
Statistical Learning– MATH 6333
Set 8 (Neural Networks)

Tamer Oraby
UTRGV

tamer.oraby@utrgv.edu

∗Last updated November 23, 2021

Neural Networks

▶ Neural Networks started in the 1949 by Hebb.
▶ Then Rosenblatt introduced artificial neural networks in

1958, with basic units are perceptron that activates or
stays inactive upon receiving a signal.

▶ Back-propagation and training of multi-layer NN in 80s
▶ Back to be strong in 2000s with better algorithms and

devices.

Vanilla Neural Network

▶ Single hidden layer Neural Network whether for
K− response regression or K− class classification

Vanilla Neural Network

▶ Single hidden layer Neural Network whether for
K− response regression or K− class classification

Vanilla Neural Network

Vanilla Neural Network

Vanilla Neural Network

Vanilla Neural Network

Vanilla Neural Network

Vanilla Neural Network

That is,

▶ Input L : X 7→ XL which is linear

▶ Activation σ : XL 7→ Z

▶ Target T : Z 7→ T which is linear

▶ Output gk : T 7→ Y

▶ In overall, it is a composition of linear (and in a more recent
nonlinear) functions

Yk = gk (T(σ(L(X)))) =: fk (x)

and fk : X 7→ Yk is a nonlinear transformation of X into Y

Vanilla Neural Network

That is,

▶ Input L : X 7→ XL which is linear

▶ Activation σ : XL 7→ Z

▶ Target T : Z 7→ T which is linear

▶ Output gk : T 7→ Y

▶ In overall, it is a composition of linear (and in a more recent
nonlinear) functions

Yk = gk (T(σ(L(X)))) =: fk (x)

and fk : X 7→ Yk is a nonlinear transformation of X into Y

Vanilla Neural Network

That is,

▶ Input L : X 7→ XL which is linear

▶ Activation σ : XL 7→ Z

▶ Target T : Z 7→ T which is linear

▶ Output gk : T 7→ Y

▶ In overall, it is a composition of linear (and in a more recent
nonlinear) functions

Yk = gk (T(σ(L(X)))) =: fk (x)

and fk : X 7→ Yk is a nonlinear transformation of X into Y

Vanilla Neural Network

That is,

▶ Input L : X 7→ XL which is linear

▶ Activation σ : XL 7→ Z

▶ Target T : Z 7→ T which is linear

▶ Output gk : T 7→ Y

▶ In overall, it is a composition of linear (and in a more recent
nonlinear) functions

Yk = gk (T(σ(L(X)))) =: fk (x)

and fk : X 7→ Yk is a nonlinear transformation of X into Y

Vanilla Neural Network

That is,

▶ Input L : X 7→ XL which is linear

▶ Activation σ : XL 7→ Z

▶ Target T : Z 7→ T which is linear

▶ Output gk : T 7→ Y

▶ In overall, it is a composition of linear (and in a more recent
nonlinear) functions

Yk = gk (T(σ(L(X)))) =: fk (x)

and fk : X 7→ Yk is a nonlinear transformation of X into Y

Vanilla Neural Network

▶ The activation function σ could be

▶ Identity: σ(x) = x

▶ Sigmoid: σ(x) = S(x) = 1
1+e−x

▶ Hyperbolic tangent: σ(x) = tanh(x) = ex−e−x

ex+e−x

▶ Rectified Linear Unit: σ(x) = ReLU(x) = max(x ,0) = x+

▶ Rectified softplus: σ(x) = ReSP(x) = log(1 + ex)

▶ The output function gk could be

▶ k th element "identity" function: gk (T) = Tk

▶ Softmax function: gk (T) = eTk∑K
ℓ=1 eTℓ

Vanilla Neural Network

▶ The activation function σ could be

▶ Identity: σ(x) = x

▶ Sigmoid: σ(x) = S(x) = 1
1+e−x

▶ Hyperbolic tangent: σ(x) = tanh(x) = ex−e−x

ex+e−x

▶ Rectified Linear Unit: σ(x) = ReLU(x) = max(x ,0) = x+

▶ Rectified softplus: σ(x) = ReSP(x) = log(1 + ex)

▶ The output function gk could be

▶ k th element "identity" function: gk (T) = Tk

▶ Softmax function: gk (T) = eTk∑K
ℓ=1 eTℓ

Vanilla Neural Network

▶ The activation function σ could be

▶ Identity: σ(x) = x

▶ Sigmoid: σ(x) = S(x) = 1
1+e−x

▶ Hyperbolic tangent: σ(x) = tanh(x) = ex−e−x

ex+e−x

▶ Rectified Linear Unit: σ(x) = ReLU(x) = max(x ,0) = x+

▶ Rectified softplus: σ(x) = ReSP(x) = log(1 + ex)

