
 

               −𝜆𝑐𝑙𝑎𝑠𝑠 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 log (

𝑒𝑥𝑝ሺ𝑑𝑐ሻ

∑ 𝑒𝑥𝑝ሺ𝑑𝑘ሻ𝐶
𝑘=1

)3
𝑗=0

𝑠×𝑠
𝑖=0                                                         (10.13) 

where 𝑠 = 13, 26, 52.       

The final loss function of YOLO v3 model is the sum of losses at three grid scales, 

𝐿𝑂𝑆𝑆 = 𝐿𝑜𝑠𝑠ሺ13ሻ + 𝐿𝑜𝑠𝑠ሺ26ሻ + 𝐿𝑜𝑠𝑠ሺ52ሻ                                          (10.14) 

Note that 𝜆𝑛𝑜𝑜𝑏𝑗, 𝜆𝑜𝑏𝑗, 𝜆𝑐𝑜𝑜𝑟𝑑 , 𝜆𝑐𝑙𝑎𝑠𝑠 are the weights for the loss components, which balance 

the contribution of each loss component to the final loss. For example, the number of negative 



 

 

samples in the target is much larger than that of positive samples, 𝜆𝑛𝑜𝑜𝑏𝑗 is set to a smaller 

number (e.g., 0.5) than the value of 𝜆𝑜𝑏𝑗 (e.g., 5). The mask element, for grid cell i and anchor 

box j, is defined as 

1𝑖𝑗
𝑜𝑏𝑗

= {
1       𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 ሺ𝑖. 𝑒. , 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 1ሻ
0       𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑒ሺ𝑖. 𝑒. , 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 0ሻ

                           (10.15) 

1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

= {
0       𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 ሺ𝑖. 𝑒. , 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 1ሻ
1       𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑒ሺ𝑖. 𝑒. , 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 0ሻ

                           (10.16) 

 

10.5 Implementation of YOLO v3 Using Pre-trained Model 

This section gives a comprehensive tutorial of YOLO v3 implementation based on the pre-trained 

model by Joseph Redmon (the inventor of YOLO). Three files are downloaded for this section: 

yolov3.cfg, yolov3.weights, and coco.names. 

yolov3.cfg: https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg, a configuration file 

that defines the structure of YOLO v3 model. 

yolov3.weights: https://pjreddie.com/media/files/yolov3.weights, a binary file that stores the 

weights in a float data type. 

coco.names: https://github.com/pjreddie/darknet/tree/master/data, a text file that lists the name of 

classes in COCO dataset.  

Fig.10.16 illustrates the flowchart of YOLO v3 implementation. The configuration file, yolov3.cfg, 

defines the architecture of YOLO v3 model. We use a function parse_cfg() to parse the cfg file, 

and eventually generate yolonet() as an nn.Module. The model yolonet() takes images as its input, 

and delivers all bounding boxes for all grid cells. The function non_max_suppression() generates 

the final detected bounding boxes by eliminating the low confident bounding boxes and redundant 

bounding boxes via the non-max suppression algorithm. We will explore the details of the 

implementation in the following subsections.  

 

Fig.10.16 Flowchart of YOLO v3 implementation 

https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
https://pjreddie.com/media/files/yolov3.weights
https://github.com/pjreddie/darknet/tree/master/data


 

 

 

10.5.2 Model architecture specified by a configuration file: yolov3.cfg 

It is common practice to specify the architecture of a deep neural network by a configuration (or 

config) file, and then convert it to a neural network module described by a standard framework 

(e.g. nn.Module in PyTorch). A config file (*.cfg) is a text file that consists of a sequence of blocks.  

In yolov3.cfg, there are six types of blocks: [net], [convolutional], [shortcut], [route], [upsample] 

and [yolo]. Each block, except the first block [net], specifies a layer. The first block in yolov3.cfg, 

called [net], describes the information on the network input and training/testing parameters. Each 

of the subsequent blocks belongs to one of the other five types: [convolutional], [shortcut], [route], 

[upsample], [yolo], and specifies a layer. A block [convolutional] defines the structure of a conv 

layer, including the number of filters, filter size, stride, zero-padding, batch normalization and 

activation function. The number of input channels for a layer is defined by the number of output 

channels in the previous layer. A [shourtcut] block specifies a jump connection. A [route] block 

has an attribute “layers” which can have either one, or two values. When layers attribute has only 

one value, it outputs the feature maps of the layer indexed by the value. When layers has two values, 

it returns the concatenated feature maps of the layers indexed by the two values. A block 

[upsample] up-samples the feature map from the previous layer by a factor of stride. A [yolo] block 

provides the parameters required for detection, and it corresponds to the detection layer, which 

processes the output feature map tensor for detection.   

As examples, Table 10.3 lists some blocks in yolov3.cfg. The [convolutional] block specifies a 

convolutional layer with batch normalization and leakyReLU activation. The [shourtcut] block 

describes a jump connection from layer -3, which means the output of the shortcut layer is obtained 

by adding feature maps from the previous (i.e. the first layer backwards) and the 3rd layer backwards 

from the shortcut layer. The block “[route] layers = -4” specifies a layer that outputs the feature 

map from the 4th layer backwards. The block “[route] layers = -1, 61” specifies a layer that outputs 

a concatenated (along with depth dimension) feature map from the previous layer (-1) and the 61st 

layer. The [upsample] block defines a layer that up-samples the feature map from the previous 

layer by a factor of stride 2 using a default mode – nearest mode. The [yolo] block gives anchor 

boxes and other parameters for detection at the corresponding scale.  The anchors give all anchors 

while mask specifies the corresponding three anchors for this grid scale. 

 

Table 10.3 Examples of blocks in yolov3.cfg 

[convolutional] 

batch_normalize=1 

filters=32 

size=3 

stride=1 

pad=1 

activation=leaky 

[yolo] 

mask = 6,7,8 

anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 

classes=80 

num=9 

jitter=.3 

ignore_thresh = .5 

truth_thresh = 1 

random=1 

[shortcut] 

from=-3 

activation=linear 

[route] 

layers = -4 
[route] 

layers = -1, 61 
[upsample] 

stride=2 

 



 

 

10.5.2 Create the model and load the weights 

In this section, we will explore how to create the neural network model and load the pre-trained 

weights to the model, from two files – yolov3.cfg and yolov3.weights. All Python codes can be run 

through Jupyter notebook. 

We start by importing the basic packages. 

 
import torch  

import torch.nn as nn 

import torch.nn.functional as F  

from torch.autograd import Variable 

import numpy as np 

import cv2 

 

 

The function parse_cfg is to parse the cfg file and store every block as a dictionary data type. The 

attributes of each block and their values are stored as key-value pairs in the dictionary. As we parse 

through the cfg, we keep appending these dictionaries, denoted by the variable block in the code, 

to a list blocks. The function returns this list blocks. 

def parse_cfg(cfgfile): 

    """ 

    input: a configuration file, eg. yolov3.cfg 

     

    Returns: blocks, which is a list of blocks.  

