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A preamble to Bootstrap



Bootstrap

By Efron (1979, 1981), to estimate

▶ Bias

▶ Standard error

▶ Confidence interval (5 different ways)

▶ correlation, regression parameters, prediction



Bootstrap
Estimation



Bootstrap
Estimation

▶ B = 50 is good enough.

▶ The probability that any item is selected in any one of the
bootstrap samples is given by

1 − (1 − 1
n
)n ≈ 1 − e−1 = .632

▶ Expected number of distinct points in a sample is .632n.



Bootstrap
Confidence Interval

100(1 − α)% Bootstrap Confidence Intervals (BCI):

1. Standard Normal BCI

θ̂boot ± zα/2se(θ̂)boot

2. Basic BCI (
2θ̂boot − θ̂1−α/2,2θ̂boot − θ̂α/2

)
3. Percentile BCI (

θ̂α/2, θ̂1−α/2

)
4. t-type – BCI(

θ̂boot − t∗1−α/2se(θ̂), θ̂boot + t∗α/2se(θ̂)
)



Bootstrap
Confidence Interval

with t∗α is the α quantile of {t(1), . . . , t(B)} where

t(i) =
θ̂(i) − θ̂boot

se(θ̂(i))

and estimation of se(θ̂(i)) requires a further bootstrap from the
bootstrapped sample y (i)

1 , . . . , y (i)
n



Bootstrap
Confidence Interval

100(1 − α)% Bootstrap Confidence Intervals (BCI):

1. Bias Corrected accelerated BCI or BCa – BCI(
θ̂∗α1

, θ̂∗α2

)
are the α1 and α2 quantiles of {θ̂(1), . . . , θ̂(B)} and

α1 = Φ(ẑ0 +
ẑ0 + zα/2

1 − â (ẑ0 + zα/2)
)

and

α2 = Φ(ẑ0 +
ẑ0 + z1−α/2

1 − â (ẑ0 + z1−α/2)
)



Bootstrap
Confidence Interval

where Φ is the cdf of the standard normal, zα/2 is the standard
normal quantile, and the bias corrector

ẑ0 = Φ−1

(
1
B

B∑
i=1

I(θ̂(i) ≤ θ̂)

)
where I is the indicator function, and the acceleration factor

â =

∑B
i=1(θ̂

(i) − θ̂)3

6
(∑B

i=1(θ̂
(i) − θ̂)2

)3/2

which measures skewness.



Bootstrap
Prediction

▶ For each b (b = 1,2, . . . ,B), bootstrap sample
y (b)

1 , . . . , y (b)
n could be use to make a prediction function

f̂ (b)(x) and the prediction error for that bootstrap training is

Êrr
(b)

=
1
n

n∑
i=1

L(yi , f̂ (b)(xi))

and then the bootstrap error is estimated by

Êrrboot =
1
B

B∑
i=1

Êrr
(b)

but it can be far below the correct error.



Bootstrap
Prediction

▶ So another suggested error is the Leave-one-out bootstrap
estimate of prediction error is

Êrr
(1)
boot =

1
n

n∑
i=1

1
|C−i |

∑
b∈C−i

L(yi , f̂ (b)(xi))

where C−i is the set of all indices of bootstrap samples that
don’t contain observation i . (Only if they they are
non-empty.)

But it is upwardly biased.



Bootstrap
Prediction

▶ It is suggested to use the ".632 estimator" that corrects for
that bias

Êrr
(632)
boot = .368ērr + .632Êrr

(1)
boot

where ērr is the training error rate.

Still not the best. Look for Êrr
(632+)

boot .



A preamble to Jackknife



Jackknife

By Quenouille and Tukey, to estimate

▶ Bias

▶ Standard error

The estimate θ̂ must be a smooth plug-in estimator: small
changes in the data results in small changes in the value of the
estimate. The sample mean is a smooth plug-in for the
population mean while the sample median is not.



Jackknife



Jackknife

Let ¯̂θJ = 1
n
∑n

i=1 θ̂
(i)

▶ ˆBias = (n − 1)(¯̂θJ − θ̂) where θ̂ is the estimate of θ using
the original sample x1, . . . , xn

▶ Standard error se(θ̂J) is
√

n − 1 times the standard
deviation of the jackknife estimates θ̂(1), . . . , θ̂(n)



Ensemble Methods



Ensemble Methods

The idea is to combine predictions from many "building blocks."
They are usually weak learners that wouldn’t stand on their
own. It is usually based on weighted output of their predictions
and performance-based evaluation.
▶ Bayesian model averaging

▶ Bagging (Bootstrap aggregating)

▶ Stacking

▶ Boosting

▶ Random forests



Bayesian Model
Averaging



Ensemble Methods
Bayesian model averaging

▶ Recall that in Bayesian inference, the posterior distribution
is given by

P(θ|X ) =
P(X |θ)P(θ)∫

Θ P(X |θ′)P(θ′)dθ′

▶ The maximum posterior distribution (MAP) is commonly
used as a point estimate.