▶ The output function gk could be

▶ k th element "identity" function: gk (T) = Tk

▶ Softmax function: gk (T) = eTk∑K
ℓ=1 eTℓ

Vanilla Neural Network

▶ The activation function σ could be

▶ Identity: σ(x) = x

▶ Sigmoid: σ(x) = S(x) = 1
1+e−x

▶ Hyperbolic tangent: σ(x) = tanh(x) = ex−e−x

ex+e−x

▶ Rectified Linear Unit: σ(x) = ReLU(x) = max(x ,0) = x+

▶ Rectified softplus: σ(x) = ReSP(x) = log(1 + ex)

▶ The output function gk could be

▶ k th element "identity" function: gk (T) = Tk

▶ Softmax function: gk (T) = eTk∑K
ℓ=1 eTℓ

Vanilla Neural Network

▶ The activation function σ could be

▶ Identity: σ(x) = x

▶ Sigmoid: σ(x) = S(x) = 1
1+e−x

▶ Hyperbolic tangent: σ(x) = tanh(x) = ex−e−x

ex+e−x

▶ Rectified Linear Unit: σ(x) = ReLU(x) = max(x ,0) = x+

▶ Rectified softplus: σ(x) = ReSP(x) = log(1 + ex)

▶ The output function gk could be

▶ k th element "identity" function: gk (T) = Tk

▶ Softmax function: gk (T) = eTk∑K
ℓ=1 eTℓ

Vanilla Neural Network

▶ The activation function σ could be

▶ Identity: σ(x) = x

▶ Sigmoid: σ(x) = S(x) = 1
1+e−x

▶ Hyperbolic tangent: σ(x) = tanh(x) = ex−e−x

ex+e−x

▶ Rectified Linear Unit: σ(x) = ReLU(x) = max(x ,0) = x+

▶ Rectified softplus: σ(x) = ReSP(x) = log(1 + ex)

▶ The output function gk could be

▶ k th element "identity" function: gk (T) = Tk

▶ Softmax function: gk (T) = eTk∑K
ℓ=1 eTℓ

Vanilla Neural Network

▶ The activation function σ could be

▶ Identity: σ(x) = x

▶ Sigmoid: σ(x) = S(x) = 1
1+e−x

▶ Hyperbolic tangent: σ(x) = tanh(x) = ex−e−x

ex+e−x

▶ Rectified Linear Unit: σ(x) = ReLU(x) = max(x ,0) = x+

▶ Rectified softplus: σ(x) = ReSP(x) = log(1 + ex)

▶ The output function gk could be

▶ k th element "identity" function: gk (T) = Tk

▶ Softmax function: gk (T) = eTk∑K
ℓ=1 eTℓ

Vanilla Neural Network

▶ The activation function σ could be

▶ Identity: σ(x) = x

▶ Sigmoid: σ(x) = S(x) = 1
1+e−x

▶ Hyperbolic tangent: σ(x) = tanh(x) = ex−e−x

ex+e−x

▶ Rectified Linear Unit: σ(x) = ReLU(x) = max(x ,0) = x+

▶ Rectified softplus: σ(x) = ReSP(x) = log(1 + ex)

▶ The output function gk could be

▶ k th element "identity" function: gk (T) = Tk

▶ Softmax function: gk (T) = eTk∑K
ℓ=1 eTℓ

Vanilla Neural Network

▶ The activation function σ could be

▶ Identity: σ(x) = x

▶ Sigmoid: σ(x) = S(x) = 1
1+e−x

▶ Hyperbolic tangent: σ(x) = tanh(x) = ex−e−x

ex+e−x

▶ Rectified Linear Unit: σ(x) = ReLU(x) = max(x ,0) = x+

▶ Rectified softplus: σ(x) = ReSP(x) = log(1 + ex)

▶ The output function gk could be

▶ k th element "identity" function: gk (T) = Tk

▶ Softmax function: gk (T) = eTk∑K
ℓ=1 eTℓ

Fitting Neural Network –
Back-propagation

Back-propagation
aka Delta rule

How will we find the M(p + 1) + K (M + 1) weights

{α0m, αjm, β0k , βmk : j = 1, . . . ,p;m = 1, . . . ,M; k = 1, . . . ,K}

▶ Regression problem: minimize Sum-of-squared errors

R(θ) =
N∑

i=1

K∑
k=1

(yik − fk (xi))
2 =:

N∑
i=1

Ri

▶ Classification problem: minimize Sum-of-squared errors
(above) or the cross-entropy (deviance)

R(θ) = −
N∑

i=1

K∑
k=1

yik log(fk (xi))

with G(x) = argmaxk fk (x)

Back-propagation
aka Delta rule

How will we find the M(p + 1) + K (M + 1) weights

{α0m, αjm, β0k , βmk : j = 1, . . . ,p;m = 1, . . . ,M; k = 1, . . . ,K}

▶ Regression problem: minimize Sum-of-squared errors

R(θ) =
N∑

i=1

K∑
k=1

(yik − fk (xi))
2 =:

N∑
i=1

Ri

▶ Classification problem: minimize Sum-of-squared errors
(above) or the cross-entropy (deviance)

R(θ) = −
N∑

i=1

K∑
k=1

yik log(fk (xi))

with G(x) = argmaxk fk (x)

Back-propagation
▶ A gradient descent method called back-propagation is

used. (Chain rule from calculus is required.)