        -- each block corresponds to a block in cfg file  

        -- each block is represented as a dictionary 

    """ 

     

    file = open(cfgfile, 'r') 

    #lines = file.read().split('\n')             # store the lines in a list 

    lines = file.read().splitlines()             # store the lines in a list 

    lines = [x for x in lines if len(x) > 0]     # remove the empty lines  

    lines = [x for x in lines if x[0] != '#']    # remove the comment lines 

    lines = [x.rstrip().lstrip() for x in lines]     

    # remove leading and trailing whitespaces 

    #print(lines) 

    # lines: a list of strings, each string is an effective line in cfg 

     

    block = {}          # inital a dict 

    blocks = []         # initial list 

     

    for line in lines: 

        if line[0] == "[":       

        # line is a string, line[0] is the first character in the line 

            if len(block) != 0:           

                # If block is not empty,  

                # the "block" is for the previous block  

                # and ready to store to "blocks" 

                blocks.append(block)     # add it the blocks list 

                block = {}               # re-init the block 

            block["type"] = line[1:-1].rstrip()   

          # store the block "type" for current block   

        else: 



 

 

            key,value = line.split("=")  

            block[key.rstrip()] = value.lstrip() #store "value" to block[key] 

    blocks.append(block)            # store the last "block" to the list      

     

  return blocks 

 

 

The content of “blocks” is printed below. The “blocks” include 108 blocks. The first block is “net” 

about the information of the model, The remaining 107 blocks correspond to 107 layers in 

Fig.10.12. 

 

print(blocks) 

 

[{'type': 'net', 'batch': '1', 'subdivisions': '1', 'width': '416', 'height': 

'416', 'channels': '3', 'momentum': '0.9', 'decay': '0.0005', 'angle': '0', 

'saturation': '1.5', 'exposure': '1.5', 'hue': '.1', 'learning_rate': 

'0.001', 'burn_in': '1000', 'max_batches': '500200', 'policy': 'steps', 

'steps': '400000,450000', 'scales': '.1,.1'}, {'type': 'convolutional', 

'batch_normalize': '1', 'filters': '32', 'size': '3', 'stride': '1', 'pad': 

'1', 'activation': 'leaky'},…] 

 

The create_modules function takes the list blocks generated by the parse_cfg function, and returns 

net_info and module_list. The net_info is a dictionary that stores information about the network. 

The module_list is a list nn.ModuleList() that contains all 107 layers in YOLO v3, including the 

index of each layer. The EmptyLayer() is defined for route and shortcut layers while 

DetectionLayer() is defined for the YOLO detection head. Each element in module_list corresponds 

to a layer in Fig.10.12. 

 
class EmptyLayer(nn.Module): 

    def __init__(self): 

        super(EmptyLayer, self).__init__() 

         

 

class DetectionLayer(nn.Module): 

    def __init__(self, anchors): 

        super(DetectionLayer, self).__init__() 

        self.anchors = anchors 

 

def create_modules(blocks): 

    """ 

    input: a list -- blocks, each element is a dict -- block 

    returns: net_info -- the first block about the net 

             module_list: a list of nn.modules 

    """ 

    net_info = blocks[0]         # net info is a dict for the net information     

    module_list = nn.ModuleList()  # init a list containing nn.modules 

    prev_filters = 3               # initial prev_filters 

    output_filters = []            # store  

     

    for index, x in enumerate(blocks[1:]): 

        module = nn.Sequential()    # initial module for current block 

         

        #start with blocks[1] 



 

 

        #check the type of block 

        #create a new module for the block 

        #append to module_list 

         

        #If a convolutional layer 

        if (x["type"] == "convolutional"): 

            #Get the info about the layer 

            activation = x["activation"] 

            try: 

                batch_normalize = int(x["batch_normalize"]) 

                bias = False 

            except: 

                batch_normalize = 0 

                bias = True 

         

            filters= int(x["filters"]) 

            padding = int(x["pad"])         # whether zero padding 

            kernel_size = int(x["size"]) 

            stride = int(x["stride"]) 

         

            if padding: 

                pad = (kernel_size - 1) // 2 #pad:the zero pad in nn.Conv2d() 

            else: 

                pad = 0 

         

            #Add the convolutional layer 

            conv = nn.Conv2d(prev_filters, filters, kernel_size, stride, pad, 

bias = bias) 

            module.add_module("conv_{0}".format(index), conv) 

         

            #Add the Batch Norm Layer 

            if batch_normalize: 

                bn = nn.BatchNorm2d(filters) 

                module.add_module("batch_norm_{0}".format(index), bn) 

         

            #Check the activation.  

            if activation == "leaky": 

                activn = nn.LeakyReLU(0.1, inplace = True) 

                module.add_module("leaky_{0}".format(index), activn) 

         

        # If an upsampling layer 

        # nearest mode, factor = stride 

        elif (x["type"] == "upsample"): 

            stride = int(x["stride"]) 

            upsample = nn.Upsample(scale_factor = stride, mode = "nearest") 

            module.add_module("upsample_{}".format(index), upsample) 

            # filters is the same as the previous layer, no need to update 

                 

        #If a route layer 

        elif (x["type"] == "route"): 

             

            route = EmptyLayer() 

            module.add_module("route_{0}".format(index), route) 

             

            x["layers"] = x["layers"].split(',') 

            #Start  of a route 

            start = int(x["layers"][0])   # the first integer e.g -1, or -4 



 

 

             

            #end, if there is a second value for layers, e.g, 36, or 61. 

            try: 

                end = int(x["layers"][1])  # second value 

            except: 

                end = 0    # no second value 

                 

            if start > 0: 

                start = start - index 

            if end > 0: 

                end = end - index 

             

            if end == 0:   # only one value (start) 

                filters = output_filters[index + start] 

            else:  # two values (start, end) 

                filters=output_filters[index+start]+output_filters[index+end] 

                     

                 

        #shortcut corresponds to skip connection 

        elif x["type"] == "shortcut": 

            shortcut = EmptyLayer() 

            module.add_module("shortcut_{}".format(index), shortcut) 

            # no need to update filters 

             

        #Yolo is the detection layer 

        elif x["type"] == "yolo": 

            mask = x["mask"].split(",") 

            mask = [int(x) for x in mask] 

     

            anchors = x["anchors"].split(",") 

            anchors = [int(a) for a in anchors] 

            anchors=[(anchors[i],anchors[i+1]) for i in 

range(0,len(anchors),2)] 

            anchors = [anchors[i] for i in mask] 

     

            detection = DetectionLayer(anchors) 

            module.add_module("Detection_{}".format(index), detection) 

            # no need to update filters 

                               

        module_list.append(module)     # add module to the module_list 

        prev_filters = filters               

        # will be used for the input channels if the next layer is conv2d 

         

        output_filters.append(filters)      

        # save the channels for layers to be used in layer "route" 

         

    return (net_info, module_list) 

 

 

module_list can be printed as below, and its length is 107. 
 

