1. Huber, T., Mayes, N., Opoku, J. Ye, D. (2024) Ramanujan Type Congruences for Quotients of Klein Forms, Journal of Number Theory / Elsevier.
2. Huber, T., McLaughlin, J., Ye, D. (2023). Lacunary eta quotients with identically vanishing coefficients, International Journal of Number Theory / World Scientific.
3. Huber, T., McLaughlin, J., Ye, D. (2023). On the vanishing of the coefficients of CM eta quotients, Proceedings of the Edinburgh Mathematical Society / Cambridge University Press.
4. Huber, T., McLaughlin, J., Ye, D. (2023). Generalizations of some q-product identities of Ramanujan, American Mathematical Society, Contemporary Mathematics Proceedings on hypergeometric functions, q-series and generalizations.
5. Villalobos, C., Huber, T., Ponce, J., Sifuentes, J. (2023). Leveling the Educational Field / Nivelando el Campo Educativo. Mathematical Association of America Notes Volume on Diverse Equitable and Inclusive (DEI) Issues in Calculus Programs.
6. Huber, T., McLaughlin, J., Ye, D. (2022). Ramanujan-Sato Series for 1/Pi, Acta Arithmetica / Polish Academy of Sciences.
7. Huber, T. J., McLaughlin, J., Ye, D. (2022). Lacunary eta quotients with identically vanishing coefficients. International Journal of Number Theory / World Scientific.
8. Huber, T., Sifuentes, J., Wilson, (2021). A. Roadmap to glory: Scaffolding Real Analysis for Deeper Learning. International Journal of Mathematical Education in Science and Technology.
9. Vatcheva, K., Sifuentes, J., Oraby, T., Campo Maldonado, J., Huber, T., Villalobos, C. (2021). Social distancing and testing as optimal strategies against the spread of COVID-19 in the Rio Grande Valley of Texas. Infectious Disease Modelling Volume 6, 2021, Pages 729-742, 6, 729-742. https://doi.org/10.1016/j.idm.2021.04.004
10. Huber, T., Huerta, M., Mayes, N. (2021). Arithmetic Properties of Septic Partition Functions. International Journal of Number Theory / World Scientific.
11. Huber, T., Ye, D. (2020). Ramanujan type congruences for quotients of level 7 Klein forms. Journal of Number Theory / Elsevier.
12. Villalobos, C., Kim, H., Huber, T., Knobel, R., Setayesh, S., Sasidharan, L., Galstyan, A., Balogh, A. (2020). Coordinating STEM Core Courses for Student Success. Problems, Resources, and Issues in Mathematics Undergraduate Studies. https://doi.org/10.1080/10511970.2020.1793855
13. Huber, T., Schultz, D., Yee, D. (2019). Level 17 Ramanujan-Sato Series. The Ramanujan Journal / Springer.
14. Huber, T., Schultz, D., Ye, D. (2018). Series for 1/Pi of Level 20. Journal of Number Theory / Elsevier, 188, 121-136. https://www.sciencedirect.com/science/article/pii/S0022314X18300167?via%3Dihub#! DOI: 10.1016/j.jnt.2017.12.010
15. Huber, T., Levine, M. (2017). Weierstrass interpolation of Hecke Eisenstein series. The Mathematics Student / Indian Mathematical Society, 86(1-2).
16. Huber, T., Schultz, D. (2016). Generalized Reciprocal Identities. Proceedings of the American Mathematical Society.
17. Huber, T., Lara, D. (2015). Differential equations for Septic theta functions. Ramanujan Journal, Springer, 38(1), 15.
18. Huber, T., Alaniz, A. (2014). On cubic multisections of Eisenstein series. Ramanujan Journal, Springer, 35(3), 13.
19. Huber, T. (2014). A theory of theta functions to the quintic base. Journal of Number Theory / Elsevier.
20. Huber, T., Charles, R., Mendoza, A. (2013). Symmetric Parameterizations for quintic Eisenstein series. Journal of Number Theory / Elsevier, 133(1), 195-214.
21. Huber, T. (2012). On quintic Eisenstein series and points of order five of the Weierstrass elliptic functions. The Ramanujan Journal / Springer, 28(2), 273-308.
22. Huber, T. (2011). Differential equations for cubic theta functions. International Journal of Number Theory, 7(6), 1-12.
23. Huber, T. (2010). Combinatorics of Generalized q-Euler Numbers. Journal of Combinatorial Theory, 117(4), 361-388.
24. Huber, T. (2010). Zeros of generalized Rogers–Ramanujan series: Asymptotic and combinatorial properties. Journal of Approximation Theory, 162(5), 910-930.
25. Huber, T. (2009). Basic representations for Eisenstein series from their differential equations. Journal of Mathematical Analysis and Applications, 350(1), 135-146.
26. Huber, T., Berndt, B. C. (2008). A fragment on Euler’s constant in Ramanujan’s lost notebook. South East Asian J. Math. and Math. Sci., 6(2), 17-22.
27. Huber, T. (2008). Hadamard products for generalized Rogers-Ramanujan series. Journal of Approximation Theory, 151(2), 126-154.
28. Huber, T., Hill, J., Berndt, B. C. (2007). Solving Ramanujan's differential relations for Eisenstein series via a first order Riccati equation. Acta Arithmetica, 128(3), 281-294.