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Neural Networks

» Neural Networks started in the 1949 by Hebb.

» Then Rosenblatt introduced artificial neural networks in
1958, with basic units are perceptron that activates or
stays inactive upon receiving a signal.

» Back-propagation and training of multi-layer NN in 80s

» Back to be strong in 2000s with better algorithms and
devices.

Direction message travels

Axon terminals

Soma
(cell bady)

Myelin

Sheaths :§-

Dendrites




Vanilla Neural Network

» Single hidden layer Neural Network whether for
K — response regression or K— class classification




Vanilla Neural Network

» Single hidden layer Neural Network whether for
K — response regression or K— class classification




Vanilla Neural Network




Vanilla Neural Network




Vanilla Neural Network

Zy = 0(Qom + ah,X)



Vanilla Neural Network

Z = o(ag, + al,X)



Vanilla Neural Network

@ Vi = gx(T)
T = Por + BLZ
Z = o(ag, + al,X)
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Vanilla Neural Network

That is,

>

| 2
| 2
| 2
>

Input L : X — X, which is linear
Activation o : X; — Z

Target T : Z — T which is linear
Outputgg : T— Y

In overall, it is @ composition of linear (and in a more recent
nonlinear) functions

Yi = gk(T(o(L(X)))) =: fi(x)

and f, : X — Y is a nonlinear transformation of X into Y
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Vanilla Neural Network

» The activation function ¢ could be
> Identity: o(x) = x
> Sigmoid: o(x) = S(x) = 775

X

> Hyperbolic tangent: o(x) = tanh(x) = &=
> Rectified Linear Unit: o(x) = ReLU(x) = max(x,0) = x;
> Rectified softplus: o(x) = ReSP(x) = log(1 + &)

» The output function gk could be

> ki element "identity" function: gx(T) = Tk

e’k

» Softmax function: gi(T) = SK o
£=1



Fitting Neural Network —
Back-propagation



Back-propagation
aka Delta rule
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Back-propagation
aka Delta rule

How will we find the M(p + 1) + K(M + 1) weights

{aon’hajmwBOkuﬁmk:j:15"'7p;m:17"')M;k:17"')K}

» Regression problem: minimize Sum-of-squared errors

N K N
R(O) =D (v — k(x))? =D _R;
i:1

i=1 k=1

» Classification problem: minimize Sum-of-squared errors
(above) or the cross-entropy (deviance)

N K
R(O) == yilog(fi(x)))

i=1 k=1

with G(x) = argmaxifx(x)
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>
OoR;

aﬁkm
with zp; = 1 and d; is called the output error
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Back-propagation
» A gradient descent method called back-propagation is
used. (Chain rule from calculus is required.)

» The gradient is

>
aaR’ = —2(yik — fc(x)) 9k (Bok + BE 2i)Zmi = OiZmi
ﬁkm
with zp; = 1 and d; is called the output error
» and
OR; K / T / T
o = -2 Z(y,-k — fk(Xi)) 9k (Bok + B Zi) Bkmo' (com + cmXi) Xi

k=1
= SmiXi¢
with Xjo = 1 and sp,; is called the hidden layer error

» The back-propagation equations:

K

Smi = 0’ (qom + %) > Brmdki
k=1



Back-propagation

» The gradient descent (r+1) update is

OR;
,
= ap\)

N
—r Z 5;((;)Zmi
i=1

AR

and

Al — o0 R
Ome ~ = %28 G

i=1 OCmy
.
oly) %Zsm,xle

where ~, is the learning rate. Updates are batch learning.
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Back-propagation

» To perform the the r+1 updated, gradients are updated
using a two-pass algorithm

Forward Pass Inputs are feed into the NN and let them propagate forward
to the output and calculate f,Er)(x,-) based on which

80 = —2(yw — £ ) gk (85 + BT z3)

are calculated

Backward Pass Then propagated backward using the back-propagation
equations

S = o' (agm + i T Z Brandis
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update the gradients after each observation and cycling
through them many times.

» A training epoch is one sweep through the entire training
set.

> |t is good to handle big data and data as they arrive to the
NN

» The learning rates are v, are constant or found using a line
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» Stopping rules are needed to avoid overfitting.
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Back-propagation

Some notes:
» Consider regularization after standardization of the inputs

R(6) + AJ(6)

» Weight decay (Lo—) penalty:

=D B+ ok
mk jm

» Weight elimination penalty:

a2

ﬁm im
J0) = Z1+ﬁk Z@

more shrinkage than weight decay penalty
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Example (Orange vs Blue)
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More notes:

>

>
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Again, standardize inputs.
More nodes and hidden layers is better then less.