print(create_modules(blocks)) 

 
({'type': 'net', 'batch': '1', 'subdivisions': '1', 'width': '416', 'height': 

'416', 'channels': '3', 'momentum': '0.9', 'decay': '0.0005', 'angle': '0', 

'saturation': '1.5', 'exposure': '1.5', 'hue': '.1', 'learning_rate': 



 

 

'0.001', 'burn_in': '1000', 'max_batches': '500200', 'policy': 'steps', 

'steps': '400000,450000', 'scales': '.1,.1'}, ModuleList( 

  (0): Sequential( 

    (conv_0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

    (batch_norm_0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

    (leaky_0): LeakyReLU(negative_slope=0.1, inplace=True) 

  ) 

  (1): Sequential( 

    (conv_1): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 

1), bias=False) 

    (batch_norm_1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

    (leaky_1): LeakyReLU(negative_slope=0.1, inplace=True) 

  ) 

…) 

 

Based on the functions parse_cfg() and create_modules(), we can build the entire neural network 

for YOLO v3, called Yolonet().  In addition to the basic layers in PyTorch, such as nn.Con2d(), 

nn.BatchNorm2d(),  nn.LeakyReLU(), an important function, called predict_transform(),  has been 

defined for the operation in DetectionLayer(), which is illustrated in Fig.10.17. 

 

 
 

Fig.10.17 the operation of predict_transform(), 𝑐𝑥, 𝑐𝑦 are the coordinates of the grid cell.  

 
def predict_transform(prediction, inp_dim, anchors, num_classes): 

    # this function is used in yolo DetectionLayer() 

    # generates all predictions for one grid scale 

    #   1) re-organize the tensor 

    #   2) scale the anchors 

    #   3) coordinate transform 

    #   4) apply sigmoid for class probabilities 

     

    """ 

    inputs:  

        -- prediction: output from the last conv2d 

           shape [batch, 255, grid_size, grid_size] (e.g.[b, 255,13,13]) 

        -- inp_dim: input size, integer, e.g. 416 

        -- anchors: a list of 3 anchors for this grid scale,  

                   [(*,*), (*,*), (*,*)] 

        -- num_classes: the number of classes, integer, e.g. 80 

    returns:  

        -- prediction: tensor shape [batch, grid_size x grid_size x 3, 85] 

      each box: prediction[i,j,:] =(bx,by,bw,bh,sigmoid(to), p1, ..., p80) 



 

 

    """ 

     

    batch_size = prediction.size(0) 

    stride =  inp_dim // prediction.size(2) 

    grid_size = prediction.size(2) 

    bbox_attrs = 5 + num_classes 

    num_anchors = len(anchors) 

     

    prediction = prediction.view(batch_size, bbox_attrs*num_anchors, 

grid_size*grid_size) 

    #example: [b, 255,13,13]--> [b, 255, 169] 

     

    prediction = prediction.transpose(1,2).contiguous() 

    #example: [b,255,169] --> [b,169,255] 

     

    prediction = prediction.view(batch_size, grid_size*grid_size*num_anchors, 

bbox_attrs) 

    #example: [b,169,255] --> [b,169x3,85]=[b,507,85] 

     

    anchors = [(a[0]/stride, a[1]/stride) for a in anchors]  

    # scaled to unit grid size 

 

    #Sigmoid the  centre_X, centre_Y. and object confidencce 

    prediction[:,:,0] = torch.sigmoid(prediction[:,:,0]) 

    prediction[:,:,1] = torch.sigmoid(prediction[:,:,1]) 

    prediction[:,:,4] = torch.sigmoid(prediction[:,:,4]) 

     

    #Add the center offsets 

    grid = np.arange(grid_size) 

    a,b = np.meshgrid(grid, grid)   # a: (13,13), b: (13,13) 

 

    x_offset = torch.FloatTensor(a).view(-1,1)  #shape(169,1) 

    y_offset = torch.FloatTensor(b).view(-1,1)  #shape(169,1) 

 

    x_y_offset = torch.cat((x_offset, y_offset), 

1).repeat(1,num_anchors).view(-1,2).unsqueeze(0) 

    # x_y_offset, shape (1, 507, 2), grid coordinates repeated 3 time.  

    # [[0.,0.], [0., 0.], [0.,0.],  

    #  [1.,0.], [1.,0.], [1.,0.], 

    #  [2.,0.], [2.,0.], [2.,0.], 

    #  .... 

    #  [12.,12.], [12.,12.], [12.,12.]] 

 

    prediction[:,:,:2] += x_y_offset     

    # bounding box: bx, by 

 

    #log space transform height and the width 

    anchors = torch.FloatTensor(anchors) 

 

 

    anchors = anchors.repeat(grid_size*grid_size, 1).unsqueeze(0)   

    # shape: (1, 507, 2) to match prediction (1, 507, 85) 

     

    prediction[:,:,2:4] = torch.exp(prediction[:,:,2:4])*anchors 

    # bounding box: bw, bh 

     



 

 

    prediction[:,:,5: 5 + num_classes] = torch.sigmoid((prediction[:,:, 5 : 5 

+ num_classes])) 

 

    prediction[:,:,:4] *= stride    

    # scaled back to unit of pixel, shape is [batch, 13x13x3, 85] 

    # one bounding box prediction[1,1,:] is (bx,by,bw,bh,sigmoid(to), p1, p2, 

..., p80) 

     

    return prediction 

 

 

In class Yolonet(), we construct the forward path of YOLO v3, and also define 

load_weights(self, weightfile)to add an attribute to Yolonet() for loading the pre-trained 

weights. 

class Yolonet(nn.Module): 

    def __init__(self, cfgfile): 

        super(Yolonet, self).__init__() 

        self.blocks = parse_cfg(cfgfile) 

        self.net_info, self.module_list = create_modules(self.blocks) 

         

    def forward(self, x): 

        modules = self.blocks[1:] 

        outputs = {}   # We save the outputs for the route or shortcut layer,  

                       # key is layer index, value is the output of the layer 

         

        first = 1 

        for i, module in enumerate(modules):         

            module_type = (module["type"]) 

             

            if module_type == "convolutional" or module_type == "upsample": 

                x = self.module_list[i](x) 

     

            elif module_type == "route": 

                layers = module["layers"] 

                layers = [int(a) for a in layers] 

     

                if (layers[0]) > 0: 

                    layers[0] = layers[0] - i 

     

                if len(layers) == 1: 

                    x = outputs[i + (layers[0])] 

     

                else: 

                    if (layers[1]) > 0: 

                        layers[1] = layers[1] - i 

     

                    map1 = outputs[i + layers[0]] 

                    map2 = outputs[i + layers[1]] 

                    x = torch.cat((map1, map2), 1) 

                 

            elif  module_type == "shortcut": 

                from_ = int(module["from"]) 

                x = outputs[i-1] + outputs[i+from_] 

     

            elif module_type == 'yolo':         



 

