Statistical Learning- MATH 6333 Set 5 (Support Vector Machines - SVM)

Tamer Oraby
UTRGV
tamer.oraby@utrgv.edu

*Last updated October 27, 2021

Recall ...

From linear algebra ...

- $\beta^{*}=\frac{\beta}{\|\beta\|}$ is orthonormal to the separating hyperplane

$$
L=\left\{x: \beta_{0}+x^{\top} \beta=0\right\}
$$

Recall ...

From linear algebra ...

- $\beta^{*}=\frac{\beta}{\|\beta\|}$ is orthonormal to the separating hyperplane

$$
L=\left\{x: \beta_{0}+x^{\top} \beta=0\right\}
$$

if

$$
\left(x_{1}-x_{0}\right)^{T} \beta^{*}=0
$$

for any $x_{0}, x_{1} \in L$.

Recall ...

From linear algebra ...

- $\beta^{*}=\frac{\beta}{\|\beta\|}$ is orthonormal to the separating hyperplane

$$
L=\left\{x: \beta_{0}+x^{\top} \beta=0\right\}
$$

if

$$
\left(x_{1}-x_{0}\right)^{T} \beta^{*}=0
$$

for any $x_{0}, x_{1} \in L$.

- For $x \notin L$, the signed distance of x to L is

$$
\left(x-x_{0}\right)^{\top} \beta^{*}=\frac{\beta_{0}+x^{\top} \beta}{\|\beta\|} \propto \beta_{0}+x^{\top} \beta
$$

Recall ...

From linear algebra ...

- $\beta^{*}=\frac{\beta}{\|\beta\|}$ is orthonormal to the separating hyperplane

$$
L=\left\{x: \beta_{0}+x^{\top} \beta=0\right\}
$$

if

$$
\left(x_{1}-x_{0}\right)^{T} \beta^{*}=0
$$

for any $x_{0}, x_{1} \in L$.

- For $x \notin L$, the signed distance of x to L is

$$
\left(x-x_{0}\right)^{T} \beta^{*}=\frac{\beta_{0}+x^{\top} \beta}{\|\beta\|} \propto \beta_{0}+x^{\top} \beta
$$

- Note that, signed distance of $x_{1} \in L$ is zero.

Recall ...

From linear algebra ...

- The "actual" distance between two hyperplanes

$$
L_{1}=\left\{x: \beta_{0,1}+x^{\top} \beta=0\right\}
$$

and

$$
L_{2}=\left\{x: \beta_{0,2}+x^{\top} \beta=0\right\}
$$

is

$$
\frac{\left|\beta_{0,1}-\beta_{0,2}\right|}{\|\beta\|}
$$

Other Classification Methods

Other Classification Methods

1. Maximal Margin Classifier (aka Optimal Separating Hyperplane)
2. Support Vector Classifier (aka Soft Margin Classifier)
3. Support Vector Machine
4. Flexible Discriminant Methods

Separating Hyperplanes Maximal Margin Classifier

Maximal Margin Classifier

aka Optimal Separating Hyperplanes

OSH maximizes the margins (signed distances M) of the slab

- Solve

$$
\max _{\beta_{0}, \beta} M
$$

subject to

$$
\frac{1}{\|\beta\|} y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right) \geq M
$$

for $i=1,2, \ldots, N$.

Maximal Margin Classifier

aka Optimal Separating Hyperplanes

OSH maximizes the margins (signed distances M) of the slab

- Solve

$$
\max _{\beta_{0}, \beta} M
$$

subject to

$$
\frac{1}{\|\beta\|} y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right) \geq M
$$

for $i=1,2, \ldots, N$.

- Set $\|\beta\|=\frac{1}{M}$

Maximal Margin Classifier

 aka Optimal Separating Hyperplanes- Then the problem becomes equivalent to the convex optimization problem

$$
\min _{\beta_{0}, \beta} \frac{1}{2}\|\beta\|^{2}
$$

subject to

$$
y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right) \geq 1
$$

for $i=1,2, \ldots, N$.

Maximal Margin Classifier

aka Optimal Separating Hyperplanes

- Step 1: is the Lagrange problem to

$$
\min _{\beta_{0}, \beta} L_{p}
$$

where

$$
L_{p}=\frac{1}{2}\|\beta\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)-1\right)
$$

s.t. $\alpha_{i} \geq 0$

- Setting derivatives equal to zero leads to

Maximal Margin Classifier

aka Optimal Separating Hyperplanes

- Step 1: is the Lagrange problem to

$$
\min _{\beta_{0}, \beta} L_{p}
$$

where

$$
L_{p}=\frac{1}{2}\|\beta\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)-1\right)
$$

s.t. $\alpha_{i} \geq 0$

- Setting derivatives equal to zero leads to

$$
\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \text { and } \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}=\beta
$$

Maximal Margin Classifier

aka Optimal Separating Hyperplanes

- Substituting with those into L_{p} we get

$$
L_{p}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

Maximal Margin Classifier

aka Optimal Separating Hyperplanes

- Step 2: Using Wolfe dual optimization, the problem becomes

$$
\max _{\alpha_{i}} L_{D}
$$

where

$$
L_{D}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

subject to (the Karush-Kuhn-Tucker conditions)

$$
\begin{gathered}
\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \text { and } \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}=\beta \\
\alpha_{i} \geq 0
\end{gathered}
$$

and

$$
\alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1\right)=0
$$

for $i=1,2, \ldots, N$.

Maximal Margin Classifier

 aka Optimal Separating Hyperplanes- Here, β depends on α through the KKT conditions.

```
> If optimal }\mp@subsup{\alpha}{i}{}=0\mathrm{ , then }\mp@subsup{y}{i}{}(\mp@subsup{\beta}{0}{}+\mp@subsup{x}{i}{T}\beta)-1>0\mathrm{ and so the
    point is not on the margin line.
> If }\mp@subsup{\alpha}{i}{}>0\mathrm{ , then y. ( }\mp@subsup{\beta}{0}{}+\mp@subsup{x}{i}{\top}\beta)-1=0\mathrm{ and so the point is on
the margin line and which will contribute to the values of }
that will make up the decision boundary based on this
support points on the slab's boundaries.
```

\rightarrow Separation will occur according to $\hat{G}(x)=\operatorname{sign}\left(\hat{\beta}_{0}+x^{\top} \hat{\beta}\right)$.