Consider bagging as there might be more than one minima
of R(0).

The learning rates are ~, are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

Stopping rules are needed to avoid overfitting.
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Back -propagation

DIY in R

1. Carry out a neural network analysis of the orange vs blue
data using nnet in R.

2. Carry out a neural network analysis of the ZIP Code data
Please study Example 11.7 in the ESL textbook.



Universal Approximation
Theorem



Universal Approximation Theorem

Theorem (Cybenko’s Universal approximation theorem
(1989))
Let f be a C([0,1]") (also an Lo— function), and o be such that

limx_oo 0(X) =1 andlimy_,_ o(x) = 0, then for some > 0,
there is M = M(e) such that

Infa[; Zﬁmaao,n—i—oam ) <e

m=1

It basically says that any such function f could be approximated
by an ANN. The more the hidden-layer’s nodes, the better the
approximation.
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“(();)z oF ag)TX
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st tl
Hidden-Layer Hidden-Layer
z®= @ (a(()fr)l + a,(:)TZ(l))
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Multi-layer Neural Network

Nth Output

S|
Hidden-Layer Hidden-Layer T. = Bor + '[;IIZ(N)



Multi-layer Neural Network

Nth Output
Hidden-Layer Hidden-Layer




Multi-layer Neural Network

That is,

» It is a composition of linear (and in a more recent
nonlinear) functions

Y — g(ﬁa(N)(a(N)a(N_”(a(N‘1)a(N_2)(- .. 0(1)(a(1)x)))))
=: f(x)

where 8 and o) are weight matrices and f: X — Yis a
multi-response nonlinear transformation of X into Y
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Multi-layer Neural Network

» Fitting MNN is done using back-propagation.

> By minimizing R(¢) = 1 37, R;(9), which is usually
regularized into R(6) + A\J(6). The tuning parameter A
could be determined using CV.

» With gradient descent’s iterative formula

0" = 99 _ . VR(0)] 00

> or with stochastic gradient descent’s iterative formula
gnew — (90/d — (VR(g)‘gold + €new)

where ¢ are iid random noise with mean 0.
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Multi-layer Neural Network

» Another stochastic gradient descent (SGD) ...
> since VR(0) = 1 31 | VR(6),

» then a randomly selected / (as a random epoch) results in
a random R;(0) that can be used to update the weights via

0" = 6% — 5, VRi(6)|gow

» A forward pass is made then followed by a number of N
backward passes to update the weights.
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Bayesian Neural Network
Look at dissertation of Neal (1995)

» Given a training data (X, y«), in a regression or
classification problem P(Y|X, 6) can give the posterior
distribution for the regression in which the mean or the
classification probability is sought

» Given a prior P(#), the posterior distribution is given by

P(yir| Xir,0) P(0)
P(8| X =
(0| Xtr, yir) fe P(ye| Xy, ') P(6") d§’

» A prediction for a new case X, is done using the predictive
posterior

P X, Xirs Vir) = /e P(Y.| X...8) P(6] Xer, yir) 6
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» A MCMC algorithm is need to simulate from the predictive
posterior

Py Xos Xirs yir) = /@ P(y.|X..0) P(0| Xir, yir) dO

with the following steps

> Use a converged MCMC algorithm to sample from the
chain values V) for j = 1,2, ..., J that are representing
simulated values from P(0| X, yir)

> Then, simulate y¥ from P(y|X.,00) forj=1,2,...,J and
use it to make the empirical estimate of the posterior
predictive, or

> instead, calculate 172}/:1 P(y.|X.,8Y) for sufficiently large
J and for a set of values .
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Neal and Zhang (2006) suggested using
» a hybrid MCMC algorithm

» performing pre-processing of the inputs like using
univariate t-tests

» more importantly, use Automatic Relevance Determination
(ARD) that is

» assign (same for each j) priors for the weights 04(;,) from
input j in the input layer to the first hidden layer that have
mean 0 and variance sz (a hyper-parameter)

» (A regularization step) assign hyper-prior to the
hyper-parameters o2 that has very small variance in which
case a weight decay will be happen