▶ The gradient is
▶

∂Ri

∂βkm
= −2(yik − fk (xi))g′

k (β0k + βT
k zi)zmi = δkizmi

with z0i = 1 and δki is called the output error

▶ and

∂Ri

∂αmℓ
= −2

K∑
k=1

(yik − fk (xi))g′
k (β0k + βT

k zi)βkmσ
′(α0m + αT

mxi)xiℓ

= smixiℓ

with xi0 = 1 and smi is called the hidden layer error

▶ The back-propagation equations:

smi = σ′(α0m + αT
mxi)

K∑
k=1

βkmδki

Back-propagation
▶ A gradient descent method called back-propagation is

used. (Chain rule from calculus is required.)

▶ The gradient is
▶

∂Ri

∂βkm
= −2(yik − fk (xi))g′

k (β0k + βT
k zi)zmi = δkizmi

with z0i = 1 and δki is called the output error

▶ and

∂Ri

∂αmℓ
= −2

K∑
k=1

(yik − fk (xi))g′
k (β0k + βT

k zi)βkmσ
′(α0m + αT

mxi)xiℓ

= smixiℓ

with xi0 = 1 and smi is called the hidden layer error

▶ The back-propagation equations:

smi = σ′(α0m + αT
mxi)

K∑
k=1

βkmδki

Back-propagation
▶ A gradient descent method called back-propagation is

used. (Chain rule from calculus is required.)

▶ The gradient is
▶

∂Ri

∂βkm
= −2(yik − fk (xi))g′

k (β0k + βT
k zi)zmi = δkizmi

with z0i = 1 and δki is called the output error

▶ and

∂Ri

∂αmℓ
= −2

K∑
k=1

(yik − fk (xi))g′
k (β0k + βT

k zi)βkmσ
′(α0m + αT

mxi)xiℓ

= smixiℓ

with xi0 = 1 and smi is called the hidden layer error

▶ The back-propagation equations:

smi = σ′(α0m + αT
mxi)

K∑
k=1

βkmδki

Back-propagation
▶ A gradient descent method called back-propagation is

used. (Chain rule from calculus is required.)

▶ The gradient is
▶

∂Ri

∂βkm
= −2(yik − fk (xi))g′

k (β0k + βT
k zi)zmi = δkizmi

with z0i = 1 and δki is called the output error

▶ and

∂Ri

∂αmℓ
= −2

K∑
k=1

(yik − fk (xi))g′
k (β0k + βT

k zi)βkmσ
′(α0m + αT

mxi)xiℓ

= smixiℓ

with xi0 = 1 and smi is called the hidden layer error

▶ The back-propagation equations:

smi = σ′(α0m + αT
mxi)

K∑
k=1

βkmδki

Back-propagation
▶ A gradient descent method called back-propagation is

used. (Chain rule from calculus is required.)

▶ The gradient is
▶

∂Ri

∂βkm
= −2(yik − fk (xi))g′

k (β0k + βT
k zi)zmi = δkizmi

with z0i = 1 and δki is called the output error

▶ and

∂Ri

∂αmℓ
= −2

K∑
k=1

(yik − fk (xi))g′
k (β0k + βT

k zi)βkmσ
′(α0m + αT

mxi)xiℓ

= smixiℓ

with xi0 = 1 and smi is called the hidden layer error

▶ The back-propagation equations:

smi = σ′(α0m + αT
mxi)

K∑
k=1

βkmδki

Back-propagation
▶ The gradient descent (r+1) update is

β
(r+1)
km = β

(r)
km − γr

N∑
i=1

∂Ri

∂β
(r)
km

= β
(r)
km − γr

N∑
i=1

δ
(r)
ki zmi

and

α
(r+1)
mℓ = α

(r)
mℓ − γr

N∑
i=1

∂Ri

∂α
(r)
mℓ

= α
(r)
mℓ − γr

N∑
i=1

s(r)
mi xiℓ

where γr is the learning rate. Updates are batch learning.

Back-propagation

▶ To perform the the r+1 updated, gradients are updated
using a two-pass algorithm

Forward Pass Inputs are feed into the NN and let them propagate forward
to the output and calculate f (r)k (xi) based on which

δ
(r)
ki = −2(yik − f (r)k (xi))g′

k (β
(r)
0k + β

(r)
k

T zi)

are calculated

Backward Pass Then propagated backward using the back-propagation
equations

s(r)
mi = σ′(α

(r)
0m + α

(r)
m

T xi)
K∑

k=1

β
(r)
kmδ

(r)
ki

Back-propagation

▶ To perform the the r+1 updated, gradients are updated
using a two-pass algorithm

Forward Pass Inputs are feed into the NN and let them propagate forward
to the output and calculate f (r)k (xi) based on which