▶ To make predictions we use the predictive posterior
distribution

P(x∗|X ) =

∫
Θ

P(x∗|θ′)P(θ′|X )dθ′
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Ensemble Methods
Bayesian model averaging

Similarly, for L number of models Mk , k = 1,2, . . . ,L
▶ P(X |Mk ) =

∫
P(X |θk ,Mk )P(θk |Mk )dθk

▶ P(Mk |X ) =
P(X |Mk )P(Mk )∑L
ℓ=1 P(X |Mℓ)P(Mℓ)

▶ and so the posterior distribution of prediction f (x∗) is given
by

P(f (x∗)|X ) =
L∑

ℓ=1

P(f (x∗)|Mℓ,X )P(Mℓ|X )

▶ and the mean (as a weighted average) is

E(f (x∗)|X ) =
L∑

ℓ=1

E(f (x∗)|Mℓ,X )P(Mℓ|X )
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Ensemble Methods
Bayesian model averaging

Other types...
▶ Committee method that the prediction is a simple average

1
L

L∑
ℓ=1

E(f (x∗)|Mℓ,X )

▶ Using the Bayesian Information Criterion (BIC) for the
same model type with the same number of parameters

L∑
ℓ=1

E(f (x∗)|Mℓ,X )
e−BICℓ∑L

k=1 e−BICk
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Bagging (Bootstrap
aggregating)



Ensemble Methods
Bagging

▶ Helps to reduce high variance learning methods
(especially decision trees)

▶ Recall that, if {Xi ; i = 1, . . . ,n} are independent with mean
µ and variance σ2, then V (X̄ ) = V (1

n
∑n

i=1 Xi) =
σ2

n < σ2

(decreased), while E(X̄ ) = µ (remains)

▶ If they were only identical with correlation ρ then
V (X̄ ) = V (1

n
∑n

i=1 Xi) =
σ2

n (1 + (n − 1)ρ) ≤ σ2

▶ which could be done for prediction over n training data
sets, but we can not have that many training data sets ...
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Ensemble Methods
Bagging

▶ Use bootstraping to produce B bootstrap samples, train the
statistical learning method (like trees) on each one of them
and make a prediction f̂ (b)(x) for regression or a class
Ĉ(b)(x) for classification

▶ from which we get the bagging prediction

f̂bag(x) =
1
B

B∑
b=1

f̂ (b)(x) for regression

and

Ĉbag(x) = majority vote {Ĉ(1)(x), Ĉ(2)(x), . . . , Ĉ(B)(x)}

for classification.
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Ensemble Methods
Bagging

▶ Out-of-Bag (OOB) error estimation: OOB are the
approximately .386n points not selected on a bootstrap
sample and can be used for estimating testing error

Êrr
(1)
boot =

1
n

n∑
i=1

1
|C−i |

∑
b∈C−i

L(yi , f̂ (b)(xi))

where C−i is the set of all indices of bootstrap samples that
don’t contain observation i .



Ensemble Methods
Bagging

Example (Another Heart data)
Test error vs OOB



Stacking



Ensemble Methods
Stacking

▶ Uses LOOCV for model averaging with normalized weights
ŵk that are relatively lower for complex model and not
best-fit models

▶ If there are K number of models Mk with vector parameter
θk , k = 1,2, . . . ,K , which is to be estimated using the
training data then

f̂stack (x) =
K∑

k=1

ŵk fk (x |θ̂k )

▶ Where

(ŵ1, ŵ2, . . . , ŵK ) = argminw

n∑
i=1

(
yi −

K∑
k=1

wk f (−i)
k (xi |θ̂k )

)2

▶ LOOCV selection of the best model happens if we require
one wk = 1 and the rest are zeros.
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Ensemble Methods
Stacking

▶ What can go wrong if we rather do find

(ŵ1, ŵ2, . . . , ŵK ) = argminw

n∑
i=1

(
yi −

K∑
k=1

wk fk (xi |θ̂k )

)2

▶ If it is a linear regression problem with subsets as the the
K models then the full model with the full model will have
the weight = 1 and the rest wk = 0 since
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Ensemble Methods
Boosting