Bayesian Neural Network
Example (Neal (1995))

+2 -

-3 = | | | 3 = | | I
-1 0 +1 -1 0 +1
Iigure 1.2: An illus

computed by ten networks whose weights and biases were drawn at random [rom Gau

tion of Bayesian inference for a neural network. Oun the left are the functions

an prior
data points and the functions computed by ten networks drawn
from the posterior distribution derived [rom the prior and the likelihood due to these data points.

distributions. Oun the right arc

The heavy dotted line is the average of the ten functions drawn from the posterior. which is an
approximation to the function that should be guessed in order to minimize squared error loss.
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Recurrent Neural Network

Example
TARGET cat chased the mouse
WORDS
PREDICTED Y1 Y2 Y Va
WORD
LIKELIHOODS W,
HIDDEN | ha |
REPRESENTATION Wy W,
i
ONE-HOT H
ENCODED INPUT
WORD worps the cat chased the

(b) Time-layered representation of (a)

h; = tanh(WinX; + Winhy_+)
and

Yt = Wiy hy



Recurrent Neural Network

Dgo_ {000

1
1
1
1
1
1
INPUTS OR I | |—;| |——| |
OUTPUTS 1
1
1
1
1
1

MISSING INPUTS
[EXAMPLE: IMAGE CAPTIONING]

[EXAMPLE:
FORECASTING,
LANGUAGE
MODELING]

MISSING OUTPUTS Q Q |1

L H - H

MISSING INPUTS
[EXAMPLE:
TRANSLATION]
'

MISSING OUTPUTS
[EXAMPLE: SENTIMENT
ANALYSIS]

g
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Convolutional Neural Network

» Datais givenin 1, 2, ... dimensional grid, like time series,
pictures, ...

» CNN can provide parameter efficient, invariant to
transformation, feature extraction learning method.

» There are different famous CNNs: AlexNet, ZFNet,
LeNet-5, GoogLeNet, ResNet
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> Input: 224x224x3 images - (3=RGB)
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layer of 55x55x96



Convolutional Neural Network
AlexNet
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> Input: 224x224x3 images - (3=RGB)

» AlexNet uses 96 filters (of semantic features) of kernel size
11x11x3 in the first layer with stride 4, resulting in a first
layer of 55x55x96

» then a max-pool (MP) is applied with 256 filters of kernel
size 5x5x96 with stride 2. All MPs are 3x3 stride 2.
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» The rest are 384 filters of kernel size 3x3x256 then
3x3x384, then 256 filters of kernel size 3x3x384

» RelU activation function and response-normalization are
used after every convolution layer and the output uses
softmax function for classification.



Convolutional Neural Network
AlexNet

INPUT

2000

[ee]eXX)

» The rest are 384 filters of kernel size 3x3x256 then
3x3x384, then 256 filters of kernel size 3x3x384

» RelU activation function and response-normalization are
used after every convolution layer and the output uses
softmax function for classification.

» FC7 is a 4096 dimensional representation of the image
and can be used as feature extraction from the image
(referred to FC7 features).



Convolutional Neural Network

ZFNet

AlexNet

ZFNet

Volume: 224 x 224 x 3 224 x 224 x 3
Operations: || Conv 11 x 11 (stride 4) | Conv 7 x 7 (stride 2), MP
Volume: 55 x 55 x 96 55 x 55 x 96
Operations: Conv 5 x 5, MP Conv 5 x 5 (stride 2), MP
Volume: 27 % 27T ¢ 256 13 x 13 x 256
Operations: Conv 3 x 3, MP Conv 3 x 3
Volume: 13 x 13 x 384 13 x 13 x 512
Operations: Conv 3 x 3 Conv 3 x 3
Volume: 13 x 13 x 384 13 x 13 x 1024
Operations: Conv 3 x 3 Conv 3 x 3
Volume: 13 x 13 x 256 13 x 13 x 512
Operations: MP, Fully connect MP, Fully connect
FC6: 4096 4096
Operations: Fully connect Fully connect

FCT: 4096 4096
Operations: Fully connect Fully connect

FCs: 1000 1000
Operations: Softmax Softmax




Convolutional Neural Network

LeNet-5

INPUT: GRAYSCALE
FEATURE MAP
OF PIXELS

CONVOLUTION OPERATIONS
c
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Convolutional Neural Network
ResNet

I 7X7 CONV, 64, /2

pooL, /2 |

3X3 CONV, 64

3X3 CONV, 64

WEIGHT LAYER

F(x) RelU

IDENTITY
X

WEIGHT LAYER

3X3 CONV, 128

<

F(x)+x
RelU




Convolutional Neural Network

| Name | Year | Number of Layers | Top-5 Error ||
= Before 2012 <5 > 25%
AlexNet 2012 8 15.4%
ZINet] Clarifai || 2013 8/> 8 14.8% / 11.1%
VGG 2014 19 7.3%
GoogLeNet 2014 22 6.7%
ResNet 2015 152 3.6%




What are the convolution
kernels?



Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

3x3 Kernel With a stride=1




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

With a stride=1

1x0|4x1|5x0|2 4 2 3

3x1|0x0(2x1|1 0 6 1

2x-1 | 4x-1|2x1|3 4 |lo—r7 |




Convolutional Neural Network

A kernel is a weights matrix that applies to cells and aggregate

into a sum resulting in a convolution like in

With a stride=1

1 4x0|5x1|2x0
3 0x1|{2x0|1x1
2 4x-1|2x-1|3x-1
3 4 1 4
2 0 2 2
4 2 5 5
1 4 0 1




Convolutional Neural Network

A kernel is a weights matrix that applies to cells and aggregate

into a sum resulting in a convolution like in

With a stride=1

1 4x0|5x1|2x0
3 0x1|{2x0|1x1
2 4x-1|2x-1|3x-1
3 4 1 4
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4 2 5 5
1 4 0 1




Convolutional Neural Network

A kernel is a weights matrix that applies to cells and aggregate

into a sum resulting in a convolution like in

With a stride=1

1 4 5x0|2x1|4x0
3 0 2x1|1x0|0x1
2 4 2x-1|3x-1 | 4x-1
3 4 1 4 6
2 0 2 2 2
4 2 5 5 4




Convolutional Neural Network

A kernel is a weights matrix that applies to cells and aggregate

into a sum resulting in a convolution like in

With a stride=1

1 4 5 2x0(4x1|2x0
3 0 2 1x1|{0x0|6x1
2 4 2 3x-1|4x-1|0x-1
3 4 1 4 6 5
2 0 2 2 2 2




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

With a stride=1

1 4 5 2 4x0(2x1(3x0

3 |o |2 |1 |oxiléxo|1xt 1 |3 |5 |4 |3

2 |4 |2 |3 |4x1|0x1]|2x1 —




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

With a stride=1

3x0|0x1(2x0|1 |0 |6 [T — 1 |3 |5 |4 |3

2x1|4x0[2x1|3 4 0 2 -4

3x-1|4x-1|1x-1|4 6 |5—2 |




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

With a stride=1

3 |oxo|2xt|1xo|l0o |6 |1 T—m— [T |3 |5 |4 |8

2 |axt|2x0|3x1|a |o |2 4 |0

L
3 4x-1|1x-1|4x-1]6 5 12—




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

With a stride=1

3 |o |[2x0|1x1|oxole |2 | T—-J1 |3 (S5 |4 |3

2 |4 |2x1|3x0|axtfo |2 4 |0 (4

3 |4 |1x1|axi|exi|s |2 | — ]




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

With a stride=1

3 0 2 1x0|loxt|exol2 | —— 1 |3 |5 |4 3

T
2 |4 |2 |3sxi|laxo|oxi|2 4 |0 |4 |4
/(——9

3 4 1 4x-1|6x-1|5x1|2 | —— |




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

With a stride=1

3 |o |2 |1 |oxo|6xi|1x0 *—=3_ |5 |4 |3
2 |4 |2 |3 |axt|oxo|2x 40 |44
——
—
3 |4 |1 |4 |ex1|5x1|2x1 — |




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

With a stride=1

3 (o |2 |1 o |e |1 1 |38 (5 |4 (-3
2 [a |2 |3 |a |o |2 4 |0 |4 4 |1
3 |4 |1 |a |e |5 |2 4 |6 |4 |7 |0
2 |o |2 |2 |2x0|2x1|4x0 22 |6 |2 |3
a |2 |5 |5 |axi|sxo|1x1 4 |4 |® |8 |0




