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Unsupervised Learning

Training data: T = {(xi1, xi2, . . . , xip) : i = 1,2, . . . ,n}

Exploratory data analysis: No output and no model function f .

Goal of Unsup.L.: To describe the relationship between the
xi1, xi2, . . . , xip of training data {(xi1, xi2, . . . , xip) : i = 1,2, . . . ,n}

Testing: To describe the relationship between the xj1, xj2, . . . , xjp
of testing data {(xj1, xj2, . . . , xjp) : j = 1,2, . . . ,m} of a known
relationship.

Ultimate Goal (Generalization): To describe a new
x∗ = (x∗1, x∗2, . . . , x∗p) based on the learned relationships.
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Unsupervised Learning

▶ Cluster Analysis

▶ Hierarchical Clustering

▶ Principal Component Analysis (PCA)



Cluster Analysis



Cluster Analysis
▶ Goal: To partition the data space into a pre-determined

number of K clusters C = {C1, . . . ,CK}

▶ The idea is that some data points are clustered with each
others more than other points.

▶ Those points can be described to be cluttered around a
cluster centroid ck for k = 1,2, . . . ,K . They could be
ck = µk the mean in the K-means OR ck = Xi(k) one of the
data points in the K-medoid.

Q How to measure the closeness to the centroid?
A using the sum of squares of errors

SSE(C) =
K∑

k=1

∑
Xi∈Ck

||Xi − µk ||2︸ ︷︷ ︸
dissimilarity function

to be minimized.
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Cluster Analysis

▶ Other distance functions or (dis)similarity functions are
also available to be used in the error function.
▶ Euclidean distance:

d2(x , y) = ||x − y ||2

▶ Manhattan distance:

d1(x , y) = ||x − y ||1

▶ Correlation (Pearson or Spearman)-based distance:

dcorr (x , y) = 1 − Corr(x , y)

If x and y are standardized then it is called Eisen-cosine
correlation distance.

They are almost the same if the data is standardized which
is advised to do at the beginning of the analyses.
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Cluster Analysis

▶ Jensen-Shannon divergence:

dJS(x , y) =
1
2
(dKL(x , y) + dKL(y , x))

where

dKL(x , y) =
n∑

i=1

xi log(
xi

yi
)

is the Kullback-Leibler divergence (relative entropy) that
measures the lost information when we use x to represent
y .



Brute-Force (exhaustive)
Algorithm



Cluster Analysis
Brute-Force (exhaustive) Algorithm

▶ Generate all of the (∼ K n/K !) possible partitions C.

▶ For each possible partition, calculate {µk , k = 1,2, . . . ,K}

▶ Calculate SSE(C), for all C’s

▶ The optimal cluster C∗ = argminCSSE(C)
What do you think?
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Cluster Analysis
K-means Clustering Algorithm

It is a recursive greedy algorithm to minimize SSE .

Initialize Start with a randomly generated centroids
{µk , k = 1,2, . . . ,K}

Iterative ▶ Assign Xi to cluster Ck∗ for which

k∗ = argmin1≤k≤K ||Xi − µk ||2

▶ After assigning all of the X ′
i s, update the centroids

{µk , k = 1,2, ,K} (averages)
▶ continue the iterations till maxk ||µnew

k − µold
k || < TOL

Repeat the whole algorithm several times for randomly generated
initial centroids (Monte Carlo alg.) and find the smallest

SSE(C) =
K∑

k=1

∑
Xi∈Ck

||Xi−µk ||2 =
K∑

k=1

n∑
i=1

I(Xi ∈ Ck )||Xi−µk ||2
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Cluster Analysis
Example: See code cluster.R

kmeans(dataframe, centers, iter.max = 10, nstart = 1, algorithm
= c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
trace=FALSE)



Kernel K-means
Clustering Algorithm



Cluster Analysis
Kernels K-means Clustering Algorithm

Using kernels like K (x , y) = h(x)T h(y) so that

SSE(C) =
K∑

k=1

∑
Xi∈Ck

||h(Xi)− µh
k ||2

where
µh

k =
1

|Ck |
∑

Xj∈Ck

h(Xj)



Cluster Analysis
Kernels K-means Clustering Algorithm

and so

h(Xi)− µh
k = h(Xi)−

1
|Ck |

∑
Xj∈Ck

h(Xj)

=
1

|Ck |
∑

Xj∈Ck

(h(Xi)− h(Xj))

and

||h(Xi)− µh
k ||2 = (h(Xi)− µh

k )
T (h(Xi)− µh

k )

=
1

|Ck |2
∑

Xj∈Ck

∑
Xℓ∈Ck

(h(Xi)− h(Xj))
T (h(Xi)− h(Xℓ))

=
1

|Ck |2
∑

Xj∈Ck

∑
Xℓ∈Ck

(K (Xi ,Xi)− 2K (Xi ,Xj) + K (Xj ,Xℓ))



Cluster Analysis
K-means and Kernel K-means Clustering Algorithm

DIY in R
1. Carry out K-means Cluster analysis using kmeans on the

gene data. Use different maximum number of iterations
iter.max and different number of initial points nstart.