- where $\hat{\beta}=\sum_{i \in \partial s l a b} \alpha_{i}^{*} y_{i} x_{i}$ and $\hat{\beta}_{0}=y_{i}-x_{i}^{T} \hat{\beta}$ for any
$i \in \partial s l a b$

Maximal Margin Classifier

 aka Optimal Separating Hyperplanes- Here, β depends on α through the KKT conditions.
- If optimal $\alpha_{i}=0$, then $y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1>0$ and so the point is not on the margin line.
> the margin line and which will contribute to the values of β that will make up the decision boundary based on this support points on the slab's boundaries.
- Separation will occur according to $\hat{G}(x)=\operatorname{sign}\left(\hat{\beta}_{0}+x^{\top} \hat{\beta}\right)$.

$i \in \partial s l a b$

Maximal Margin Classifier

aka Optimal Separating Hyperplanes

- Here, β depends on α through the KKT conditions.
- If optimal $\alpha_{i}=0$, then $y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1>0$ and so the point is not on the margin line.
- If $\alpha_{i}>0$, then $y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)-1=0$ and so the point is on the margin line and which will contribute to the values of β that will make up the decision boundary based on this support points on the slab's boundaries.

Maximal Margin Classifier

aka Optimal Separating Hyperplanes

- Here, β depends on α through the KKT conditions.
- If optimal $\alpha_{i}=0$, then $y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1>0$ and so the point is not on the margin line.
- If $\alpha_{i}>0$, then $y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1=0$ and so the point is on the margin line and which will contribute to the values of β that will make up the decision boundary based on this support points on the slab's boundaries.
- Separation will occur according to $\hat{G}(x)=\operatorname{sign}\left(\hat{\beta}_{0}+x^{\top} \hat{\beta}\right)$.

Maximal Margin Classifier

aka Optimal Separating Hyperplanes

- Here, β depends on α through the KKT conditions.
- If optimal $\alpha_{i}=0$, then $y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1>0$ and so the point is not on the margin line.
- If $\alpha_{i}>0$, then $y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)-1=0$ and so the point is on the margin line and which will contribute to the values of β that will make up the decision boundary based on this support points on the slab's boundaries.
- Separation will occur according to $\hat{G}(x)=\operatorname{sign}\left(\hat{\beta}_{0}+x^{\top} \hat{\beta}\right)$.
- where $\hat{\beta}=\sum_{i \in \partial s l a b} \alpha_{i}^{*} y_{i} x_{i}$ and $\hat{\beta}_{0}=y_{i}-x_{i}^{T} \hat{\beta}$ for any $i \in \partial s l a b$

Maximal Margin Classifier

 aka Optimal Separating Hyperplanes
Example (Simulated data in \mathbb{R}^{2})

The blue line is the OHS and the red line is due to logistic regression.

Separating Hyperplanes Support Vector Classifier

Support Vector Classifier

aka Soft Margin Classifier
Example (Simulated data in \mathbb{R}^{2})

Maximal Margin Classifier works for the left panel with $y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1$ since the points are linearly separable.

Support Vector Classifier

aka Soft Margin Classifier
Example (Simulated data in \mathbb{R}^{2})

Maximal Margin Classifier works for the left panel with $y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right) \geq 1$ since the points are linearly separable. But it is not the case in the right panel where $y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)<1$. Adding slack variables $\xi_{i} \geq 0$ gives $y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)+\xi_{i} \geq 1$

Support Vector Classifier

aka Soft Margin Classifier
If the vectors are not linearly separable. Let ξ_{i} is the smallest such that $y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)+\xi_{i}=1$ and

- if $\xi_{i}=0$, then $y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)=1$ so it is accurately classified point, otherwise

$$
y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)=1-\xi_{i}
$$

- if $0<\xi_{i} \leq 1$, then $0 \leq y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)<1$ so it is "also"
accurately classified point. Yet, that point (vector) has
violated the margin.
if $\xi_{i}>1$, then $y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)<0$, and so it is inaccurately
classified point. That point (vector) is on the wrong side of
the hyperplane.

Support Vector Classifier

aka Soft Margin Classifier

If the vectors are not linearly separable. Let ξ_{i} is the smallest such that $y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)+\xi_{i}=1$ and

- if $\xi_{i}=0$, then $y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)=1$ so it is accurately classified point, otherwise

$$
y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)=1-\xi_{i}
$$

- if $0<\xi_{i} \leq 1$, then $0 \leq y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)<1$ so it is "also" accurately classified point. Yet, that point (vector) has violated the margin.
- if $\xi_{i}>1$, then $y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)<0$, and so it is inaccurately
classified point. That point (vector) is on the wrong side of
the hyperplane.

Support Vector Classifier

aka Soft Margin Classifier

If the vectors are not linearly separable. Let ξ_{i} is the smallest such that $y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)+\xi_{i}=1$ and

- if $\xi_{i}=0$, then $y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)=1$ so it is accurately classified point, otherwise

$$
y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)=1-\xi_{i}
$$

- if $0<\xi_{i} \leq 1$, then $0 \leq y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)<1$ so it is "also" accurately classified point. Yet, that point (vector) has violated the margin.
- if $\xi_{i}>1$, then $y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)<0$, and so it is inaccurately classified point. That point (vector) is on the wrong side of the hyperplane.

Support Vector Classifier

aka Soft Margin Classifier

- Thus, the misclassification rate is $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$.

- It makes sense to include it in the optimization problem by minimizing $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$.

- But, $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$ is not differentiable in ξ_{i}.
- However, since $I\left(\xi_{i}>1\right) \leq \xi_{i}$ for all i then it is sufficient to minimize $\sum_{i=1}^{N} \xi_{i}$.

Support Vector Classifier

aka Soft Margin Classifier

- Thus, the misclassification rate is $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$.
- It makes sense to include it in the optimization problem by minimizing $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$.
\Rightarrow But, $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$ is not differentiable in ξ_{i}.
- However, since $I\left(\xi_{i}>1\right) \leq \xi_{i}$ for all i then it is sufficient to minimize

Support Vector Classifier

aka Soft Margin Classifier

- Thus, the misclassification rate is $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$.
- It makes sense to include it in the optimization problem by minimizing $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$.
- But, $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$ is not differentiable in ξ_{i}.
- However, since $I\left(\xi_{i}>1\right) \leq \xi_{i}$ for all i then it is sufficient to minimize $\sum_{i=1}^{N} \xi_{i}$.