▶ Used mostly for classification problems and could be
extended for regression

▶ It is a committee of weak learners whose error rate are a
little bit better than random guessing
(ērr = 1

n
∑n

i=1 I(yi ̸= G(xi)) < .5)

▶ There are several boosting algorithms, like the Adaptive
Boosting algorithm Adaboost.M1, which are very powerful
than other classification methods
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Ensemble Methods
Boosting - AdaBoost.M1 Algorithm aka Discrete AdaBoost

Consider a two class classification problem Y ∈ {−1,1}

▶ Give weights to each item (xi , yi)
of wm

i such that w1
i = 1

n

▶ The algorithm keep modifying the
data through re-weighting and
train the learning method on the
new weighted data to produce
weak learners that form a
committee at the end

▶ The sequence of weights
{αm;m = 1,2, . . . ,M} are
produced by the algorithm
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Ensemble Methods
Random Forests

▶ It is bagging of a decision tree. It decreases variance and
keep the low bias.

▶ Again, bagging does use V (X̄ ) = V (1
n
∑n

i=1 Xi) =
σ2

n (1 + (n − 1)ρ) = ρσ2 + 1−ρ
n σ2 ≤ σ2, while random forest

tries to diminish the second term by using many bootstrap
samples (large B) and break down the correlation (making
ρ ∼ 0) to decrease the first term and still not upsetting σ2.

▶ The latter is achieved by random selection and usage of
m < p inputs at each split for the trees used on every
bootstrap sample.
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Ensemble Methods
Random Forests

▶ Tuning parameters:

▶ For regression problems: m = ⌊ p
3⌋ and nmin = 5

▶ For classification problems: m = ⌊√p⌋ and nmin = 1

▶ m = p is just bagging
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Ensemble Methods
Random Forests

Example (Spam data)
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Example (Gene data)



Ensemble Methods

DIY in R
1. Carry out a boosting regression tree for the prostate

cancer data using library(gbm)
2. Carry out a random forest for the SA hearth disease data

using library(randomForest)
Please study the different methods in the ISL book.
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End of Set 7



EM algorithm



Expectation – Maximization (EM) algorithm

▶ EM is used for incomplete data, e.g. missing data,
censored data or latent variables.

▶ If the complete data X = (O,M) where O is the observed
data and M is the missing data.

▶ Note that
f (X |θ) = f (M|θ,O) · f (O|θ)

That is
L(θ|X ) = f (M|θ,O) · L(θ|O)

▶ L(θ|X ) is the complete likelihood function and L(θ|O) is the
incomplete likelihood function



Expectation – Maximization (EM) algorithm

and
logL(θ|O) = logL(θ|X )− log(f (M|θ,O))

so ∫
logL(θ|O)f (M|θ′,O)dM =

∫
logL(θ|X )f (M|θ′,O)dM

−
∫

log(f (M|θ,O))f (M|θ′,O)dM

or

logL(θ|O) = EM|θ′,O(logL(θ|X ))− EM|θ′,O(log(f (M|θ,O)))



Expectation – Maximization (EM) algorithm

EM Algorithm:
1. Start from initial point θ(0), then for each k ≥ 1

2. E step: Find Qk (θ|θ(k)) := EM|θ(k),O(logL(θ|X ))

3. M step: Find θ(k+1) = argmaxθ∈ΘQk (θ|θ(k))

4. Stop when
∣∣θ(k+1) − θ(k)

∣∣ /θ(k) < TOL
Remark: Convergence is theoretically guaranteed.



Expectation – Maximization (EM) algorithm

Example: Let x1, x2, . . . , xn be an observed data of completion
time at checking out at a grocery store with two cashiers and no
waiting lines. They are modeled by a mixture of two exponential
distributions with rates λ1 and λ2 with probability of selection
(mixture weights) p and 1 − p.
The parameter vector is θ = (p, λ1, λ2) and f (xi |λ) = λe−λxi .
The incomplete likelihood function

L(θ|x) =
n∏

i=1

(p · f (xi |λ1) + (1 − p) · f (xi |λ2)·)

But what we didn’t observe is from where each data point is
coming from. That corresponds to latent variable z1, . . . , zn for
which cashier was selected, encoded as zi = 1 if cashier 1 is
selected and zi = 0 if cashier 2 is selected.