δ
(r)
ki = −2(yik − f (r)k (xi))g′

k (β
(r)
0k + β

(r)
k

T zi)

are calculated

Backward Pass Then propagated backward using the back-propagation
equations

s(r)
mi = σ′(α

(r)
0m + α

(r)
m

T xi)
K∑

k=1

β
(r)
kmδ

(r)
ki

Back-propagation

▶ To perform the the r+1 updated, gradients are updated
using a two-pass algorithm

Forward Pass Inputs are feed into the NN and let them propagate forward
to the output and calculate f (r)k (xi) based on which

δ
(r)
ki = −2(yik − f (r)k (xi))g′

k (β
(r)
0k + β

(r)
k

T zi)

are calculated

Backward Pass Then propagated backward using the back-propagation
equations

s(r)
mi = σ′(α

(r)
0m + α

(r)
m

T xi)
K∑

k=1

β
(r)
kmδ

(r)
ki

Back-propagation
Some notes:
▶ Training can happen online – one case at a time and

update the gradients after each observation and cycling
through them many times.

▶ A training epoch is one sweep through the entire training
set.

▶ It is good to handle big data and data as they arrive to the
NN

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back-propagation
Some notes:
▶ Training can happen online – one case at a time and

update the gradients after each observation and cycling
through them many times.

▶ A training epoch is one sweep through the entire training
set.

▶ It is good to handle big data and data as they arrive to the
NN

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back-propagation
Some notes:
▶ Training can happen online – one case at a time and

update the gradients after each observation and cycling
through them many times.

▶ A training epoch is one sweep through the entire training
set.

▶ It is good to handle big data and data as they arrive to the
NN

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back-propagation
Some notes:
▶ Training can happen online – one case at a time and

update the gradients after each observation and cycling
through them many times.

▶ A training epoch is one sweep through the entire training
set.

▶ It is good to handle big data and data as they arrive to the
NN

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back-propagation
Some notes:
▶ Training can happen online – one case at a time and

update the gradients after each observation and cycling
through them many times.

▶ A training epoch is one sweep through the entire training
set.

▶ It is good to handle big data and data as they arrive to the
NN

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back-propagation
Some notes:
▶ Training can happen online – one case at a time and

update the gradients after each observation and cycling
through them many times.

▶ A training epoch is one sweep through the entire training
set.

▶ It is good to handle big data and data as they arrive to the
NN

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back-propagation

Some notes:
▶ Consider regularization after standardization of the inputs

R(θ) + λJ(θ)

▶ Weight decay (L2−) penalty:

J(θ) =
∑
mk

β2
mk +

∑
jm

α2
jm

▶ Weight elimination penalty:

J(θ) =
∑
mk

β2
mk

1 + β2
mk

+
∑
jm

α2
jm

1 + α2
jm

more shrinkage than weight decay penalty

Back-propagation

Some notes:
▶ Consider regularization after standardization of the inputs

R(θ) + λJ(θ)

▶ Weight decay (L2−) penalty:

J(θ) =
∑
mk

β2
mk +

∑
jm

α2
jm

▶ Weight elimination penalty:

J(θ) =
∑
mk

β2
mk

1 + β2
mk

+
∑
jm

α2
jm

1 + α2
jm

more shrinkage than weight decay penalty

Back-propagation

Some notes:
▶ Consider regularization after standardization of the inputs

R(θ) + λJ(θ)

▶ Weight decay (L2−) penalty:

J(θ) =
∑
mk

β2
mk +

∑
jm

α2
jm

▶ Weight elimination penalty:

J(θ) =
∑
mk

β2
mk

1 + β2
mk

+
∑
jm

α2
jm

1 + α2
jm

more shrinkage than weight decay penalty

Back-propagation
Example (Orange vs Blue)

Back-propagation

More notes:
▶ Again, standardize inputs.

▶ More nodes and hidden layers is better then less.

▶ Consider bagging as there might be more than one minima
of R(θ).

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back-propagation

More notes:
▶ Again, standardize inputs.

▶ More nodes and hidden layers is better then less.

▶ Consider bagging as there might be more than one minima
of R(θ).

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back-propagation

More notes:
▶ Again, standardize inputs.

▶ More nodes and hidden layers is better then less.

▶ Consider bagging as there might be more than one minima
of R(θ).

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back-propagation

More notes:
▶ Again, standardize inputs.

▶ More nodes and hidden layers is better then less.

▶ Consider bagging as there might be more than one minima
of R(θ).

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back-propagation

More notes:
▶ Again, standardize inputs.

▶ More nodes and hidden layers is better then less.

▶ Consider bagging as there might be more than one minima
of R(θ).

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back-propagation

More notes:
▶ Again, standardize inputs.

▶ More nodes and hidden layers is better then less.

▶ Consider bagging as there might be more than one minima
of R(θ).

▶ The learning rates are γr are constant or found using a line
search that minimizes the error function at each update.
Then it will decrease to zero as r goes to infinity.