Support Vector Classifier

aka Soft Margin Classifier

- Thus, the misclassification rate is $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$.
- It makes sense to include it in the optimization problem by minimizing $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$.
- But, $\sum_{i=1}^{N} I\left(\xi_{i}>1\right)$ is not differentiable in ξ_{i}.
- However, since $I\left(\xi_{i}>1\right) \leq \xi_{i}$ for all i then it is sufficient to minimize $\sum_{i=1}^{N} \xi_{i}$.

Support Vector Classifier

aka Soft Margin Classifier

- So the optimization problem becomes

$$
\min _{\beta_{0}, \beta, \xi} \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N} \xi_{i}
$$

subject to

$$
y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i} \geq 1
$$

and

$$
\xi_{i} \geq 0
$$

for $i=1,2, \ldots, N$.
\Rightarrow Where $C>0$ is a tuning parameter that is the reciprocal of the cost the problem can afford from misclassification.

- When $C=\infty$, the cost is zero and only solution is the zero solution.

Support Vector Classifier

aka Soft Margin Classifier

- So the optimization problem becomes

$$
\min _{\beta_{0}, \beta, \xi} \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N} \xi_{i}
$$

subject to

$$
y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)+\xi_{i} \geq 1
$$

and

$$
\xi_{i} \geq 0
$$

for $i=1,2, \ldots, N$.

- Where $C>0$ is a tuning parameter that is the reciprocal of the cost the problem can afford from misclassification.
\Rightarrow When $C=\infty$, the cost is zero and only solution is the zero solution.

Support Vector Classifier

aka Soft Margin Classifier

- So the optimization problem becomes

$$
\min _{\beta_{0}, \beta, \xi} \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N} \xi_{i}
$$

subject to

$$
y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i} \geq 1
$$

and

$$
\xi_{i} \geq 0
$$

for $i=1,2, \ldots, N$.

- Where $C>0$ is a tuning parameter that is the reciprocal of the cost the problem can afford from misclassification.
- When $C=\infty$, the cost is zero and only solution is the zero solution.

Support Vector Classifier

aka Soft Margin Classifier

- Step 1: is the Lagrange problem to

$$
\min _{\beta_{0}, \beta, \xi} L_{p}
$$

where

$$
L_{p}=\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N} \xi_{i}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i}-1\right)-\sum_{i=1}^{N} \mu_{i} \xi_{i}
$$

s.t. the Lagrange multipliers $\alpha_{i}, \mu_{i} \geq 0$ and the slack
variables $\xi_{i} \geq 0$.

Support Vector Classifier

aka Soft Margin Classifier

- Step 1: is the Lagrange problem to

$$
\min _{\beta_{0}, \beta, \xi} L_{p}
$$

where

$$
L_{p}=\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N} \xi_{i}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i}-1\right)-\sum_{i=1}^{N} \mu_{i} \xi_{i}
$$

s.t. the Lagrange multipliers $\alpha_{i}, \mu_{i} \geq 0$ and the slack
variables $\xi_{i} \geq 0$.

Support Vector Classifier

aka Soft Margin Classifier

- Step 1: is the Lagrange problem to

$$
\min _{\beta_{0}, \beta, \xi} L_{p}
$$

where

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N} \xi_{i}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)+\xi_{i}-1\right)-\sum_{i=1}^{N} \mu_{i} \xi_{i} \\
& =\frac{1}{2}\|\beta\|^{2}+\sum_{i=1}^{N}\left(C-\alpha_{i}-\mu_{i}\right) \xi_{i}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1\right)
\end{aligned}
$$

s.t. the Lagrange multipliers $\alpha_{i}, \mu_{i} \geq 0$ and the slack variables $\xi_{i} \geq 0$.

- Setting derivatives equal to zero leads to

$$
\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \text { and } \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}=\beta \text { and } C-\alpha_{i}-\mu_{i}=0 \text { for all } i
$$

Support Vector Classifier

aka Soft Margin Classifier

- Substituting with those into L_{p} we get

$$
L_{p}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

\Rightarrow Note that since $C=\alpha_{i}+\mu_{i}$, then $0 \leq \alpha_{i} \leq C$.

Support Vector Classifier

aka Soft Margin Classifier

- Substituting with those into L_{p} we get

$$
L_{p}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

- Note that since $\boldsymbol{C}=\alpha_{i}+\mu_{i}$, then $0 \leq \alpha_{i} \leq \boldsymbol{C}$.

Support Vector Classifier

aka Soft Margin Classifier

- Step 2: Using Wolfe dual optimization, the problem becomes

$$
\max _{\alpha_{i}} L_{D}
$$

where

$$
L_{D}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

subject to (the Karush-Kuhn-Tucker conditions)
$\sum_{i=1}^{N} \alpha_{i} y_{i}=0$ and $\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}=\beta$ and $C-\alpha_{i}-\mu_{i}=0$ for all i

$$
0 \leq \alpha_{i} \leq C
$$

and

$$
\alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i}-1\right)=0 \text { and } y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i}-1 \geq 0
$$

and $\mu_{i} \xi_{i}=0$ for $i=1,2, \ldots, N$.

Support Vector Classifier

aka Soft Margin Classifier

- Again, β depends on optimal α^{*} through the KKT conditions.

```
> If optimal }\mp@subsup{\alpha}{i}{*}=0\mathrm{ , then }\mp@subsup{\mu}{i}{}=C\mathrm{ and }\mp@subsup{\xi}{i}{}=0\mathrm{ and so
yi}(\mp@subsup{\beta}{0}{}+\mp@subsup{x}{i}{T}\beta)-1>0.Thus, the point/vector is not on the
margin line.
```

- If optimal $0<\alpha_{i}^{*}<\boldsymbol{C}$, then $\mu_{i} \neq 0$ and $\xi_{i}=0$ and so $y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)-1=0$. Thus, the point/vector is on the margin line and α_{i}^{*} will contribute to the values of β that will make up the decision boundary. Those points are called margin support vectors.