 

                anchors = self.module_list[i][0].anchors 

                #Get the input dimensions 

                inp_dim = int (self.net_info["height"]) 

         

                #Get the number of classes 

                num_classes = int (module["classes"]) 

         

                #Transform  

                x = x.data 

                x = predict_transform(x, inp_dim, anchors, num_classes) 

                if first:              #if the first yolo detectio head.  

                    detections = x 

                    first = 0 

         

                else:       # if the 2nd and 3rd head 

                    detections = torch.cat((detections, x), 1) 

         

            outputs[i] = x 

         

        return detections 

 

 

    def load_weights(self, weightfile): 

        # Open weightfile 

        fp = open(weightfile, "rb") 

     

        #The first 5 values are header information  

        header = np.fromfile(fp, dtype = np.int32, count = 5) 

        self.header = torch.from_numpy(header) 

        self.seen = self.header[3]    

         

        weights = np.fromfile(fp, dtype = np.float32) 

         

        ptr = 0 

        for i in range(len(self.module_list)): 

            module_type = self.blocks[i + 1]["type"] 

     

            # If module_type is convolutional load weights 

            # Otherwise do nothing. 

             

            if module_type == "convolutional": 

                model = self.module_list[i] 

                try: 

                    batch_normalize=int(self.blocks[i+1]["batch_normalize"]) 

                except: 

                    batch_normalize = 0 

             

                conv = model[0] 

                 

                  

                if (batch_normalize):   # if BN applied, load BN parameters 

                    bn = model[1] 

         

                    #Get the number of weights of Batch Norm Layer 

                    num_bn_biases = bn.bias.numel() 

         

                    #Load the weights 



 

 

                    bn_biases = torch.from_numpy(weights[ptr:ptr + 

num_bn_biases]) 

                    ptr += num_bn_biases 

         

                    bn_weights = torch.from_numpy(weights[ptr: ptr + 

num_bn_biases]) 

                    ptr  += num_bn_biases 

         

                    bn_running_mean = torch.from_numpy(weights[ptr: ptr + 

num_bn_biases]) 

                    ptr  += num_bn_biases 

         

                    bn_running_var = torch.from_numpy(weights[ptr: ptr + 

num_bn_biases]) 

                    ptr  += num_bn_biases 

         

                    #Cast the loaded weights into dims of model weights.  

                    bn_biases = bn_biases.view_as(bn.bias.data) 

                    bn_weights = bn_weights.view_as(bn.weight.data) 

                    bn_running_mean =bn_running_mean.view_as(bn.running_mean) 

                    bn_running_var = bn_running_var.view_as(bn.running_var) 

         

                    #Copy the data to model 

                    bn.bias.data.copy_(bn_biases) 

                    bn.weight.data.copy_(bn_weights) 

                    bn.running_mean.copy_(bn_running_mean) 

                    bn.running_var.copy_(bn_running_var) 

                 

                else: # if no BN, load conv layer biases 

                    #Number of biases 

                    num_biases = conv.bias.numel() 

                 

                    #Load the weights 

                    conv_biases = torch.from_numpy(weights[ptr: ptr + 

num_biases]) 

                    ptr = ptr + num_biases 

                 

                    #reshape the loaded weights according to the dims of the 

model weights 

                    conv_biases = conv_biases.view_as(conv.bias.data) 

                 

                    #Finally copy the data 

                    conv.bias.data.copy_(conv_biases) 

                     

                #load the weights for the Convolutional layers 

                num_weights = conv.weight.numel() 

                conv_weights = torch.from_numpy(weights[ptr:ptr+num_weights]) 

                ptr = ptr + num_weights 

                 

                conv_weights = conv_weights.view_as(conv.weight.data) 

                conv.weight.data.copy_(conv_weights) 

 

We can instantiate Yolonet() and load the weights as below. 

 
model = Yolonet("cfg/yolov3.cfg") 

model.load_weights("yolov3.weights") 



 

 

 

Given a batch of images, to get the output from model, we just run: pred = model(inp). The input, 

inp, is a tensor with shape [Batch_size, Channel, Height, Width] assuming all images have the same 

Height and Width. The output, pred, is a tensor that contains the predicted bounding boxes for all 

images, and its shape is [Batch_size, number of boxes, 85], where  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑥𝑒𝑠 = ሺ13 × 13 + 26 × 26 + 52 × 52ሻ × 3 = 10647 

when image size is ሺ3 × 416 × 416ሻ and the number of classes is 80. The prediction for image i is 

pred[i,:,:], shown in Fig.10.18. There are three bounding boxes for one grid cell. The prediction 

for each bounding box includes 85 numbers: 4 for box center and width and height, 1 for object 

confidence score, 80 for class probabilities. 

 
 

Fig.10.18 The output of Yolonet () for one image i, pred [i,:,:]. Note that the unit of bx,by,bw,bh 

is a pixel, and that p1,…, p80 are class probabilities after sigmoid function. 

 
inp_random = torch.rand(2,3,416,416) 

pred_random = model(inp_random) 

pred_random.shape 

 

torch.Size([2, 10647, 85]) 

 

10.5.3 Non-max suppression 

The model Yoloknet delivers all bounding boxes for a batch of images, with 10647 bounding boxes 

per image, as shown in Fig.10.18. Since most of the bounding boxes with low confidence scores 

are not responsible for any object or some of them points to the same object, we need to eliminate 

the low confident bounding boxes (i.e., 𝜎ሺ𝑡𝑜ሻ < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) and the redundant bounding boxes 

for one object, so that each detected object is framed by only one bounding box.  This is done by 

the algorithm of non-max suppression.  

First, we define a function, bbox_iou(box1,box2), to calculate the intersection over union between 

box1 and box2. Then the function, non_max_suppression(prediction, confidence, num_classes, 



 

 

nms_conf), is defined to convert the output of Yolonet, prediction, to the finally detected bounding 

boxes, output, through non-max suppression. The tensor prediction has a shape of [Batch_size, 

10647, 85] while the tensor output has a shape of [D,8], where D is the total number of detected 

bounding boxes for the batch. The format of each bounding box in prediction or output is illustrated 

in Fig.10.19. 

Specifically, non_max_suppresion () performs the following operations in order: 1) zero out all 

bounding boxes whose object confidence score 𝜎ሺ𝑡𝑜ሻ is less than the threshold confidence; 2) 

convert center coordinates to corner coordinates for each bounding box; 3) on each image, perform 

non-max suppression class-wisely; 4) attach the image index to the corresponding bounding boxes, 

and keep the maximum of class probabilities and the corresponding class index, while discarding 

other class probabilities. As the result, each detected bounding box has a format of an 8-element 

vector: (image_index, x1, y1, x2, y2, 𝜎ሺ𝑡𝑜ሻ, max(pc), argmax(pc)). 

 
 

Fig.10.19 Input and output of non-max suppression. D is the total number of final bounding 

boxes in the batch. 