▶ Usually starting points are randomly selected near zero
(almost linear functionals) but never zero or NN will not
move.

▶ Stopping rules are needed to avoid overfitting.

Back -propagation

DIY in R
1. Carry out a neural network analysis of the orange vs blue

data using nnet in R.
2. Carry out a neural network analysis of the ZIP Code data

Please study Example 11.7 in the ESL textbook.

Back -propagation

DIY in R
1. Carry out a neural network analysis of the orange vs blue

data using nnet in R.
2. Carry out a neural network analysis of the ZIP Code data

Please study Example 11.7 in the ESL textbook.

Back -propagation

DIY in R
1. Carry out a neural network analysis of the orange vs blue

data using nnet in R.
2. Carry out a neural network analysis of the ZIP Code data

Please study Example 11.7 in the ESL textbook.

Back -propagation

DIY in R
1. Carry out a neural network analysis of the orange vs blue

data using nnet in R.
2. Carry out a neural network analysis of the ZIP Code data

Please study Example 11.7 in the ESL textbook.

Universal Approximation
Theorem

Universal Approximation Theorem

Theorem (Cybenko’s Universal approximation theorem
(1989))
Let f be a C([0,1]n) (also an L2− function), and σ be such that
limx→∞ σ(x) = 1 and limx→−∞ σ(x) = 0, then for some > 0,
there is M = M(ϵ) such that

infα,β

∣∣∣∣∣f (x)−
M∑

m=1

βm σ(α0m + αT
mx)

∣∣∣∣∣ ≤ ϵ

It basically says that any such function f could be approximated
by an ANN. The more the hidden-layer’s nodes, the better the
approximation.

Multi-layer Neural
Network

Multi-layer Neural Network

Multi-layer Neural Network

Multi-layer Neural Network

Multi-layer Neural Network

Multi-layer Neural Network

Multi-layer Neural Network

Multi-layer Neural Network

Multi-layer Neural Network

Multi-layer Neural Network

Multi-layer Neural Network

That is,

▶ It is a composition of linear (and in a more recent
nonlinear) functions

Y = g(βσ(N)(α(N)σ(N−1)(α(N−1)σ(N−2)(· · ·σ(1)(α(1)x)))))
=: f (x)

where β and α(i) are weight matrices and f : X 7→ Y is a
multi-response nonlinear transformation of X into Y

Multi-layer Neural Network

▶ Fitting MNN is done using back-propagation.

▶ By minimizing R(θ) = 1
n
∑n

i=1 Ri(θ), which is usually
regularized into R(θ) + λJ(θ). The tuning parameter λ
could be determined using CV.

▶ With gradient descent’s iterative formula

θnew = θold − γr ∇R(θ)|θold

▶ or with stochastic gradient descent’s iterative formula

θnew = θold − γr (∇R(θ)|θold + ϵnew)

where ϵ are iid random noise with mean 0.

Multi-layer Neural Network

▶ Fitting MNN is done using back-propagation.

▶ By minimizing R(θ) = 1
n
∑n

i=1 Ri(θ), which is usually
regularized into R(θ) + λJ(θ). The tuning parameter λ
could be determined using CV.

▶ With gradient descent’s iterative formula

θnew = θold − γr ∇R(θ)|θold

▶ or with stochastic gradient descent’s iterative formula

θnew = θold − γr (∇R(θ)|θold + ϵnew)

where ϵ are iid random noise with mean 0.

Multi-layer Neural Network

▶ Fitting MNN is done using back-propagation.

▶ By minimizing R(θ) = 1
n
∑n

i=1 Ri(θ), which is usually
regularized into R(θ) + λJ(θ). The tuning parameter λ
could be determined using CV.

▶ With gradient descent’s iterative formula

θnew = θold − γr ∇R(θ)|θold

▶ or with stochastic gradient descent’s iterative formula

θnew = θold − γr (∇R(θ)|θold + ϵnew)

where ϵ are iid random noise with mean 0.

Multi-layer Neural Network

▶ Fitting MNN is done using back-propagation.

▶ By minimizing R(θ) = 1
n
∑n

i=1 Ri(θ), which is usually
regularized into R(θ) + λJ(θ). The tuning parameter λ
could be determined using CV.

▶ With gradient descent’s iterative formula

θnew = θold − γr ∇R(θ)|θold

▶ or with stochastic gradient descent’s iterative formula

θnew = θold − γr (∇R(θ)|θold + ϵnew)

where ϵ are iid random noise with mean 0.

Multi-layer Neural Network

▶ Another stochastic gradient descent (SGD) ...

▶ since ∇R(θ) = 1
n
∑n

i=1 ∇Ri(θ),

▶ then a randomly selected i (as a random epoch) results in
a random Ri(θ) that can be used to update the weights via

θnew = θold − γr ∇Ri(θ)|θold

▶ A forward pass is made then followed by a number of N
backward passes to update the weights.