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

o] 1| o . .
3x3 Kernel With a stride=1
7 1| o] 1
1| 1| -
1 |4 |5 |2 |a |2 |3
3 o |2 |1 |o |e |1 1 |3 |5 |4 |8
2 |4 |2 |3 |a |o |2 4 0 (4 14 |1
713 |a |1 |a |6 |5 |2 - |4 |8 |4 |7 |0 |5
2 o |2 |2 |2 |2 |a 3 |2 |6 -2 |3
a |2 |5 |5 |a |3 |1 4 |4 |9 |8 |0
1 |4 o |1 |1 |o |6 5
7-3

Output size = I +1=5



Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

With a stride=2

1x0|4x1|5x0|2 4 2 3

3x1|0x0(2x1|1 0 6 1

2x-1 | 4x-1|2x1|3 4 |lo—r7 |




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

With a stride=2

1 4 5x0|2x1(4x0|2 3

3 o |2xa|ixo|oxi|e |1 1 |5

2 |a |2ca|zaa|aalo |2 L —]




Convolutional Neural Network

A kernel is a weights matrix that applies to cells and aggregate

into a sum resulting in a convolution like in

With a stride=2

1 4 5 2 4x0(2x1(3x0
3 0 2 1 0x1|6x0(1x1
2 4 2 3 4x-1|0x-1|2x-1
3 4 1 4 6 5 2
2 0 2 2 2 2 4




Convolutional Neural Network

A kernel is a weights matrix that applies to cells and aggregate

into a sum resulting in a convolution like in

With a stride=2

4 x1

2 x0

4 x0

1x1

2x-1

Ox-1

2x-1




Convolutional Neural Network

A kernel is a weights matrix that applies to cells and aggregate

into a sum resulting in a convolution like in

With a stride=2

1 4 5 2 4
3 0 2 1 0
2 4 2x0|3x1|4x0
3 4 1x1|4x0|6x1
2 0 2x-1 | 2x-1 | 2x-1




Convolutional Neural Network

A kernel is a weights matrix that applies to cells and aggregate

into a sum resulting in a convolution like in

With a stride=2

2 4 2 3 4x0|0x1|2x0
3 4 1 4 6x1|5x0(2x1
2 0 2 2 2x-1 | 2x-1 | 4x-1




Convolutional Neural Network

A kernel is a weights matrix that applies to cells and aggregate

into a sum resulting in a convolution like in

0x1

2 x0

4 x1

2 x0

5x1

1x-1

4x-1

ox-1

3

1

2
L

4
*

6

With a stride=2




Convolutional Neural Network

A kernel is a weights matrix that applies to cells and aggregate

into a sum resulting in a convolution like in

With a stride=2

1 4 5 2 4
3 0 2 1 0
2 4 2 3 4
3 4 1 4 6
2 0 2x0(2x1|2x0
4 2 5x1|5x0|4x1
1 4 Ox-1|1x-1|1x-1




Convolutional Neural Network

A kernel is a weights matrix that applies to cells and aggregate

into a sum resulting in a convolution like in

With a stride=2

-5

1 4 5 2 4 2 3
3 0 2 1 0 6 1
2 4 2 3 4 0 2
3 4 1 4 6 5 2
2 0 2 2 2x0|2x1|4x0
4 2 5 5 4x1|3x0(1x1
1 4 0 1 1x-1|0x-1|6x-1




Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

o] 1| o . .
3x3 Kernel With a stride=2
7 1| o] 1
1| 1| -
1 |4 |5 |2 |a |2 |3
3 o |2 |1 |o |e |1 1 |5 |3 ‘
2 [a |2 |3 |a |o |2 4 |4 |0 3
703 |4 |1 |4 6 |5 |2 — 4 % | l
2 o |2 |2 |2 |2 |a 3
a |2 |5 |5 |a |3 |1
1 |4 o |1 |1 |o |6
7-3

Output size = — +1=3



Convolutional Neural Network
What about stride 3?




Convolutional Neural Network
What about stride 3?7 Cannot be.




