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Unsupervised Learning

Training data: 7 = {(Xi1, Xi2,..., Xp) : i =1,2,...,n}
Exploratory data analysis: No output and no model function f.

Goal of Unsup.L.: To describe the relationship between the
Xi1, Xj2, - . ., Xjp Of training data {(xi1, Xj2, ..., Xp) : 1 =1,2,...,n}

Testing: To describe the relationship between the X;1, Xjo, . . ., Xjp
of testing data {(xj1, Xj2,...,Xp) : j=1,2,...,m} of a known
relationship.

Ultimate Goal (Generalization): To describe a new
X« = (X1, Xi2, - - -, Xip) based on the learned relationships.



Unsupervised Learning

» Cluster Analysis
» Hierarchical Clustering

» Principal Component Analysis (PCA)
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Goal: To partition the data space into a pre-determined
number of K clusters C = {C;, ..., Ck}

The idea is that some data points are clustered with each
others more than other points.

Those points can be described to be cluttered around a
cluster centroid ¢, for k = 1,2,..., K. They could be

Ck = pk the mean in the K-means OR ¢ = X)) one of the
data points in the K-medoid.

How to measure the closeness to the centroid?
using the sum of squares of errors

=

SSEC)=3" 3" X — ulP

k=1 X;eCx dissimilarity function

to be minimized.
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Cluster Analysis

» Other distance functions or (dis)similarity functions are
also available to be used in the error function.

» Euclidean distance:
(X, y) =[x = yll2
» Manhattan distance:
di(x, y) = lIx = yllx
» Correlation (Pearson or Spearman)-based distance:
doorr(X,y) =1 = Corr(x,y)

If x and y are standardized then it is called Eisen-cosine
correlation distance.
They are almost the same if the data is standardized which
is advised to do at the beginning of the analyses.



Cluster Analysis

» Jensen-Shannon divergence:

ass(x,y) = %(dKL(XaY) + dki(y, X))

where

dkL(x,y) = Z Xi Iog

is the Kullback-Leibler divergence (relative entropy) that
measures the lost information when we use x to represent
y.
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Cluster Analysis

Brute-Force (exhaustive) Algorithm

» Generate all of the (~ K"/K!) possible partitions C.
» For each possible partition, calculate {ux, k =1,2,..., K}
» Calculate SSE(C), for all C’s

» The optimal cluster C* = argminc SSE(C)
What do you think?
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K-means Clustering Algorithm
It is a recursive greedy algorithm to minimize SSE.

Initialize Start with a randomly generated centroids
{pk, k=1,2,...,K}

Iterative  » Assign X; to cluster Cx- for which
k* = argminy <k<i||X; — k|

> After assigning all of the X/s, update the centroids
{ue, k =1,2,, K} (averages)
> continue the iterations till max||ufe" — u29|| < TOL

Repeat the whole algorithm several times for randomly generated
initial centroids (Monte Carlo alg.) and find the smallest

K K n
SSE(C) = > IIXi—mklP=>_> (X € COlIXi—puxl P

k=1 X;eCx k=1 i=1
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Simulation Example: See code cluster.R
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Simulation Example: See code cluster.R
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Cluster Analysis

Simulation Example: See code cluster.R
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Simulation Example: See code cluster.R
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Simulation Example: See code cluster.R
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Cluster Analysis

Example: See code cluster.R
kmeans(dataframe, centers, iter.max = 10, nstart = 1, algorithm
= c¢("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
trace=FALSE)
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Kernel K-means
Clustering Algorithm



Cluster Analysis

Kernels K-means Clustering Algorithm

Using kernels like K(x, y) = h(x)Th(y) so that

K
SSE(C) =) Z [1A(X;) — kilI?
k=1 X,eC

where



Cluster Analysis
Kernels K-means Clustering Algorithm
and so

and

1A(X)) — pall? = (h(X}) — pR) T (A(X}) — 1f)

- |C1k‘2 ST 3 (%) = b)) T(A(X) — h(X0))

X,-ECk XeeCx

- |c1k\2 > > (KX X)) — 2K(Xi, X)) + K(X. X0))

)(jECk Xe€Cx
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iter.max and different number of initial points nstart.
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Cluster Analysis

K-means and Kernel K-means Clustering Algorithm

DIY in R

1. Carry out K-means Cluster analysis using kmeans on the
gene data. Use different maximum number of iterations
iter.max and different number of initial points nstart.