Multi-layer Neural Network

▶ Another stochastic gradient descent (SGD) ...

▶ since ∇R(θ) = 1
n
∑n

i=1 ∇Ri(θ),

▶ then a randomly selected i (as a random epoch) results in
a random Ri(θ) that can be used to update the weights via

θnew = θold − γr ∇Ri(θ)|θold

▶ A forward pass is made then followed by a number of N
backward passes to update the weights.

Multi-layer Neural Network

▶ Another stochastic gradient descent (SGD) ...

▶ since ∇R(θ) = 1
n
∑n

i=1 ∇Ri(θ),

▶ then a randomly selected i (as a random epoch) results in
a random Ri(θ) that can be used to update the weights via

θnew = θold − γr ∇Ri(θ)|θold

▶ A forward pass is made then followed by a number of N
backward passes to update the weights.

Multi-layer Neural Network

▶ Another stochastic gradient descent (SGD) ...

▶ since ∇R(θ) = 1
n
∑n

i=1 ∇Ri(θ),

▶ then a randomly selected i (as a random epoch) results in
a random Ri(θ) that can be used to update the weights via

θnew = θold − γr ∇Ri(θ)|θold

▶ A forward pass is made then followed by a number of N
backward passes to update the weights.

Bayesian Neural Network

Bayesian Neural Network
Look at dissertation of Neal (1995)

▶ Given a training data (Xtr , ytr), in a regression or
classification problem P(Y |X , θ) can give the posterior
distribution for the regression in which the mean or the
classification probability is sought

▶ Given a prior P(θ), the posterior distribution is given by

P(θ|Xtr , ytr) =
P(ytr |Xtr , θ)P(θ)∫

Θ P(ytr |Xtr , θ′)P(θ′)dθ′

▶ A prediction for a new case X∗ is done using the predictive
posterior

P(y∗|X∗,Xtr , ytr) =

∫
Θ

P(y∗|X∗, θ)P(θ|Xtr , ytr)dθ

Bayesian Neural Network
Look at dissertation of Neal (1995)

▶ Given a training data (Xtr , ytr), in a regression or
classification problem P(Y |X , θ) can give the posterior
distribution for the regression in which the mean or the
classification probability is sought

▶ Given a prior P(θ), the posterior distribution is given by

P(θ|Xtr , ytr) =
P(ytr |Xtr , θ)P(θ)∫

Θ P(ytr |Xtr , θ′)P(θ′)dθ′

▶ A prediction for a new case X∗ is done using the predictive
posterior

P(y∗|X∗,Xtr , ytr) =

∫
Θ

P(y∗|X∗, θ)P(θ|Xtr , ytr)dθ

Bayesian Neural Network
Look at dissertation of Neal (1995)

▶ Given a training data (Xtr , ytr), in a regression or
classification problem P(Y |X , θ) can give the posterior
distribution for the regression in which the mean or the
classification probability is sought

▶ Given a prior P(θ), the posterior distribution is given by

P(θ|Xtr , ytr) =
P(ytr |Xtr , θ)P(θ)∫

Θ P(ytr |Xtr , θ′)P(θ′)dθ′

▶ A prediction for a new case X∗ is done using the predictive
posterior

P(y∗|X∗,Xtr , ytr) =

∫
Θ

P(y∗|X∗, θ)P(θ|Xtr , ytr)dθ

Bayesian Neural Network

▶ A MCMC algorithm is need to simulate from the predictive
posterior

P(y∗|X∗,Xtr , ytr) =

∫
Θ

P(y∗|X∗, θ)P(θ|Xtr , ytr)dθ

with the following steps

▶ Use a converged MCMC algorithm to sample from the
chain values θ(j) for j = 1,2, . . . , J that are representing
simulated values from P(θ|Xtr , ytr)

▶ Then, simulate y (j)
∗ from P(y |X∗, θ

(j)) for j = 1,2, . . . , J and
use it to make the empirical estimate of the posterior
predictive, or

▶ instead, calculate 1
J

∑J
j=1 P(y∗|X∗, θ

(j)) for sufficiently large
J and for a set of values y∗

Bayesian Neural Network

▶ A MCMC algorithm is need to simulate from the predictive
posterior

P(y∗|X∗,Xtr , ytr) =

∫
Θ

P(y∗|X∗, θ)P(θ|Xtr , ytr)dθ

with the following steps

▶ Use a converged MCMC algorithm to sample from the
chain values θ(j) for j = 1,2, . . . , J that are representing
simulated values from P(θ|Xtr , ytr)

▶ Then, simulate y (j)
∗ from P(y |X∗, θ

(j)) for j = 1,2, . . . , J and
use it to make the empirical estimate of the posterior
predictive, or