 

def bbox_iou(box1, box2): 

    """ 

    inputs:  

        --box1: tensor shape [N1,4], given as top-left and bottom-right  

        --box2: tensor shape [N2,4], given as top-left and bottom-right 

            box1 and box2 should include the same number of boxes (N1=N2),  

         or one of them includes only one box and the other includes  

            multiple boxes (N1=1, or N2=1) 

         

    Returns   

        -- if N1 =N2, returns one-to-one IOUs 

        -- if N1=1 or N2=1, returns one-to-many IOUs 

     

    """ 

    #Get the coordinates of bounding boxes 

    b1_x1, b1_y1, b1_x2, b1_y2 = box1[:,0], box1[:,1], box1[:,2], box1[:,3] 

    b2_x1, b2_y1, b2_x2, b2_y2 = box2[:,0], box2[:,1], box2[:,2], box2[:,3] 

     

    #get the corrdinates of the intersection rectangle 

    inter_rect_x1 =  torch.max(b1_x1, b2_x1) 

    inter_rect_y1 =  torch.max(b1_y1, b2_y1) 

    inter_rect_x2 =  torch.min(b1_x2, b2_x2) 

    inter_rect_y2 =  torch.min(b1_y2, b2_y2) 

     



 

 

    #Intersection 

    inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * 

torch.clamp(inter_rect_y2 - inter_rect_y1 + 1, min=0) 

 

    #Union 

    b1_area = (b1_x2 - b1_x1 + 1)*(b1_y2 - b1_y1 + 1) 

    b2_area = (b2_x2 - b2_x1 + 1)*(b2_y2 - b2_y1 + 1) 

     

    #IOU 

    iou = inter_area / (b1_area + b2_area - inter_area) 

     

    return iou 

 

def non_max_suppression(prediction, confidence, num_classes, nms_conf = 0.4): 

    """ 

    delivers all final bounding boxes, which are ready to draw on original  

    images. 

inputs: 

 -- prediction, from predict_transform() in Darkent model, includes all  

     bounding boxes shape is [batch, (13x13+26x26+52x52)x3, 85] 

      =[batch, 10647, 85], 10647 bounding boxes per batch 

      prediction[0,0,:]: 

      bx,by,bw,bh,sigmoid(t0),p1=sigmoid(), p2=sigmoid()..., p80=sigmoid() 

 -- confidence, object confidence threshold (e.g. 0.5) for sigmoid(t0) in  

    each bounding box 

 -- num_classes, integer, the number of class (e.g. 80) 

 -- nms_conf, the threshold of IOU for non-max suppression 

    outputs: 

 -- output, a tensor [N, 8], N is the total number of predicted boxes for  

    the batch 

    each box:  

    (image_index, x1,y1,x2,y2,sigmoid(to), class probability, class index) 

    """ 

     

    conf_mask = (prediction[:,:,4] > confidence).float().unsqueeze(2) 

    #.unsqueeze(2) keep the dimension 2 to match the prediction dimension  

    #[batch, 10647,85] 

    # conf_mask shape is [batch, 10647,1] 

     

    prediction = prediction*conf_mask 

    # clear all low confident bounding boxes to zero-vectors 

    # maintain all other bounding boxes 

     

    # convert (center,w,h) format to (top-left, bottom-right) format 

    box_corner = prediction.new(prediction.shape)  #create a new tensor 

    box_corner[:,:,0] = (prediction[:,:,0] - prediction[:,:,2]/2) 

    box_corner[:,:,1] = (prediction[:,:,1] - prediction[:,:,3]/2) 

    box_corner[:,:,2] = (prediction[:,:,0] + prediction[:,:,2]/2)  

    box_corner[:,:,3] = (prediction[:,:,1] + prediction[:,:,3]/2) 

    prediction[:,:,:4] = box_corner[:,:,:4] 

    # now, prediction in a corner format:  

    #[x1, y1, x1, y2, sigmoid(t0), sigmoid().....] 

     

     

    batch_size = prediction.size(0) 

 



 

 

    #initial  

    first = True 

     

 

    for ind in range(batch_size): 

        image_pred = prediction[ind]   

       # image_pred [10647,85]: prediction for one image 

       #confidence threshholding  

       #NMS 

     

        max_conf, max_conf_score=torch.max(image_pred[:,5:5+num_classes], 1) 

        max_conf = max_conf.float().unsqueeze(1) 

        max_conf_score = max_conf_score.float().unsqueeze(1) 

        # max_conf: max value, shape [10647,1] 

        # max_conf_score: max index, shape [10647,1] 

         

        seq = (image_pred[:,:5], max_conf, max_conf_score) 

        image_pred = torch.cat(seq, 1)  

        #shape [10647,7], (x1,y1,x2,y2,sigmoid(to),pc_max,class_max) 

         

        non_zero_ind =  (torch.nonzero(image_pred[:,4])) 

        try: 

            image_pred_ = image_pred[non_zero_ind.squeeze(),:].view(-1,7) 

        except: 

            continue 

         

        if image_pred_.shape[0] == 0: 

            continue      

        # image_pred_, includes only detected bounding boxes, shape [M1, 7] 

     

        #Get the various classes detected in the image 

        img_classes = torch.unique(image_pred_[:,-1])   

        # keep one element for each detected class. 

        # img_class shape [M2], M2 < or = M1 

         

        for cls in img_classes: 

            #perform NMS for each class 

 

            #get the detections with one particular class 

            cls_mask=image_pred_*(image_pred_[:,-

1]==cls).float().unsqueeze(1) 

            class_mask_ind = torch.nonzero(cls_mask[:,-2]).squeeze() 

            image_pred_class = image_pred_[class_mask_ind].view(-1,7)  

            # image_pred_class [M3,7]: detected bounding boxes for class cls 

             

            # sort the detections such that the bounding box  

            # with the maximum objectness confidence is at the beginning 

            conf_sort_index=torch.sort(image_pred_class[:,4],descending=True 

)[1] 

            image_pred_class = image_pred_class[conf_sort_index] 

            idx = image_pred_class.size(0)    

            #Number of detected bounding boxes for class cls 

             

            for i in range(idx): 

                #Get the IOUs of all boxes that come after the one we are loo  

                # king at in the loop 

                try: 



 

 

                    ious = bbox_iou(image_pred_class[i].unsqueeze(0), 

image_pred_class[i+1:]) 

                    # compute IOUs between box[i] and all the rest boxes 

                except ValueError: 

                    break 

             

                except IndexError: 

                    break 

             

                #Zero out all the detections that have IoU > treshhold 

                iou_mask = (ious < nms_conf).float().unsqueeze(1) 

                image_pred_class[i+1:] *= iou_mask        

             

                #Remove the bounding boxes whose IOU with box[i]  

                #is greater than nms_conf 

                non_zero_ind = torch.nonzero(image_pred_class[:,4]).squeeze() 

                image_pred_class = image_pred_class[non_zero_ind].view(-1,7) 

                 

            batch_ind = image_pred_class.new(image_pred_class.size(0), 

1).fill_(ind)       

             

            seq = (batch_ind, image_pred_class)   

            # attach the batch index to the bounding boxes for class cls 

             

            if first: 

                output = torch.cat(seq,1) 

                first = False 

            else: 

                out = torch.cat(seq,1) 

                output = torch.cat((output,out)) 

            # output shape [M4, 8], M4 is the number of valid bounding boxes  

            # up to current batch, image, class cls 

             

        # output shape [M5, 8], M5 is the number of valid BBs up to  

        # current image 

     

    try: 

        return output 

    except: 

        return 0 

    # the returned output [D,8], includes D bounding boxes for the batch 

    # each box:  

    # (image_index, x1,y1,x2,y2,sigmoid(to), class probability, class index) 

  

10.5.4 Put all together 

Finally, we apply the model Yolonet with pre-trained weights and non-max suppression for an 

object detection task. The final detected bounding boxes are plotted on the testing image. 