2. Carry out kernel K-means Cluster analysis using kkmeans
in the library kernlab on the gene data.

Please study the different methods in the ISL book.
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Hierarchical Clustering

> At the top, there is one cluster that contains all of the data
points which sequentially divides up till it ends with n
clusters that contain one observation at the bottom.

» Two approaches: divisive (top-bottom) and agglomerative
(bottom-up)

» Results are represented Using a dendrogram
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Agglomerative (bottom-up)

Example
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Hierarchical Clustering

Agglomerative (bottom-up)

> |nitially start with n clusters with one of the observations in
each one of them.

> At each step, merge the closest two clusters to reduce the
number of clusters by one.

» Closeness is measured using a dissimilarity function.



Hierarchical Clustering

Divisive (top-bottom)

» Initially start with 1 cluster with the n observations in it.

» At each step, divide the farthest two clusters to increase
the number of clusters by one.

» Distances are measured using a dissimilarity function.



Hierarchical Clustering
Agglomerative (bottom-up)

Example

Algorithm 12.3 Hierarchical Clustering

1. Begin with n observations and a measure (such as Euclidean dis-
tance) of all the (}) = n(n—1)/2 pairwise dissimilarities. Treat each
observation as its own cluster.

2. Fora =a,1 — 1. vuyy 25

(a) Examine all pairwise inter-cluster dissimilarities among the 4
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among
the ¢ — 1 remaining clusters.
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Agglomerative (bottom-up)

Example
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Hierarchical Clustering

Agglomerative (bottom-up)

Example
9 9
L 8 =
[ 3 > 3
2 2
ik 1 = 1
6 6
5 4 5 4
T T T T T 5 T T T T T T
-15 -10 -05 0.0 0.5 10 15 1.0 -05 0.0 05 1.0
.X; Xl




Hierarchical Clustering

Agglomerative (bottom-up)

Example
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Hierarchical Clustering
Types of dissimilarities (linkage) between clusters
» Single linkage:

ds; Ci,Co)= min _ d(x;,x;
smg/e( 15 2) icCy jeCo (/7 /)

But, resulting clusters could be highly spread out points
(non-compact).
» Complete linkage:

a Cq, C max _ d(X;, X,
complete( 1, 2) icCyjeCs (Ia /)

But, resulting clusters could be compact but not enough far
apart.

» Average linkage:

Z d(xi, x;)

i€Cy,jeCo

dsmg/e(C1 CZ) ‘C” ’ 2’

It strikes a balance between both.
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Agglomerative (bottom-up)

Example
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Hierarchical Clustering
Agglomerative (bottom-up)

Example
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Principal Component
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Principal Component Analysis
» Goal: To find the best g linear approximations to a set of
data x; e RPfori=1,2,...,N, where g < p.

» Assume that x; is centered; that is, Xx; = 0. (Actually, it must
be standardized.)

» The presentation of
Xi = f(A) = p+ Vg

where Vj is a p x g orthogonal matrix (V] Vg = I), A is
g x 1 parameter vector, and . is p x 1 parameter vector,
could be found by minimizing the recostruction error

N
min Xi — p— Vgl ?
u,{Af},v;H ’ al



Principal Component Analysis

» Assuming Vj is given, then i = x = 0 and
Ai = VJ (xi — X) = V] x;, and the the problem becomes

>
N

min > ||x; — Hgxl[?
Ya i3

where Hy = Vjq VqT is a projection matrix.

» where the rank-q reconstruction Hyx; is the orthogonal
projection of x; € RP into the space spanned by the
columns of V4



Principal Component Analysis

» Consider the N x p data matrix X

» Using SVD of X = Unxp Dp VpTXp with diagonal matrix D,
with elements (singular values)
01 >0 >0d3>--->dp>0,and

> UTU = |, where column u; is called left singular vector

> VIV = Ip where column v; is called right singular
(loadings) vector

» Vj is the first g columns of V

» principal components of X are the columns of UD



Principal Component Analysis

» The N optimal A= VqTx,- are the rows of UD which are the
first g principal components.