▶ instead, calculate 1
J

∑J
j=1 P(y∗|X∗, θ

(j)) for sufficiently large
J and for a set of values y∗

Bayesian Neural Network

▶ A MCMC algorithm is need to simulate from the predictive
posterior

P(y∗|X∗,Xtr , ytr) =

∫
Θ

P(y∗|X∗, θ)P(θ|Xtr , ytr)dθ

with the following steps

▶ Use a converged MCMC algorithm to sample from the
chain values θ(j) for j = 1,2, . . . , J that are representing
simulated values from P(θ|Xtr , ytr)

▶ Then, simulate y (j)
∗ from P(y |X∗, θ

(j)) for j = 1,2, . . . , J and
use it to make the empirical estimate of the posterior
predictive, or

▶ instead, calculate 1
J

∑J
j=1 P(y∗|X∗, θ

(j)) for sufficiently large
J and for a set of values y∗

Bayesian Neural Network

▶ A MCMC algorithm is need to simulate from the predictive
posterior

P(y∗|X∗,Xtr , ytr) =

∫
Θ

P(y∗|X∗, θ)P(θ|Xtr , ytr)dθ

with the following steps

▶ Use a converged MCMC algorithm to sample from the
chain values θ(j) for j = 1,2, . . . , J that are representing
simulated values from P(θ|Xtr , ytr)

▶ Then, simulate y (j)
∗ from P(y |X∗, θ

(j)) for j = 1,2, . . . , J and
use it to make the empirical estimate of the posterior
predictive, or

▶ instead, calculate 1
J

∑J
j=1 P(y∗|X∗, θ

(j)) for sufficiently large
J and for a set of values y∗

Bayesian Neural Network

Neal and Zhang (2006) suggested using

▶ a hybrid MCMC algorithm

▶ performing pre-processing of the inputs like using
univariate t-tests

▶ more importantly, use Automatic Relevance Determination
(ARD) that is
▶ assign (same for each j) priors for the weights α

(1)
jm from

input j in the input layer to the first hidden layer that have
mean 0 and variance σ2

j (a hyper-parameter)

▶ (A regularization step) assign hyper-prior to the
hyper-parameters σ2

j that has very small variance in which
case a weight decay will be happen

Bayesian Neural Network

Neal and Zhang (2006) suggested using

▶ a hybrid MCMC algorithm

▶ performing pre-processing of the inputs like using
univariate t-tests

▶ more importantly, use Automatic Relevance Determination
(ARD) that is
▶ assign (same for each j) priors for the weights α

(1)
jm from

input j in the input layer to the first hidden layer that have
mean 0 and variance σ2

j (a hyper-parameter)

▶ (A regularization step) assign hyper-prior to the
hyper-parameters σ2

j that has very small variance in which
case a weight decay will be happen

Bayesian Neural Network

Neal and Zhang (2006) suggested using

▶ a hybrid MCMC algorithm

▶ performing pre-processing of the inputs like using
univariate t-tests

▶ more importantly, use Automatic Relevance Determination
(ARD) that is
▶ assign (same for each j) priors for the weights α

(1)
jm from

input j in the input layer to the first hidden layer that have
mean 0 and variance σ2

j (a hyper-parameter)

▶ (A regularization step) assign hyper-prior to the
hyper-parameters σ2

j that has very small variance in which
case a weight decay will be happen

Bayesian Neural Network

Neal and Zhang (2006) suggested using

▶ a hybrid MCMC algorithm

▶ performing pre-processing of the inputs like using
univariate t-tests

▶ more importantly, use Automatic Relevance Determination
(ARD) that is
▶ assign (same for each j) priors for the weights α

(1)
jm from

input j in the input layer to the first hidden layer that have
mean 0 and variance σ2

j (a hyper-parameter)

▶ (A regularization step) assign hyper-prior to the
hyper-parameters σ2

j that has very small variance in which
case a weight decay will be happen

Bayesian Neural Network

Neal and Zhang (2006) suggested using

▶ a hybrid MCMC algorithm

▶ performing pre-processing of the inputs like using
univariate t-tests

▶ more importantly, use Automatic Relevance Determination
(ARD) that is
▶ assign (same for each j) priors for the weights α

(1)
jm from

input j in the input layer to the first hidden layer that have
mean 0 and variance σ2

j (a hyper-parameter)

▶ (A regularization step) assign hyper-prior to the
hyper-parameters σ2

j that has very small variance in which
case a weight decay will be happen

Bayesian Neural Network
Example (Neal (1995))

Recurrent Neural
Network

Recurrent Neural Network
Example

h̄t = tanh(Wxhx̄t + Whhh̄t−1)

and
ȳt = Why h̄t

Recurrent Neural Network

Convolutional Neural
Network

Convolutional Neural Network

▶ Data is given in 1, 2, ... dimensional grid, like time series,
pictures, ...

▶ CNN can provide parameter efficient, invariant to
transformation, feature extraction learning method.

▶ There are different famous CNNs: AlexNet, ZFNet,
LeNet-5, GoogLeNet, ResNet

Convolutional Neural Network

▶ Data is given in 1, 2, ... dimensional grid, like time series,
pictures, ...

▶ CNN can provide parameter efficient, invariant to
transformation, feature extraction learning method.