Since the pre-trained model was trained on COCO dataset, a list of class names in the dataset is 

created, and saved as one line per name in a text file, named coco.names. We define a function, 

load_classes (), to read the names from the file, and return a list of classes. With this list, we can 

display the name of detected object in the image. 

def load_classes(namesfile): 



 

 

    fp = open(namesfile, "r") 

    names = fp.read().split("\n")[:-1] 

    return names 

We use CV2 to load the images. Since CV2 loads an image as a numpy array [H,W,Channel], with 

BGR as the order of the color channels, and PyTorch neural network input format is [Batch, 

Channel, inp_dim, inp_dim], with the channel order of RGB, we need to write a function 

read_image to transform the numpy array into PyTorch input format. First, read_image() scales 

the original image ሺ𝐻 × 𝑊ሻ to fit the frame ሺ𝑖𝑛𝑝_𝑑𝑖𝑚 × 𝑖𝑛𝑝_𝑑𝑖𝑚ሻ as large as possible while 

keeping the aspect ratio unchanged, and pads the left out areas with the color (128,128,128), 

illustrated in Fig.10.20. Then read_image() convert the data format to [Batch, Channel, inp_dim, 

inp_dim]. The scale factor is also returned to be used for drawing the detected bounding boxes on 

the original image. 

 

Fig.10.20 Scale the image to fit the input size 𝑖𝑛𝑝_𝑑𝑖𝑚 × 𝑖𝑛𝑝_𝑑𝑖𝑚 

 

 

def read_image(img_cv2, inp_dim): 

    """ 

    converts and scale the image read by cv2 to  

    a tensor [batch,channel,inp_dim,inp_dim] for yolonet 

     

    inputs:  

        -- img_cv2: shape is [h,w,channel]: the orignal image from 

cv2.imread 

        -- inp_dim: integer, input size to yolo nueral network, e.g. 

416 

    Returns   

        -- img_net: tensor shape is [batch, channel, height, width] 

        -- scale_factor 

    """ 

    #img, scale_factor = (scale_image(img, (inp_dim, inp_dim))) 

     

    img_cv2_h, img_cv2_w = img_cv2.shape[0], img_cv2.shape[1] 

    w = inp_dim 

    h = inp_dim 

    scale_factor = min(w/img_cv2_w, h/img_cv2_h) 

    new_w = int(img_cv2_w * scale_factor) 

    new_h = int(img_cv2_h * scale_factor) 

    resized_image = cv2.resize(img_cv2, (new_w,new_h), interpolation = 

cv2.INTER_CUBIC) 

    # cv2.resize(img, (width, height), interpolation =...) 

     

    canvas = np.full((inp_dim, inp_dim, 3), 128) 



 

 

 

     

    canvas[0:new_h, 0:new_w, :] = resized_image   

    # align the resized image to the top-left of canvas 

     

    img_net = canvas[:,:,::-1].transpose((2,0,1)).copy()    

    # canvas[:,:,::-1] reverse the number in color dimension BGR--> RGB 

    # In CV2,channel order is [blue, green, red],  

    # but in PyTorch [red, green, blue] 

    # transpose((2,0,1)): convert [H,W,C] to [C,H,W] for PyTorch 

     

    img_net = torch.from_numpy(img_net).float().div(255.0).unsqueeze(0)    

    # add batch dimension  

    # img_net: [1, channel, height, width] 

    return img_net, scale_factor 

 

  

 

By putting all together, the following codes perform the object detection on the benchmark image 

“dog-cycle-car.png”. If non-max-suppression is not applied (i.e., nms_thresh=1.0), there are 

multiple bounding boxes for one object, as shown in Fig.10.21(a). After non-max-suppression (e.g., 

nms_thresh=0.4) is applied, each detected object is frame by one bounding box, as shown in 

Fig.10.21(b).   

 
import os 

 

if not os.path.exists("./results"): 

    os.makedirs("./results") 

 

inp_dim = 416 

batch_size = 1 

confidence = 0.5 # threshold for confidence score, default 0.5 

nms_thresh = 0.4 # threshold for nms iou, default 0.4 

num_classes = 80 

classes = load_classes("data/coco.names") 

 

model = Yolonet("cfg/yolov3.cfg") 

model.load_weights("yolov3.weights") 

model.eval() 

 

img = cv2.imread("dog-cycle-car.png") 

inp, scale_factor = read_image(img, inp_dim) 

pred = model(inp) 

prediction = non_max_suppression(pred, confidence, num_classes, 

nms_conf = nms_thresh) 

 

prediction[:,1:5] /= scale_factor 

 

for i in range(prediction.shape[0]): 

    x = prediction[i] 

 

    c1 = (x[1:3].int()).tolist()  

    c2 = (x[3:5].int()).tolist()  

    #img = results[int(x[0])] 

    cls = int(x[-1]) 

    color = (5*cls,10*cls,100*cls) 



 

 

    label = "{0}".format(classes[cls]) 

    cv2.rectangle(img, c1, c2,color, 2) 

    t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] 

    c2 = c1[0] + t_size[0] + 50, c1[1] + t_size[1] + 4 

    cv2.rectangle(img, c1, c2,color, -1) 

    prob="(%.2f)" % round(float(x[5]*x[6]), 2) 

    cv2.putText(img, label+str(prob), (c1[0], c1[1] + t_size[1] + 4), 

cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1); 

    

cv2.imwrite("./results/dog1.png", img) 

 
print(prediction.shape) 

 
tensor([[0.0000,146.6964, 91.9886,439.0550,334.3987,0.9917,0.9982,1.0000], 

        [0.0000,374.5365, 65.5042,535.1949,132.5022,0.9943,0.8332,7.0000], 

        [0.0000,102.2761,164.2881,248.8867,419.3336,1.0000,0.9996,16.0000]]) 

 

 

    

(a) without nms (i.e., nms_thresh=1)                 (b) with nms (nms_thresh=0.4) 

Fig.10.21 YOLO v3 results on an image. 

 

10.6 A Metric for Object Detection: mAP 

Mean average precision (mAP) is a popular metric to measure the performance of an object 

detection model.  