Support Vector Classifier

aka Soft Margin Classifier

- Again, β depends on optimal α^{*} through the KKT conditions.
- If optimal $\alpha_{i}^{*}=0$, then $\mu_{i}=C$ and $\xi_{i}=0$ and so $y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1>0$. Thus, the point/vector is not on the margin line.

Support Vector Classifier

aka Soft Margin Classifier

- Again, β depends on optimal α^{*} through the KKT conditions.
- If optimal $\alpha_{i}^{*}=0$, then $\mu_{i}=C$ and $\xi_{i}=0$ and so $y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1>0$. Thus, the point/vector is not on the margin line.
- If optimal $0<\alpha_{i}^{*}<C$, then $\mu_{i} \neq 0$ and $\xi_{i}=0$ and so $y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1=0$. Thus, the point/vector is on the margin line and α_{i}^{*} will contribute to the values of β that will make up the decision boundary. Those points are called margin support vectors.

Support Vector Classifier

aka Soft Margin Classifier

- Again, β depends on optimal α^{*} through the KKT conditions.
- If optimal $\alpha_{i}^{*}=0$, then $\mu_{i}=C$ and $\xi_{i}=0$ and so $y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1>0$. Thus, the point/vector is not on the margin line.
- If optimal $0<\alpha_{i}^{*}<C$, then $\mu_{i} \neq 0$ and $\xi_{i}=0$ and so $y_{i}\left(\beta_{0}+x_{i}^{T} \beta\right)-1=0$. Thus, the point/vector is on the margin line and α_{i}^{*} will contribute to the values of β that will make up the decision boundary. Those points are called margin support vectors.

Support Vector Classifier

aka Soft Margin Classifier

- If optimal $\alpha_{i}^{*}=C$, then $\mu_{i}=0$ and $\xi_{i} \geq 0$ and so

$$
y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i}-1=0
$$

\rightarrow If $\xi \leq 1$, the point/vector beyond the margin line but before the hyperplane. Those points are called non-margin support vectors. (A violator but accurately classified.) \rightarrow If $\xi>1$, the point/vector beyond the hyperplane. (A misclassification.)

- with $\hat{\beta}=\sum_{i \in s l a b} \alpha_{i}^{*} y_{i} x_{i}$ and $\hat{\beta}_{0}=y_{i}-x_{i}^{T} \hat{\beta}$ for any $i \in$ slab
- separation will occur according to

Support Vector Classifier

aka Soft Margin Classifier

- If optimal $\alpha_{i}^{*}=C$, then $\mu_{i}=0$ and $\xi_{i} \geq 0$ and so

$$
y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i}-1=0 .
$$

- If $\xi \leq 1$, the point/vector beyond the margin line but before the hyperplane. Those points are called non-margin support vectors. (A violator but accurately classified.)
misclassification.)
\rightarrow with $\hat{\beta}=\sum_{i \in s l a b} \alpha_{i}^{*} y_{i} x_{i}$ and $\hat{\beta}_{0}=y_{i}-x_{i}^{T} \hat{\beta}$ for any $i \in$ slab
- separation will occur according to

Support Vector Classifier

aka Soft Margin Classifier

- If optimal $\alpha_{i}^{*}=C$, then $\mu_{i}=0$ and $\xi_{i} \geq 0$ and so

$$
y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i}-1=0 .
$$

- If $\xi \leq 1$, the point/vector beyond the margin line but before the hyperplane. Those points are called non-margin support vectors. (A violator but accurately classified.)
- If $\xi>1$, the point/vector beyond the hyperplane. (A misclassification.)
- with $\hat{\beta}=\sum_{i \in s l a b} \alpha_{i}^{*} y_{i} x_{i}$ and $\hat{\beta}_{0}=y_{i}-x_{i}^{T} \hat{\beta}$ for any $i \in \operatorname{slab}$
- separation will occur according to

Support Vector Classifier

aka Soft Margin Classifier

- If optimal $\alpha_{i}^{*}=C$, then $\mu_{i}=0$ and $\xi_{i} \geq 0$ and so

$$
y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i}-1=0 .
$$

- If $\xi \leq 1$, the point/vector beyond the margin line but before the hyperplane. Those points are called non-margin support vectors. (A violator but accurately classified.)
- If $\xi>1$, the point/vector beyond the hyperplane. (A misclassification.)
- with $\hat{\beta}=\sum_{i \in s l a b} \alpha_{i}^{*} y_{i} x_{i}$ and $\hat{\beta}_{0}=y_{i}-x_{i}^{T} \hat{\beta}$ for any $i \in$ slab
- separation will occur according to

Support Vector Classifier

aka Soft Margin Classifier

- If optimal $\alpha_{i}^{*}=C$, then $\mu_{i}=0$ and $\xi_{i} \geq 0$ and so

$$
y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i}-1=0
$$

- If $\xi \leq 1$, the point/vector beyond the margin line but before the hyperplane. Those points are called non-margin support vectors. (A violator but accurately classified.)
- If $\xi>1$, the point/vector beyond the hyperplane. (A misclassification.)
- with $\hat{\beta}=\sum_{i \in s l a b} \alpha_{i}^{*} y_{i} x_{i}$ and $\hat{\beta}_{0}=y_{i}-x_{i}^{T} \hat{\beta}$ for any $i \in$ slab
- separation will occur according to

$$
\hat{G}(x)=\operatorname{sign}\left(\hat{\beta}_{0}+x^{T} \hat{\beta}\right)=\operatorname{sign}\left(\hat{\beta}_{0}+\sum_{i \in \operatorname{slab}} \alpha_{i}^{*} y_{i} x_{i}^{T} x\right)
$$

Support Vector Classifier

aka Soft Margin Classifier
Example (Simulated data in \mathbb{R}^{2})

The broken purple curve is the Bayes decision boundary. 62\% observations are support points.

Support Vector Classifier

aka Soft Margin Classifier
Example (Simulated data in \mathbb{R}^{2})

$$
C=0.01
$$

The broken purple curve is the Bayes decision boundary. 85\% observations are support points.

Regression and Kernels

Regression and Kernels

- Let $\left\{h_{m}(x), m=1,2, \ldots, M\right\}$ be a set of basis transformations, each of which maps \mathbb{R}^{p} into \mathbb{R}, e.g.