▶ There are different famous CNNs: AlexNet, ZFNet,
LeNet-5, GoogLeNet, ResNet

Convolutional Neural Network

▶ Data is given in 1, 2, ... dimensional grid, like time series,
pictures, ...

▶ CNN can provide parameter efficient, invariant to
transformation, feature extraction learning method.

▶ There are different famous CNNs: AlexNet, ZFNet,
LeNet-5, GoogLeNet, ResNet

Convolutional Neural Network
AlexNet

▶ Input: 224x224x3 images - (3=RGB)
▶ AlexNet uses 96 filters (of semantic features) of kernel size

11x11x3 in the first layer with stride 4, resulting in a first
layer of 55x55x96

▶ then a max-pool (MP) is applied with 256 filters of kernel
size 5x5x96 with stride 2. All MPs are 3x3 stride 2.

Convolutional Neural Network
AlexNet

▶ Input: 224x224x3 images - (3=RGB)
▶ AlexNet uses 96 filters (of semantic features) of kernel size

11x11x3 in the first layer with stride 4, resulting in a first
layer of 55x55x96

▶ then a max-pool (MP) is applied with 256 filters of kernel
size 5x5x96 with stride 2. All MPs are 3x3 stride 2.

Convolutional Neural Network
AlexNet

▶ Input: 224x224x3 images - (3=RGB)
▶ AlexNet uses 96 filters (of semantic features) of kernel size

11x11x3 in the first layer with stride 4, resulting in a first
layer of 55x55x96

▶ then a max-pool (MP) is applied with 256 filters of kernel
size 5x5x96 with stride 2. All MPs are 3x3 stride 2.

Convolutional Neural Network
AlexNet

▶ The rest are 384 filters of kernel size 3x3x256 then
3x3x384, then 256 filters of kernel size 3x3x384

▶ ReLU activation function and response-normalization are
used after every convolution layer and the output uses
softmax function for classification.

▶ FC7 is a 4096 dimensional representation of the image
and can be used as feature extraction from the image
(referred to FC7 features).

Convolutional Neural Network
AlexNet

▶ The rest are 384 filters of kernel size 3x3x256 then
3x3x384, then 256 filters of kernel size 3x3x384

▶ ReLU activation function and response-normalization are
used after every convolution layer and the output uses
softmax function for classification.

▶ FC7 is a 4096 dimensional representation of the image
and can be used as feature extraction from the image
(referred to FC7 features).

Convolutional Neural Network
AlexNet

▶ The rest are 384 filters of kernel size 3x3x256 then
3x3x384, then 256 filters of kernel size 3x3x384

▶ ReLU activation function and response-normalization are
used after every convolution layer and the output uses
softmax function for classification.

▶ FC7 is a 4096 dimensional representation of the image
and can be used as feature extraction from the image
(referred to FC7 features).

Convolutional Neural Network
ZFNet

Convolutional Neural Network
LeNet-5

Convolutional Neural Network
ResNet

Convolutional Neural Network

What are the convolution
kernels?

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
A kernel is a weights matrix that applies to cells and aggregate
into a sum resulting in a convolution like in

Convolutional Neural Network
What about stride 3?

Convolutional Neural Network
What about stride 3? Cannot be.

Convolutional Neural Network
Zero-padding for border

Convolutional Neural Network

Zero-padding for border

Convolutional Neural Network

Zero-padding for border

Complete – DIY

Convolutional Neural Network

Benefits of CNN:

▶ Sparse connectivity: for instance, compare
224x224x3=150528 connected to each other through
weighted links vs. 11x11x3=363 weights in a kernel

Convolutional Neural Network

Benefits of CNN:

▶ Translation invariance: applying a convolution kernel with
stride 1 will result in the same outcome for a translated
image

Convolutional Neural Network
Application of kernels: Sobel’s Edge Detection (first transform
color images into grey images)

Convolutional Neural Network

Application of kernels: Sobel’s Edge Detection (first transform
color images into grey images)

What are the
sub-sampling layers or

pooling kernels?

Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP) resulting in a
convolution like in

Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP) resulting in a
convolution like in

Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP) resulting in a
convolution like in

Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP) resulting in a
convolution like in

Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP) resulting in a
convolution like in

Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP) resulting in a
convolution like in

Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP) resulting in a
convolution like in

Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP) resulting in a
convolution like in

Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP) resulting in a
convolution like in

Convolutional Neural Network
Sub-sampling layers are non trainable using some pooling
kernels. A pooling kernel applies to cells and aggregate them
into a maximum (MP) or an average (AP – Complete it – DIY)
resulting in a convolution like in

Convolutional Neural Network

A sub-sampling layer makes images smaller with fewer
parameters that doesn’t alter the image

Convolutional Neural Network

Application of kernels: Image blurring

Convolutional Neural Network

Example (Hand gestures-Sahoo et al. 2021)

Convolutional Neural Network

Example (Hand gestures-Sahoo et al. 2021)

End of Set 8