Convolutional Neural Network
Zero-padding for border

0 1 0
3x3 Kernel With a stride=1
1 0 1
1 -1 1
1 4 5 2 4 2 3




Convolutional Neural Network

Zero-padding for border

0
3x3 Kernel With a stride=1




Convolutional Neural Network

Zero-padding for border

With a stride=1

0x|oxt|0x|0 (0 [0 6—0 |0

Ox1|1x0(4x1y5 |2 |4 |2 (3 |0

Ocl|3¢1f0x1y2 |1 (0 |6 |1 |0

Complete — DIY



Convolutional Neural Network

Benefits of CNN:

» Sparse connectivity: for instance, compare
224x224x3=150528 connected to each other through
weighted links vs. 11x11x3=363 weights in a kernel




Convolutional Neural Network

Benefits of CNN:

» Translation invariance: applying a convolution kernel with
stride 1 will result in the same outcome for a translated

image
1 4 5 1 4 5
3 0 2 3 0 2




Convolutional Neural Network
Application of kernels: Sobel’s Edge Detection (first transform
color images into grey images)

1 0 1
Apply them G=| -2| o 2
directional 1l o
gl’adients horizontally
separately ... 1 la |s |2 la |2 s
3 o (2 |1 |o |6 |1
1 2 1 2 |4 |2 |3 |4 |o |2
G=| 0o 0l o I35 14 |1 |a [6 |5 |2
1) -2 1 2 0 2 2 2 2 4
<
(]
] i S S A S ... then add up
</t |4 |o (1 |1 |0 |6 the outcomes.




Convolutional Neural Network

Application of kernels: Sobel’s Edge Detection (first transform
color images into grey images)

original Image

Sobel Edge Detection




What are the
sub-sampling layers or

pooling kernels?



Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP ) resulting in a
convolution like in

With a stride=2

Max
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into a maximum (MP) or an average (AP ) resulting in a
convolution like in

With a stride=2

Max




Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP ) resulting in a
convolution like in

With a stride=2

Max




Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP ) resulting in a
convolution like in

With a stride=2

Max
1 |4 |5 |2 |a |2 |3
3 (o |2 |1 |o |e |1 5 |5 |8
2 [a |2 |3 |a |o |2 4




Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP ) resulting in a
convolution like in

With a stride=2

Max
1 |4 |5 |2 |a |2 |3
3 (o |2 |1 |o |e |1 5 |5 |8
2 [a |2 [3 |a [o |2 4 |6
/




Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP ) resulting in a
convolution like in

With a stride=2

Max
1 |4 |5 |2 |a |2 |3
3 (o |2 |1 |o |e |1 5 |5 |6
2 [a |2 |3 |a |o |2 4 |6 |6
3 |4 |1 |4 |6 |5 |2 ]




Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP ) resulting in a
convolution like in

With a stride=2

Max
1 |4 |5 |2 |a |2
3 o |2 |1 |o |e 5 |5 |6
4 |6 |6
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N
w
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Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP ) resulting in a
convolution like in

With a stride=2

Max
1 |4 |5 |2 |a |2 |3
3 (o |2 |1 |o |e |1 5 |5 |8
2 [a |2 |3 |a |o |2 4 |6 |6




Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP ) resulting in a
convolution like in

With a stride=2

Max
1 |4 |5 |2 |a |2 |3
3 (o |2 |1 |o |e |1 5 |5 |8
2 [a |2 |3 |a |o |2 4 |6 |6
3 |4 |1 |a |e |5 |2 5|5 |6




Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP — Complete it — DIY)
resulting in a convolution like in

With a stride=2

Average
1 4 5 2 4 23—

3 0 2 1 0 6 1

2 (4 |2 |3 |4 lo—r7 |

3 4 1 4 6 5 2




Convolutional Neural Network

A sub-sampling layer makes images smaller with fewer
parameters that doesn’t alter the image

Gaussian weighted

average




Convolutional Neural Network

Application of kernels: Image blurring

3x3 simple

average pooling

-
P

[



Convolutional Neural Network

Example (Hand gestures-Sahoo et al. 2021)

In::?e;e?ui | Nextet {FC8) |—] Training phase
(27 27 3 Feature
¢ —  EVM
imageresize | [ yoe s (Foe) |—» s .
[24 24 3]
Input image
Testing phase
Test hand Image o Extraction of . Featurs . Traingd . Becognized hand
gesture imags resize CHN features fusion SUM mods! gesture pose
FIG. 13.4

Block diagram representation of the propesed hand gesture recognition system.



Convolutional Neural Network

Example (Hand gestures-Sahoo et al. 2021)

(B)

FIG. 13.5

Architecture of pretrained CNNs used in this work. The CNN features are extracted from the
fully connected layers such as FC6 and FC7 from the pretrained CNN model, which is shown
in the dotied mark. (A) AlexNet and (B) VGG-16.
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End of Set 8