- A regression function

Regression and Kernels

- Let $\left\{h_{m}(x), m=1,2, \ldots, M\right\}$ be a set of basis transformations, each of which maps \mathbb{R}^{p} into \mathbb{R}, e.g.

1. $h_{m}(x)=X_{m}, X_{j}, X_{j}^{2}, X_{i} X_{j}, \log \left(X_{j}\right)$
2. piece-wise constants $h_{m}(x)=c_{m} I\left(L_{m} \leq X<U_{m}\right)$ with
3. $h_{m}(x)=\sum_{i \in A_{m}} c_{m, i} X_{i}$ for some set A_{m}
4. h_{m} is a polynomial or spline function

- A regression function

Regression and Kernels

- Let $\left\{h_{m}(x), m=1,2, \ldots, M\right\}$ be a set of basis transformations, each of which maps \mathbb{R}^{p} into \mathbb{R}, e.g.

1. $h_{m}(x)=X_{m}, X_{j}, X_{j}^{2}, X_{i} X_{j}, \log \left(X_{j}\right)$
2. piece-wise constants $h_{m}(x)=c_{m} l\left(L_{m} \leq X<U_{m}\right)$ with $-\infty=L_{1}<U_{1} \leq L_{2}<U_{2} \leq L_{3}<\cdots \leq L_{M}<U_{M}=\infty$
3. $h_{m}(x)=\sum_{i \in A_{m}} c_{m, i} X_{i}$ for some set A_{m}
4. h_{m} is a polynomial or spline function

- A regression function

Regression and Kernels

- Let $\left\{h_{m}(x), m=1,2, \ldots, M\right\}$ be a set of basis transformations, each of which maps \mathbb{R}^{p} into \mathbb{R}, e.g.

1. $h_{m}(x)=X_{m}, X_{j}, X_{j}^{2}, X_{i} X_{j}, \log \left(X_{j}\right)$
2. piece-wise constants $h_{m}(x)=c_{m} l\left(L_{m} \leq X<U_{m}\right)$ with $-\infty=L_{1}<U_{1} \leq L_{2}<U_{2} \leq L_{3}<\cdots \leq L_{M}<U_{M}=\infty$
3. $h_{m}(x)=\sum_{i \in A_{m}} c_{m, i} X_{i}$ for some set A_{m}

- A regression function

Regression and Kernels

- Let $\left\{h_{m}(x), m=1,2, \ldots, M\right\}$ be a set of basis transformations, each of which maps \mathbb{R}^{p} into \mathbb{R}, e.g.

1. $h_{m}(x)=X_{m}, X_{j}, X_{j}^{2}, X_{i} X_{j}, \log \left(X_{j}\right)$
2. piece-wise constants $h_{m}(x)=c_{m} l\left(L_{m} \leq X<U_{m}\right)$ with

$$
-\infty=L_{1}<U_{1} \leq L_{2}<U_{2} \leq L_{3}<\cdots \leq L_{M}<U_{M}=\infty
$$

3. $h_{m}(x)=\sum_{i \in A_{m}} c_{m, i} X_{i}$ for some set A_{m}
4. h_{m} is a polynomial or spline function

- A regression function

Regression and Kernels

- Let $\left\{h_{m}(x), m=1,2, \ldots, M\right\}$ be a set of basis transformations, each of which maps \mathbb{R}^{p} into \mathbb{R}, e.g.

1. $h_{m}(x)=X_{m}, X_{j}, X_{j}^{2}, X_{i} X_{j}, \log \left(X_{j}\right)$
2. piece-wise constants $h_{m}(x)=c_{m} l\left(L_{m} \leq X<U_{m}\right)$ with

$$
-\infty=L_{1}<U_{1} \leq L_{2}<U_{2} \leq L_{3}<\cdots \leq L_{M}<U_{M}=\infty
$$

3. $h_{m}(x)=\sum_{i \in A_{m}} c_{m, i} X_{i}$ for some set A_{m}
4. h_{m} is a polynomial or spline function

- A regression function

$$
f(x)=\beta_{0}+\sum_{m=1}^{M} \beta_{m} h_{m}(x)
$$

is a linear function in h_{m} in the new M - dimensional space

Regression and Kernels

- whose estimate is

$$
\hat{f}(x)=\hat{\beta}_{0}+\sum_{m=1}^{M} \hat{\beta}_{m} h_{m}(x)
$$

where parameters β_{0} and β are estimated by minimizing the L_{2}-penalized objective function

$$
R S S_{\lambda}\left(\beta_{0}, \beta\right)=\sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \sum_{m=1}^{M} \beta_{m}^{2}
$$

with $M>N$.
L could be the squared loss function $L(x, y)=(x-y)^{2}$

- thus, after estimating β_{0} a priori (let us set $\hat{\beta}_{0}=0$ for simplicity) ...

Regression and Kernels

- whose estimate is

$$
\hat{f}(x)=\hat{\beta}_{0}+\sum_{m=1}^{M} \hat{\beta}_{m} h_{m}(x)
$$

where parameters β_{0} and β are estimated by minimizing the L_{2}-penalized objective function

$$
R S S_{\lambda}\left(\beta_{0}, \beta\right)=\sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \sum_{m=1}^{M} \beta_{m}^{2}
$$

with $M>N$.

- L could be the squared loss function $L(x, y)=(x-y)^{2}$
thus, after estimating β_{0} a priori (let us set $\hat{\beta}_{0}=0$ for simplicity) ...

Regression and Kernels

- whose estimate is

$$
\hat{f}(x)=\hat{\beta}_{0}+\sum_{m=1}^{M} \hat{\beta}_{m} h_{m}(x)
$$

where parameters β_{0} and β are estimated by minimizing the L_{2}-penalized objective function

$$
R S S_{\lambda}\left(\beta_{0}, \beta\right)=\sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \sum_{m=1}^{M} \beta_{m}^{2}
$$

with $M>N$.

- L could be the squared loss function $L(x, y)=(x-y)^{2}$
- thus, after estimating β_{0} a priori (let us set $\hat{\beta}_{0}=0$ for simplicity) ...