» Xvq has the highest variance among all linear
combinations of the features and Xv» has the highest
variance among all linear combinations Xv of the features
such that v is orthogonal to v4.

» Elements of Xv; are called the scores of the ™ principal
component.



Principal Component Analysis

FIGURE 14.20. The first linear principal component of a set of data. The line
minimizes the total squared distance from each point to its orthogonal projection
onto the line.



Principal Component Analysis
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FIGURE 14.21. The best rank-two linear approrimation to the half-sphere data.
The right panel shows the projected points with coordinates given by UsDs, the
first two principal components of the data.



Principal Component Analysis

Example: Arrest Data
N = 50 states with p = 4 features: Assault, Murder, and Rape
as well as UrbanPop. First standardize them.
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Principal Component Analysis

Example: Arrest Data

N = 50 states with p = 4 features: Assault, Murder, and Rape
as well as UrbanPop. First standardize them.

PC1 PC2
Murder 0.5358095 —0.4181809
Assault  0.5831836 —0.1879856
UrbanPop 0.2781909  (0.8728062
Rape 0.5434321 0.1673186

TABLE 12.1. The principal component loading vectors, ¢1 and ¢z, for the
USArrests data. These are also displayed in Figure 12.1.
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Example: Arrest Data

N = 50 states with p = 4 features: Assault, Murder, and Rape
as well as UrbanPop. First standardize them.
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FIGURE 12.3. Left: a scree plot depicting the proportion of variance explained
by each of the four principal components in the USArrests data. Right: the cu-
mulative proportion of variance explained by the four principal components in the
USArrests data.



Principal Component Analysis

Example: Arrest Data
N = 50 states with p = 4 features: Assault, Murder, and Rape
as well as UrbanPop. First standardize them.
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FIGURE 12.4. Two principal component biplots for the USArrests data. Left:
the same as Figure 12.1, with the variables scaled to have unit standard deviations.
Right: principal components using unscaled data. Assault has by far the largest
loading on the first principal component because it has the highest variance among
the four variables. In general, scaling the variables to have standard deviation one
is recommended.



Principal Component Analysis
Example: Handwriting digits

The pictures digitized into 16x16 gray scale images and images
of 658 handwritten 3’s are the x;’s in R2°6. SVD is calculated for
the 658x256 matrix X.

Twelve of the 256 possible principal components account for
63%

Fifty of the 256 possible principal components account for 90%
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Example: Handwriting digits




Principal Component Analysis
Example: Handwriting digits

The first component vy is due to the horizontal movement. It
accounts for the lengthening of the lower tail of the 3,

The second component v, is due to the vertical movement. It
accounts for the thickness of the 3

JE[.M = I+ Mv1+ Aavg

_ EJF;H.JFAE- 3




Principal Component Analysis
Example: Handwriting digits
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First Principal Component

FIGURE 14.23. (Left panel:) the first two principal components of the hand-
written threes. The cireled points are the closest projected images to the vertices
of a grid, defined by the marginal quantiles of the principal components. (Right
panel:) The images corresponding to the circled points. These show the nature of
the first two principal components.



Principal Component Analysis

Example: Procrustes Transformations and Shape Averaging

The S letter in a signature Suresh

FIGURE 14.25. (Left panel:) Two different digitized handwritten Ss, each rep-
resented by 96 corresponding points in IR2. The green S has been deliberately
rotated and translated for visual effect. (Right panel:) A Proerustes transforma-
tion applies a translation and rotation to best match up the two set of points.



Principal Component Analysis

Example: Procrustes Transformations and Shape Averaging

The S letter in a signature Suresh

FIGURE 14.26. The Procrustes average of three versions of the leading S in
Suresh’s signatures. The left panel shows the preshape average, with each of the
shapes X| in preshape space superimposed. The right three panels map the pre-
shape M separately to match each of the original S’s.

Please read the example in ESL.
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