10.6.1 Precision and recall in object detection  

The definition of mAP is built upon the concepts of precision and recall. The metrics, precision 

and recall, are typically used to measure the performance of a classification model. Precision is 

defined as the ratio between the predicted true positives and the total predicted positives, and thus 

it indicates the purity of predicted positives. On the other hand, recall is defined as the ratio between 

the predicted true positives and the total true positives, and thus it tells us what percentage of 

positive examples are correctly classified as positive.   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                ሺ10.17ሻ                                                                 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                      ሺ10.18ሻ                                                                      



 

 

Since the objective of object detection is not only to correctly classify the object (or objects) in the 

image but to also find where in the image it is located, we need to consider both the class and 

location of the objects in formulating precision and recall.   

The computation of the overall mAP is based on a test dataset and the predictions of the model on 

the dataset. The test dataset consists of multiple images along with the ground truth bounding boxes. 

The predictions of the model on each image are the predicted bounding boxes, each of which 

includes the box location, confidence score and object class.  

In object detection, precision and recall are calculated class-wisely. Let us consider one class in an 

image. A predicted box is counted as a true positive only if it meets the following two requirements: 

1) there exists a ground truth box, whose IOU with the predicted box is greater than a predefined 

IOU threshold; and 2) no other predicted box has a larger IOU with this ground truth box than this 

predicted box. Requirement 1 guarantees the location of predicted box is close enough to the ground 

truth box while requirement 2 makes sure that each object can be predicted by no more than one 

box. If a predicted box is not a true positive, then it is a false positive. The total number of false 

negatives (FN) is the difference between the total number of ground truth boxes and the total 

number of true positives (TP). 

As an example, Fig.10.22 illustrates the predicted bounding boxes (dashed line) versus ground truth 

boxes (solid line) in an image for a particular class, given a confidence threshold. In the image there 

are 6 objects (GT1, GT2, …, GT6) to be detected, but the model delivers all predicted boxes (B1, 

B2, …, B8) whose confidence scores exceeds the confidence threshold (e.g., 0.3). With an IOU 

threshold 0.5 (a default value), four predicted boxes B1, B4, B5 and B7 are considered as true 

positive. The rest of the predicted boxes (B2, B3, B6, B8) are considered as false positive. Note 

that B6 is considered as a false positive because the GT4 has been matched by a better predicted 

box B5. In this image, we have TP=4, FP=4, and FN=2 (two objects GT2 and GT6 are not correctly 

detected), and thus the precision and recall are equal to 4/8 and 4/6.  

 

Fig.10.22 Examples of predicted boxes versus ground truth boxes in an image 

10.6.2 Calculate mean average precision  

If we change the confidence threshold, the number of predicted boxes is expected to change in 

general, and thus the precision and the recall will change accordingly. A metric, called average 

precision (AP) for a given class, is defined as the average of its precisions over recalls. To calculate 



 

 

AP, we plot the curve of precision versus recall by changing the confidence threshold, and compute 

the area under the curve (AUC) as AP.  

We use an example illustrated in Fig.10.23 to demonstrate the steps for calculating the AP for a 

given class. Suppose the test dataset is composed of two images (more images in real situations) 

and there are 12 ground truth boxes (solid boxes) and 13 predicted bounding boxes (dashed boxes, 

labeled as A, B, …) for a given class. Each predicted bounding box is attached by a confidence 

score. 

 

Fig.10.23 ground truth and predictions for a 2-image dataset 

A) Plot the precision-recall curve. 

To plot the precision-recall curve, we rank all predicted boxes by the confidence score, as shown 

in Table 10.4. At a particular index, precision is the proportion of all predicted boxes up to the 

index which are true positive, while recall is the proportion of all ground truth boxes which have 

been correctly detected up to the index. To calculate precision and recall, we label each box as 

either TP (true positive) or FP (false positive) by two separate columns and compute the 

accumulated TP and FP for each index. At each index, the precision is equal to the accumulated TP 

divided by the index. The recall is equal to the accumulated TP divided by the total number of 

ground truth boxes (e.g., 12 in this case). The curve of precision-recall is plotted in Fig.10.24. 

Table 10.4 Calculate precision and recall 

 



 

 

 

Fig.10.24 Precision-recall curve 

 

B) Interpolate the precision-recall curve. 

To simplify the computation of the area under the precision-recall curve, we approximate the curve 

by the maximum interpolation, 

𝑃𝑖𝑛𝑡𝑒𝑟𝑝ሺ𝑟ሻ = 𝑚𝑎𝑥
𝑟
~

:𝑟
~

≥𝑟
𝑃(𝑟

~
)                                                       (10.19) 

where 𝑃(𝑟
~

) is the precision measured at recall 𝑟
~

. The interpolated precision at recall r takes the 

maximum precision measured for which the recall 𝑟
~

 is greater than r. In other words, we start from 

the last precision value (at the highest recall) and keep moving toward lower recall, as soon as a 

higher precision value is found update the precision value with the higher precision. The 

corresponding interpolated precision in the example is plotted as the dotted line in Fig.10.24. 

 

C) Calculate the average precision. 

With the interpolated precision-recall curve, we can calculate the AP by summing up the areas of 

rectangles under the curve. In Fig.10.24, the AP is calculated as 

𝐴𝑃 = 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 + 𝐴5 = 1 × 0.25 + ሺ0.417 − 0.25ሻ × 0.833 + ሺ0.5 − 0.417ሻ ×
0.75 + ሺ0.583 − 0.5ሻ × 0.7 + ሺ0.667 − 0.583ሻ × 0.615=0.561 

An alternative way to calculate the AP is to average the sample points of the interpolated precision 

at 11 recall points: 0, 0.1, 0.2, 0.3, …, 1.0, 

𝐴𝑃 =
1

11
∑ 𝑃𝑖𝑛𝑡𝑒𝑟𝑝ሺ𝑟ሻ𝑟∈ሼ0,0.1,…0.9,1.0ሽ                                              (10.20) 

For the interpolated precision in Fig.10.24, the 11-point AP is calculated as 

𝐴𝑃 =
1

11
ሺ1 + 1 + 1 + 0.833 + 0.833 + 0.75 + 0.75ሻ = 0.5605 

In fact, the 11-point average method was introduced in the 2007 PASCAL VOC challenge, and is 

widely adopted to calculate the AP. 



 

 

D) Calculate mAP. 

The mean average precision (mAP) is defined as the average of APs of all classes,  

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑘

𝑁
𝑘=1                                                                    (10.21) 

where N is the number of classes,  𝐴𝑃𝑘 is the average precision of class k. Note that the value of 

mAP depends on the IOU threshold that was used to determine whether a prediction is true positive 

or false positive. A major metric for PASCAL VOC challenge is the mAP at the IOU threshold 0.5, 

denoted as 𝑚𝐴𝑃@𝐼𝑂𝑈=0.5. 