Regression and Kernels

- the objective function is

$$
\operatorname{RSS}_{\lambda}(\beta)=\left(y-X_{h} \beta\right)^{T}\left(y-X_{h} \beta\right)+\lambda\|\beta\|^{2}
$$

where the $N \times M$ matrix

$$
x_{h}=\left(\begin{array}{cccc}
h_{1}\left(x_{1}\right) & h_{2}\left(x_{1}\right) & \cdots & h_{M}\left(x_{1}\right) \\
h_{1}\left(x_{2}\right) & h_{2}\left(\left(x_{2}\right)\right. & \cdots & h_{M}\left(x_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
h_{1}\left(x_{N}\right) & h_{2}\left(x_{N}\right) & \cdots & h_{M}\left(x_{N}\right)
\end{array}\right)
$$

is of the model $y=X_{h} \beta$

Regression and Kernels

- The penalized least squares solution is determined by differentiation of $R S S_{\lambda}(\beta)$ and setting the result equal to zero

$$
-X_{h}^{T}\left(y-X_{h} \beta\right)+\lambda \beta=0
$$

and so for $\lambda>0$

$$
\hat{y}=x_{h} \hat{\beta}=\left(x_{h} x_{h}^{\top}+\lambda /\right)^{-1} x_{h} x_{h}^{\top} y
$$

Regression and Kernels

- The penalized least squares solution is determined by differentiation of $R S S_{\lambda}(\beta)$ and setting the result equal to zero

$$
-X_{h}^{T}\left(y-X_{h} \beta\right)+\lambda \beta=0
$$

and so for $\lambda>0$

$$
\hat{y}=x_{h} \hat{\beta}=\left(x_{h} x_{h}^{\top}+\lambda /\right)^{-1} x_{h} x_{h}^{\top} y
$$

Regression and Kernels

- The penalized least squares solution is determined by differentiation of $R S S_{\lambda}(\beta)$ and setting the result equal to zero

$$
\begin{gathered}
-X_{h}^{T}\left(y-X_{h} \beta\right)+\lambda \beta=0 \\
-X_{h} X_{h}^{T}\left(y-X_{h} \beta\right)+\lambda X_{h} \beta=0
\end{gathered}
$$

and so for $\lambda>0$

Regression and Kernels

- The penalized least squares solution is determined by differentiation of $R S S_{\lambda}(\beta)$ and setting the result equal to zero

$$
\begin{gathered}
-X_{h}^{T}\left(y-X_{h} \beta\right)+\lambda \beta=0 \\
-X_{h} X_{h}^{T}\left(y-X_{h} \beta\right)+\lambda X_{h} \beta=0
\end{gathered}
$$

and so for $\lambda>0$

$$
\hat{y}=X_{h} \hat{\beta}=\left(X_{h} X_{h}^{T}+\lambda I\right)^{-1} X_{h} X_{h}^{T} y
$$

Regression and Kernels

- The penalized least squares solution is determined by differentiation of $R S S_{\lambda}(\beta)$ and setting the result equal to zero

$$
\begin{gathered}
-X_{h}^{T}\left(y-X_{h} \beta\right)+\lambda \beta=0 \\
-X_{h} X_{h}^{T}\left(y-X_{h} \beta\right)+\lambda X_{h} \beta=0
\end{gathered}
$$

and so for $\lambda>0$

$$
\hat{y}=X_{h} \hat{\beta}=\left(X_{h} X_{h}^{T}+\lambda I\right)^{-1} X_{h} X_{h}^{T} y
$$

- The $N \times N$ matrix $X_{h} X_{h}^{T}$ has the $i j^{\text {th }}$ elements

$$
\sum_{m=1}^{M} h_{m}\left(x_{i}\right) h_{m}\left(x_{j}\right)=h\left(x_{i}\right)^{T} h\left(x_{j}\right)=\underbrace{<h\left(x_{i}\right), h\left(x_{j}\right)>}_{\text {inner product }}
$$

which requires a total of $N^{2} M$ calculations.

Regression and Kernels

- Thus, for a new x_{*},

$$
\hat{f}\left(x_{*}\right)=h\left(x_{*}\right)^{T} \hat{\beta}=\sum_{i=1}^{N} \hat{\alpha}_{i} h\left(x_{*}\right)^{T} h\left(x_{i}\right)
$$

where $\hat{\alpha}_{i}=\left(X_{h} X_{h}^{T}+\lambda I\right)^{-1} y_{i}$
which could be computationally simplified using a Kernel K and

since kernel computations requires a total of $N^{2} / 2$ calculations.

Regression and Kernels

- Thus, for a new x_{*},

$$
\hat{f}\left(x_{*}\right)=h\left(x_{*}\right)^{T} \hat{\beta}=\sum_{i=1}^{N} \hat{\alpha}_{i} h\left(x_{*}\right)^{T} h\left(x_{i}\right)
$$

where $\hat{\alpha}_{i}=\left(X_{h} X_{h}^{T}+\lambda I\right)^{-1} y_{i}$

- which could be computationally simplified using a Kernel K and

$$
\hat{f}\left(x_{*}\right)=\sum_{i=1}^{N} \hat{\alpha}_{i} K\left(x_{*}, x_{i}\right)
$$

since kernel computations requires a total of $N^{2} / 2$ calculations.

Non-linear Classification via Support Vector Machine

Support Vector Machine

Example (Simulated data in \mathbb{R}^{2})

Left panel: using a polynomial of degree 3 kernel and right panel: using radial kernel.

Support Vector Machine

- In the linear classification case, SVC uses

$$
\hat{G}(x)=\operatorname{sign}\left(\hat{\beta}_{0}+x^{\top} \hat{\beta}\right)=\operatorname{sign}(\hat{\beta}_{0}+\sum_{i \in \text { slab }} \alpha_{i}^{*} y_{i} \underbrace{x_{i}^{\top} x}_{\text {inner product }})
$$

- In the non-linear classification case, SVC uses

for some $\left\{h_{m}(x), m=1,2, \ldots, M\right\}$ set of basis
transformations. Note that $0<\alpha_{i}^{*}<C$ for $i \in s l a b$.