2. Carry out kernel K-means Cluster analysis using kkmeans
in the library kernlab on the gene data.

Please study the different methods in the ISL book.
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Hierarchical Clustering

▶ At the top, there is one cluster that contains all of the data
points which sequentially divides up till it ends with n
clusters that contain one observation at the bottom.

▶ Two approaches: divisive (top-bottom) and agglomerative
(bottom-up)

▶ Results are represented Using a dendrogram



Hierarchical Clustering
Agglomerative (bottom-up)

Example
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Hierarchical Clustering
Agglomerative (bottom-up)

▶ Initially start with n clusters with one of the observations in
each one of them.

▶ At each step, merge the closest two clusters to reduce the
number of clusters by one.

▶ Closeness is measured using a dissimilarity function.



Hierarchical Clustering
Divisive (top-bottom)

▶ Initially start with 1 cluster with the n observations in it.

▶ At each step, divide the farthest two clusters to increase
the number of clusters by one.

▶ Distances are measured using a dissimilarity function.



Hierarchical Clustering
Agglomerative (bottom-up)

Example



Hierarchical Clustering
Agglomerative (bottom-up)

Example



Hierarchical Clustering
Agglomerative (bottom-up)

Example



Hierarchical Clustering
Agglomerative (bottom-up)

Example



Hierarchical Clustering
Types of dissimilarities (linkage) between clusters

▶ Single linkage:

dsingle(C1,C2) = min
i∈C1,j∈C2

d(xi , xj)

But, resulting clusters could be highly spread out points
(non-compact).

▶ Complete linkage:

dcomplete(C1,C2) = max
i∈C1,j∈C2

d(xi , xj)

But, resulting clusters could be compact but not enough far
apart.

▶ Average linkage:

dsingle(C1,C2) =
1

|C1| |C2|
∑

i∈C1,j∈C2

d(xi , xj)

It strikes a balance between both.
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Principal Component
Analysis



Principal Component Analysis

▶ Goal: To find the best q linear approximations to a set of
data xi ∈ Rp for i = 1,2, . . . ,N, where q ≤ p.

▶ Assume that xi is centered; that is, x̄i = 0. (Actually, it must
be standardized.)

▶ The presentation of

xi = f (λ) = µ+ Vqλ

where Vq is a p × q orthogonal matrix (V T
q Vq = Iq), λ is

q × 1 parameter vector, and µ is p × 1 parameter vector,
could be found by minimizing the recostruction error

min
µ,{λi},V

N∑
i=1

||xi − µ− Vqλi ||2



Principal Component Analysis

▶ Assuming Vq is given, then µ̂ = x̄ = 0 and
λ̂i = V T

q (xi − x̄) = V T
q xi , and the the problem becomes

▶

min
Vq

N∑
i=1

||xi − Hqxi ||2

where Hq = VqV T
q is a projection matrix.

▶ where the rank-q reconstruction Hqxi is the orthogonal
projection of xi ∈ Rp into the space spanned by the
columns of Vq



Principal Component Analysis

▶ Consider the N × p data matrix X

▶ Using SVD of X = UN×p Dp V T
p×p with diagonal matrix Dp

with elements (singular values)
d1 ≥ d2 ≥ d3 ≥ · · · ≥ dp ≥ 0, and

▶ UT U = Ip where column uj is called left singular vector

▶ V T V = Ip where column vj is called right singular
(loadings) vector

▶ Vq is the first q columns of V

▶ principal components of X are the columns of UD



Principal Component Analysis

▶ The N optimal λ̂i = V T
q xi are the rows of UD which are the

first q principal components.

▶ Xv1 has the highest variance among all linear
combinations of the features and Xv2 has the highest
variance among all linear combinations Xv of the features
such that v is orthogonal to v1.

▶ Elements of Xvj are called the scores of the j th principal
component.
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Principal Component Analysis
Example: Arrest Data

N = 50 states with p = 4 features: Assault, Murder, and Rape
as well as UrbanPop. First standardize them.
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Principal Component Analysis
Example: Handwriting digits

The pictures digitized into 16x16 gray scale images and images
of 658 handwritten 3’s are the xi ’s in R256. SVD is calculated for
the 658x256 matrix X .
Twelve of the 256 possible principal components account for
63%
Fifty of the 256 possible principal components account for 90%
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Principal Component Analysis
Example: Handwriting digits

The first component v1 is due to the horizontal movement. It
accounts for the lengthening of the lower tail of the 3,

The second component v2 is due to the vertical movement. It
accounts for the thickness of the 3



Principal Component Analysis
Example: Handwriting digits



Principal Component Analysis
Example: Procrustes Transformations and Shape Averaging

The S letter in a signature Suresh

Please read the example in ESL.
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End of Set 9