Since averaging over IoUs rewards models with better localization, the primary metric for COCO 

challenge is extended to multiple IOU thresholds, and defined as the average mAP across all 10 

IoU thresholds 0.50: 0.05: 0.95 (starting with 0.50, ending at 0.95 with step size 0.05), 

𝑚𝐴𝑃@𝐼𝑂𝑈=ሾ0.5:0.05:0.95ሿ =
1

10
∑ 𝑚𝐴𝑃@𝐼𝑂𝑈=0.5+0.05×𝑖9

𝑖=0                                    (10.22) 

As an example, YOLO v3 achieves the following performance on COCO dataset:    

𝑚𝐴𝑃@𝐼𝑂𝑈=ሾ0.5:0.05:0.95ሿ = 0.33, 𝑚𝐴𝑃@𝐼𝑂𝑈=0.5 = 0.579, 𝑚𝐴𝑃@𝐼𝑂𝑈=0.75 = 0.344. 

 

 

 

 

 

Summary 

This chapter describes a popular object detection algorithm – YOLO v1 and its two subsequent 

versions (v2 and v3). Their architectures have been presented in an evolved order so that we can 

understand how the performance has been improved through different versions. The key idea of 

YOLO algorithm is to apply a deep ConvNet (e.g. Darknet) as the backbone network to extract the 

image feature at a certain grid resolution, and then use a few Conv layers to predict the bounding 

box and class.  

It is essential to understand the loss function of YOLO for training. The total loss consists of three 

types of losses: confidence loss, box location loss, and probability loss. However, a negative ground 

truth sample (no object for an anchor box in a grid cell) only results in confidence loss while the 

prediction for a positive sample generates all three types of losses. The exact definition and 

implementation of the loss function is very empirical. In general, the box location loss is usually 

defined as the mean squared error (MSE), and the probability-related loss is defined as entropy 

loss.  

The implementation of YOLO v3 is detailed in Section 10.5. The exploration of the implementation 

provides a deep understanding of all concepts presented in the preceding sections. In the end, the 

metric mAP is presented. 

Files: C\Users\weido\ch10_object\yolov3_weidong.ipynb 

 



 

 

 

Further Reading 

Original papers for Yolo v1 – v3 

The authors highly recommend the original papers that provide the origin of YOLO in 

comprehensive perspectives: motivations, architectures, training tricks, and performance. These 

papers include YOLO (v1) (Redmon, J., et al., 2015), YOLO9000 (v2) (Redmon, J., et al., 2016), 

YOLO(v3) (Redmon, J., et al., 2018). The author’s website (Redmon, J. website) and GitHub 

(Redmon, J., GitHub) include rich resources related to his original work, such as papers, source 

codes, and pre-trained models. 

Hands-on Implementations 

The blog posts (Kathuria, A. 2017a) and the GitHub (Kathuria, A. 2017b) present the detailed 

implementation of YOLO v3 using pre-trained model. The website (Geeksforgeeks website) 

provides an implementation of YOLO v3 from scratch by PyTorch, including loss function and 

training. 

Advance Yolo versions 

To explore advanced YOLO architectures up to YOLO v8, one can read a review paper (Terven, 

J., R., et al., 2023) and then narrow down to the original paper of a particular YOLO architecture. 

The advanced YOLO versions include Yolov4 (Bochkovskiy, A. 2020), Yolov5 (Jocher, G. 2020), 

YoloR (Wang, C.-Y. 2021), YoloX (Ge, Z. 2021), Yolov6 (Li, C. 2022), Yolov7 (Wang, C.-Y. 2022), 

Yolov8 (Jocher, G. 2023). AlexeyAB repository (Bochkovskiy, A., GitHub) provides yolov4 source 

code. 
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Exercises 

10.1 Download and explore the datasets Pascal VOC 2012 and COCO 2017. Write a report about 

these two datasets. 

10.2 Estimate the number of learnable parameters for models yolo v1, v2, and v3. Using the 

Python program in Section 10.5, verify your estimate of model yolo v3. 

10.3 Suppose an image includes two relevant objects: person and dog, with a ground truth label 

file as [class x y w h] 

0 0.3 0.6 0.4 0.8 

16 0.5 0.6 0.5 0.3 

1) Manually draw the ground truth boxes in a square that represents the image. 

2)  To compute the loss function, we need to generate a tuple targets = (targets[0], targets[1], 

targets[3]), where targets[0], targets[1], targets[2] are three tensors for grid scale 13, 26, 52, 

respectively. Each tensor targets[i] has a shape of ([3, s, s, 6]), as shown in Fig.10.15 for scale 

s=13. Calculate the value of the targets for this image, i.e., targets[i][anchor_idx, m, n,:], 

where i=0,1,2, is the grid scale index for scale 13, 26, 52, respectively, 

anchor_idx =0,1,2 is the anchor box index at grid scale i, 

(m,n) is the grid cell index. 

Anchor box assignment 

 

Grid scale index 

Anchor index 

0 1 2 

0 (for 13x13) 
(0.28, 0.22) (0.38, 0.48) (0.9, 0.78) 

1 (for 26x26) 
(0.07, 0.15) (0.15, 0.11) (0.14, 0.29) 

2 (for 52x52) 
(0.02, 0.03) (0.04, 0.07) (0.08, 0.06) 
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10.4 Given two images: 000001.jpg and 000017.jpg, and their label files 000001.txt and 

000017.txt. (available at the book website, originally downloaded from 

https://www.kaggle.com/datasets/aladdinpersson/pascal-voc-dataset-used-in-yolov3-

video/?select=PASCAL_VOC). 

000001.txt: 

16 0.34135977337110485 0.609 0.4164305949008499 0.262 

0 0.5070821529745043 0.508 0.9745042492917847 0.972 

 

000017.txt: 

0 0.48125 0.3557692307692308 0.19583333333333333 0.3763736263736264 

17 0.5114583333333333 0.565934065934066 0.6520833333333333 0.7087912087912088 

 

1) Run the program provided in Section 10.5, and detect the objects in two images. 

2) Add Python code to compute the loss of YOLO v3 model on the two images for a) 

random weight model and b) pre-trained model. The pre-trained model should have a 

much smaller loss than the random weight model. (hint: the loss is defined in Section 

10.4.2. Since you may need to scale the image to fit the model input size, you need to 

scale the ground truth boxes as well. For Python implementation, please refer to 

Geeksforgeeks website, https://www.geeksforgeeks.org/yolov3-from-scratch-using-

pytorch/). 

10.5 Suppose the ground truth bounding boxes for a batch are given as a tensor gtbox with a shape 

of ([N,6]), where N is the total number of ground truth boxes for the batch, and the format of each 

ground truth box gtbox[i,:] is  

 

The predicted bounding boxes are stored in a tensor pbox with a shape of ([M,7]), where M is the 

total number of predicted boxes for the batch, and the format of each predicted box pbox[j,:] is 

 

Write a Python program to compute the mAP for a particular IOU threshold. 

10.6 project 1. Train yolo v3 on Pascal VOC dataset from scratch. 

10.7 project 2. Train yolo v3 on a custom dataset. 
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