
Statistical Learning– MATH 6333
Set 6 (Tree-Based Methods)

Tamer Oraby
UTRGV

tamer.oraby@utrgv.edu

∗Last updated November 10, 2021



Tree-Based Methods
Classification and Regression Tree (CART)

▶ Another method for regression (Y
is continuous) and classification
(Y is categorical).

▶ It produces recursively a binary
partition of the input space with
constant predicted outputs cm for
Rm.

▶ The predicted regression surface

f̂ (x) =
5∑

m=1

ĉmI((X1,X2) ∈ Rm)
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Regression Trees
▶ If Y is continuous, then ĉ = {ĉm,m = 1,2, . . . ,M} could be

found using the method of least squares by minimizing

RSS(c) =
N∑

i=1

(yi − f (xi))
2

▶ It results in

ĉm = average(yi |xi ∈ Rm) =
1

Nm

∑
i:xi∈Rm

yi

where Nm = |{i : xi ∈ Rm}|

▶ But, finding the binary partition {Rm,m = 1,2, . . . ,M} is
computationally infeasible.

▶ Unless, we use a greedy (short-sighted) algorithm to "grow
a regression tree top-down."
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Regression Trees
Recursive binary splitting

▶ selecting variable Xj and cut-off point s that define the two
regions

R1(j , s) = {X : Xj ≤ s} and R2(j , s) = {X : Xj > s}

▶ Then find optimal j , s using that minimize RSS

min
j,s

min
c1

∑
i:xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
i:xi∈R2(j,s)

(yi − c2)
2


▶ Internally, for the optimal j , s,

ĉ1 = average(yi |xi ∈ R1(j , s))

and
ĉ2 = average(yi |xi ∈ R2(j , s))
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Regression Trees
Recursive binary splitting

The algorithm continues by
▶ dividing one of the resulting regions into further two divided

regions via similar optimization problem and then

▶ further divide one of the resulting three regions and so on
and so forth till there is no more than 5 observations in
each region.

▶ But, when to stop growing the tree? (Large trees lead to
overfitting, and small trees are less effective.)

▶ May be using a threshold for RSS below which the
algorithm stops splitting. But early sub-optimal stopping is
possible.

▶ The answer is by stopping and pruning trees.
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Regression Trees
Tree Pruning

Stopping and pruning goes by
▶ growing a tree T0 and stop splitting when a selected

minimum node size is reached.

▶ Prune the tree using a cost-complexity pruning, aka
weakest link pruning. (Pruning works backward by
collapsing internal (non-terminal) nodes back to get a
subtree T ⊂ T0.) Let |T | be the number of terminal nodes
in T .

▶ Find tuning parameter α ≥ 0 (by CV) and the subtree
Tα ⊂ T0 that minimize the cost complexity criterion

Cα(T ) =

|T |∑
m=1

+α|T |

where ĉm = 1
Nm

∑
i:xi∈Rm

yi and Nm = |{i : xi ∈ Rm}|.
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Regression Trees
Tree Pruning

What happens when α is small or large in

Cα(T ) =

|T |∑
m=1

∑
i:xi∈Rm

(yi − ĉm)
2 + α|T |

?

At α = 0, the results is T0.
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Regression Trees
Example (Hitters data)
To predict baseball player’s Salary (Y = log(Salary/1,000))
based on Years in a major league and previous year’s number
of Hits, etc., RT gives T0



Regression Trees
Example (Hitters data)
A cross-validation will find the optimal tree size |T | = 3 (number
of terminal nodes.)



Regression Trees

Example (Hitters data)
Tα is
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Classification Trees
▶ If Y is categorical with K classes, then the class proportion

p̂ = {p̂mk ,m = 1,2, . . . ,M and k = 1,2, . . . ,K} could be
found to be

p̂mk =
1

Nm

∑
i:xi∈Rm

I(yi = k)

and
k(m) = argmaxk p̂mk

▶ They are found by minimizing objective functions that
include different measures of impurity Qm(T )

1. Misclassification error: 1
Nm

∑
i:xi∈Rm

I(yi ̸= k) = 1 − maxk p̂mk
2. Gini index (total variance):∑

k ̸=k ′ p̂mk p̂mk ′ =
∑K

k=1 p̂mk (1 − p̂mk ) as a measure of purity
which is small if the mth node is pure.

3. Cross-entropy (deviance): −
∑K

k=1 p̂mk log(p̂mk ) which is
small if the mth node is pure.
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Classification Trees
Two class impurity functions with scaled cross-entropy function
to go through (.5, .5)

The functions are
1. Misclassification error: 1 − max(p,1 − p)
2. Gini index (total variance): 2p(1 − p)
3. Cross-entropy (deviance): −p log(p)− (1 − p) log(1 − p)



Classification Trees

Example (Another Heart data)
To predict heart disease HD (Y =Yes or No) based on 13
predictors Age, Sex, Chol, Thal,ChestPain, etc., CT gives T0



Classification Trees
Example (Another Heart data)
A cross-validation will find the optimal tree size |T | = 6 (number
of terminal nodes.)



Classification Trees
Example (Another Heart data)
Tα is



Tree-based methods vs.
Linear models



Tree-based Methods

True linear decision boundary



Tree-based Methods

True non-linear decision boundary



Tree-based Methods

Trees
⇑ easy to interpret
⇑ visually re-presentable
⇑ seem to resemble human decision making
⇑ handle categorical variables without dummy variables
↓ less predictive accuracy
↓ sensitive to slight changes in the data (not robust)



Tree-based Methods

DIY in R
1. Carry out a regression tree for the prostate cancer data

using library(tree)
2. Carry out a classification tree for the SA hearth disease

data using library(tree)
Please study the different methods in the ISL book.
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Hierarchical Mixtures of
Experts (HME)
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Hierarchical Mixtures of Experts

▶ where gj(x , γj) is a softmax function in x with parameters γj

▶ and gℓ|j(x , γjℓ) is another softmax function in x with
parameters γjℓ

▶ at the terminal the output Y ∼ P(y |x , θjℓ)
▶ Regression: P is normal with its parameters
▶ Classification: P is the logistic CDF

▶ Then the mixture probability of the output is

P(y |x ,Ψ) =
K∑

j=1

gj(x , γj)
K∑

ℓ=1

gℓ|j(x , γjℓ)P(y |x , θjℓ)

▶ where Ψ = (γj , γjℓ, θjℓ) is estimated using maximum
likelihood methods and EM algorithm.
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