Expectation – Maximization (EM) algorithm
By Bayes’ theorem

pi := P(Zi = 1|X = xi , θ) =
p · f (xi |λ1)

p · f (xi |λ1) + (1 − p) · f (xi |λ2)

and the complete likelihood function

L(θ|x , z) =
n∏

i=1

(zip · f (xi |λ1) + (1 − zi)(1 − p) · f (xi |λ2))

and

EZ |X ,θ(logL(θ|x , z)) =
1∑

j=0

n∑
i=1

log (zip · f (xi |λ1) + (1 − zi)(1 − p)

·f (xi |λ2)) · P(Zi = j |X = xi , θ)



Expectation – Maximization (EM) algorithm
Thus, E step:

Qk (θ|θ(k)) = EZ |X ,θ(k)(logL(θ|x , z)) =

n∑
i=1

p(k)
i (log(p)+log(f (xi |λ1)))+(1−p(k)

i )(log(1−p)+log(f (xi |λ2))) =

n∑
i=1

(
p(k)

i log(p) + (1 − p(k)
i ) log(1 − p)

)
+

n∑
i=1

(
p(k)

i log(f (xi |λ1)) + (1 − p(k)
i ) log(f (xi |λ2))

)
where

p(k)
i := P(Zi = 1|X = xi , θ

(k)) =
p(k) · f (xi |λ

(k)
1 )

p(k) · f (xi |λ
(k)
1 ) + (1 − p(k)) · f (xi |λ

(k)
2 )



Expectation – Maximization (EM) algorithm
And, M step can be split into
M sub-step 1: Find

p(k+1) = argmaxp∈(0,1)

n∑
i=1

(
p(k)

i log(p) + (1 − p(k)
i ) log(1 − p)

)
M sub-step 2: Find

λ
(k+1)
1 = argmaxλ1∈(0,∞)

n∑
i=1

(
p(k)

i log(f (xi |λ1))
)

M sub-step 3: Find

λ
(k+1)
2 = argmaxλ2∈(0,∞)

n∑
i=1

(
(1 − p(k)

i ) log(f (xi |λ2))
)

The last two are weighted MLE’s.



Expectation – Maximization (EM) algorithm
M sub-step 1: Gives

p(k+1) =

∑n
i=1 p(k)

i
n

M sub-step 2: Gives

λ
(k+1)
1 =

∑n
i=1 p(k)

i∑n
i=1 p(k)

i xi

M sub-step 3: Gives

λ
(k+1)
2 =

∑n
i=1(1 − p(k)

i )∑n
i=1(1 − p(k)

i )xi

where

p(k)
i := P(Zi = 1|X = xi , θ

(k)) =
p(k) · f (xi |λ

(k)
1 )

p(k) · f (xi |λ
(k)
1 ) + (1 − p(k)) · f (xi |λ

(k)
2 )



Expectation – Maximization (EM) algorithm

Example: Use a sample of n = 1000 generated from a mixture
of exp(λ1 = .3) and exp(λ2 = .5) with probabilities p = .2 and
1 − p = .8, respectively, to estimate p, λ1 and λ2.
You consider them as 1000 finishing time of 1000 transactions
through two different cashiers that you have collected.
First, generate the 1000 points
n<-1000;p<-.2;lambda1<-.3;lambda2<-.5
lambda<-c(lambda1,lambda2)
K<-sample(1:2,n,prob=c(p,1-p),rep=T)
x<-rexp(n,rate=lambda[K])



Expectation – Maximization (EM) algorithm

TOL<-1e-8;j<-0
pold<-0.9;lambda1old<-0.1;lambda2old<-0.9
pnew<-.1;lambda1new<-1;lambda2new<-.1
vpnew<-pnew*dexp(x,lambda1new)/
(pnew*dexp(x,lambda1new)+(1-pnew)*dexp(x,lambda2new))
while(max(abs(pnew-pold)/pold,
abs(lambda1new-lambda1old)/lambda1old,
abs(lambda2new-lambda2old)/lambda2old)>TOL){
j<-j+1
pold<-pnew
lambda1old<-lambda1new
lambda2old<-lambda2new
vpold<-vpnew
pnew<-mean(vpold)
lambda1new<-1/weighted.mean(x, vpold)
lambda2new<-1/weighted.mean(x, 1-vpold)



Expectation – Maximization (EM) algorithm

vpnew<-(pnew*dexp(x,lambda1new))/
(pnew*dexp(x,lambda1new)+(1-pnew)*dexp(x,lambda2new))
}
j
[1] 6074
pnew
[1] 0.8089904
lambda1new
[1] 0.512815
lambda2new
[1] 0.2730581
Why the switch? Look at the initial values of the parameters.
Practical advice: Use different initial values of parameters λ1
and λ2 or p will not get updated (p(k) = p(0) for all k ).
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