Support Vector Machine

- In the linear classification case, SVC uses

$$
\hat{G}(x)=\operatorname{sign}\left(\hat{\beta}_{0}+x^{T} \hat{\beta}\right)=\operatorname{sign}(\hat{\beta}_{0}+\sum_{i \in \text { slab }} \alpha_{i}^{*} y_{i} \underbrace{x_{i}^{\top} x}_{\text {inner product }})
$$

- In the non-linear classification case, SVC uses

$$
\hat{G}(x)=\operatorname{sign}(\hat{\beta}_{0}+\sum_{i \in s l a b} \alpha_{i}^{*} y_{i} \underbrace{h\left(x_{i}\right)^{T} h(x)}_{\text {inner product }})
$$

for some $\left\{h_{m}(x), m=1,2, \ldots, M\right\}$ set of basis transformations. Note that $0<\alpha_{i}^{*}<C$ for $i \in s l a b$.

Support Vector Machine

- In general classification case, SVM is a SVC that uses kernels so that

$$
\hat{G}(x)=\operatorname{sign}(\hat{\beta}_{0}+\sum_{i \in \operatorname{slab}} \alpha_{i}^{*} y_{i} \underbrace{K\left(x_{i}, x\right)}_{\text {kernel }})
$$

and the previously described optimization problem in SVC is still valid.

- If we don't use penalized objective functions (the regularization parameter $\lambda=0$), then we need the symmetric kernel K to be positive definite function.

Support Vector Machine

- In general classification case, SVM is a SVC that uses kernels so that

$$
\hat{G}(x)=\operatorname{sign}(\hat{\beta}_{0}+\sum_{i \in s l a b} \alpha_{i}^{*} y_{i} \underbrace{K\left(x_{i}, x\right)}_{\text {kernel }})
$$

and the previously described optimization problem in SVC is still valid.

- DIY analytically Show that \hat{G} described using the kernel is the decision rule obtained via the optimization problem described in SVC.
- If we don't use penalized objective functions (the regularization parameter $\lambda=0$), then we need the symmetric kernel K to be positive definite function.

Support Vector Machine

- In general classification case, SVM is a SVC that uses kernels so that

$$
\hat{G}(x)=\operatorname{sign}(\hat{\beta}_{0}+\sum_{i \in s l a b} \alpha_{i}^{*} y_{i} \underbrace{K\left(x_{i}, x\right)}_{\text {kernel }})
$$

and the previously described optimization problem in SVC is still valid.

- DIY analytically Show that \hat{G} described using the kernel is the decision rule obtained via the optimization problem described in SVC.
- If we don't use penalized objective functions (the regularization parameter $\lambda=0$), then we need the symmetric kernel K to be positive definite function.

Support Vector Machine

- K is positive definite if there exists a function h such $K\left(x_{i}, x_{j}\right)=<h\left(x_{i}\right), h\left(x_{j}\right)>$
- Mercer's condition: A symmetric real-valued function $K(x, y)$ is said to satisfy Mercer's condition, if for all $L_{2}\left(\mathbb{R}^{p}\right)$ real-valued functions g,

$$
\int_{\mathbb{R}^{p}} \int_{\mathbb{R}^{p}} K(x, y) g(x) g(y) d x d y \geq 0
$$

- Theorem: Let $K(x, y)$ be a symmetric real-valued function. There exists a function h such $K(x, y)=<h(x), h(y)>$ if and only if K satisfies Mercer's condition.

Support Vector Machine

- K is positive definite if there exists a function h such $K\left(x_{i}, x_{j}\right)=<h\left(x_{i}\right), h\left(x_{j}\right)>$
- Mercer's condition: A symmetric real-valued function $K(x, y)$ is said to satisfy Mercer's condition, if for all $L_{2}\left(\mathbb{R}^{p}\right)$ real-valued functions g,

$$
\int_{\mathbb{R}^{p}} \int_{\mathbb{R}^{p}} K(x, y) g(x) g(y) d x d y \geq 0
$$

- Theorem: Let $K(x, y)$ be a symmetric real-valued function. There exists a function h such $K(x, y)=<h(x), h(y)>$ if and only if K satisfies Mercer's condition.

Support Vector Machine

- K is positive definite if there exists a function h such $K\left(x_{i}, x_{j}\right)=<h\left(x_{i}\right), h\left(x_{j}\right)>$
- Mercer's condition: A symmetric real-valued function $K(x, y)$ is said to satisfy Mercer's condition, if for all $L_{2}\left(\mathbb{R}^{p}\right)$ real-valued functions g,

$$
\int_{\mathbb{R}^{p}} \int_{\mathbb{R}^{p}} K(x, y) g(x) g(y) d x d y \geq 0
$$

- Theorem: Let $K(x, y)$ be a symmetric real-valued function. There exists a function h such $K(x, y)=<h(x), h(y)>$ if and only if K satisfies Mercer's condition.

Support Vector Machine

- Mercer-Hilbert Schmidt Theorem: Let $K(x, y)$ be a symmetric real-valued function that satisfies Mercer's condition, then there exists a set of orthonormal eigenfunctions $\left\{v_{i}(x)\right\}_{i=1}^{\infty}$ such that

$$
\int_{\mathbb{R}^{p}} K(x, y) v_{i}(y) d y=\lambda_{i} v_{i}(x)
$$

for $i=1,2, \ldots, \infty$, and

$$
K(x, y)=\sum_{j=1}^{\infty} \lambda_{j} v_{j}(x) v_{j}(y)
$$

\Rightarrow Thus, define $h_{j}(x)=\sqrt{\lambda_{j}} v_{j}(x)$ so that
$K(x, y)=<h(x), h(y)>$

Support Vector Machine

- Mercer-Hilbert Schmidt Theorem: Let $K(x, y)$ be a symmetric real-valued function that satisfies Mercer's condition, then there exists a set of orthonormal eigenfunctions $\left\{v_{i}(x)\right\}_{i=1}^{\infty}$ such that

$$
\int_{\mathbb{R}^{p}} K(x, y) v_{i}(y) d y=\lambda_{i} v_{i}(x)
$$

for $i=1,2, \ldots, \infty$, and

$$
K(x, y)=\sum_{j=1}^{\infty} \lambda_{j} v_{j}(x) v_{j}(y)
$$

- Thus, define $h_{j}(x)=\sqrt{\lambda_{j}} v_{j}(x)$ so that

$$
K(x, y)=<h(x), h(y)>
$$

Support Vector Machine

Popular Kernels in SVM are:

- Polynomial kernel of degree d

$$
K(x, y)=\left(1+\sum_{i=1}^{p} x_{i} y_{i}\right)^{d}
$$

- (Gaussian) Radial kernel (strong local support)

- (Laplace) Radial kernel (weak local support)

Support Vector Machine

Popular Kernels in SVM are:

- Polynomial kernel of degree d

$$
K(x, y)=\left(1+\sum_{i=1}^{p} x_{i} y_{i}\right)^{d}
$$

- (Gaussian) Radial kernel (strong local support)

$$
K(x, y)=\exp \left(-\gamma \sum_{i=1}^{p}\left(x_{i}-y_{i}\right)^{2}\right)
$$

- (Laplace) Radial kernel (weak local support)

Support Vector Machine

Popular Kernels in SVM are:

- Polynomial kernel of degree d

$$
K(x, y)=\left(1+\sum_{i=1}^{p} x_{i} y_{i}\right)^{d}
$$

- (Gaussian) Radial kernel (strong local support)

$$
K(x, y)=\exp \left(-\gamma \sum_{i=1}^{p}\left(x_{i}-y_{i}\right)^{2}\right)
$$

- (Laplace) Radial kernel (weak local support)

$$
K(x, y)=\exp \left(-\gamma \sum_{i=1}^{p}\left|x_{i}-y_{i}\right|\right)
$$

Support Vector Machine

Popular Kernels in SVM are:

- Cauchy kernel

$$
K(x, y)=\gamma \frac{1}{1+\sum_{i=1}^{p}\left(x_{i}-y_{i}\right)^{2}}
$$

- Neural kernel

Support Vector Machine

Popular Kernels in SVM are:

- Cauchy kernel

$$
K(x, y)=\gamma \frac{1}{1+\sum_{i=1}^{p}\left(x_{i}-y_{i}\right)^{2}}
$$

- Neural kernel

$$
K(x, y)=\tanh \left(\kappa_{1} \sum_{i=1}^{p} x_{i} y_{i}+\kappa_{2}\right)
$$

Support Vector Machine

Example

Consider the polynomial kernel of degree 2 , for $x, y \in \mathbb{R}^{2}$

$$
\begin{aligned}
K(x, y) & =\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2} \\
& =1+x_{1}^{2} y_{1}^{2}+2 x_{1} y_{1}+2 x_{1} y_{1} x_{2} y_{2}+2 x_{2} y_{2}+x_{2}^{2} y_{2}^{2} \\
& =h(x)^{T} h(y)
\end{aligned}
$$

such that $h(x)=\left(1, x_{1}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{2}, x_{2}^{2}\right) \in \mathbb{R}^{6}$

Support Vector Machine

- SVM uses

$$
\hat{G}(x)=\operatorname{sign}(\hat{\beta}_{0}+\sum_{i \in \text { slab }} \alpha_{i}^{*} y_{i} \underbrace{K\left(x_{i}, x\right)}_{\text {kernel }})
$$

such that $0<\alpha_{i}^{*}<C$ for $i \in$ slab.
\Rightarrow If C is large then most of $\xi_{i}=0$ and that leads to wiggly
boundary in the input space (an overfitting situation).

- If C is small then most of α_{i} are small and so is
$\hat{\beta}=\sum_{i \in s l a b} \alpha_{i}^{*} y_{i} h\left(x_{i}\right)$ and that leads to smooth boundary.

Support Vector Machine

- SVM uses

$$
\hat{G}(x)=\operatorname{sign}(\hat{\beta}_{0}+\sum_{i \in \text { slab }} \alpha_{i}^{*} y_{i} \underbrace{K\left(x_{i}, x\right)}_{\text {kernel }})
$$

such that $0<\alpha_{i}^{*}<C$ for $i \in$ slab.

- If C is large then most of $\xi_{i}=0$ and that leads to wiggly boundary in the input space (an overfitting situation).
\Rightarrow If C is small then most of α_{i} are small and so is $\hat{\beta}=\sum_{i \in \text { slab }} \alpha_{i}^{*} y_{i} h\left(x_{i}\right)$ and that leads to smooth boundary.

Support Vector Machine

- SVM uses

$$
\hat{G}(x)=\operatorname{sign}(\hat{\beta}_{0}+\sum_{i \in s l a b} \alpha_{i}^{*} y_{i} \underbrace{K\left(x_{i}, x\right)}_{\text {kernel }})
$$

such that $0<\alpha_{i}^{*}<C$ for $i \in$ slab.

- If C is large then most of $\xi_{i}=0$ and that leads to wiggly boundary in the input space (an overfitting situation).
- If C is small then most of α_{i} are small and so is
$\hat{\beta}=\sum_{i \in s l a b} \alpha_{i}^{*} y_{i} h\left(x_{i}\right)$ and that leads to smooth boundary.

Support Vector Machine

Example (Simulated data in \mathbb{R}^{2})

> SVM - Degree-4 Polynomial in Feature Space

$C=1$. The broken purple curve is the Bayes decision boundary.

Support Vector Machine

Example (Simulated data in \mathbb{R}^{2})

SVM - Radial Kernel in Feature Space

$C=1$. It closer to Bayes optimal. The broken purple curve is the Bayes decision boundary.

SVM for more than two classes

Support Vector Machine

- One-versus-one classification:

In a C_{2}^{K} round-robin, two classes k, k^{\prime} play against each other coded $y_{k}+1$ and $y_{k^{\prime}}=-1$ and tally the classifications of x_{*} and assign it at the end of to the class with the highest number of classifications/votes.

- One-versus-all classification: Here, one class k (with $y_{k}=+1$) plays against the rest $K-1$ classes (with $y_{[1, K]-\{k\}}=-1$) and estimate $f_{k}(x)$. Then use $\hat{G}\left(x_{*}\right)=\operatorname{argmax}_{k} f_{k}\left(x_{*}\right)$.

Notation: $[1, K]=\{1,2, \ldots, K\}$

Support Vector Machine

- One-versus-one classification:

In a C_{2}^{K} round-robin, two classes k, k^{\prime} play against each other coded $y_{k}+1$ and $y_{k^{\prime}}=-1$ and tally the classifications of x_{*} and assign it at the end of to the class with the highest number of classifications/votes.

- One-versus-all classification:

Here, one class k (with $y_{k}=+1$) plays against the rest $K-1$ classes (with $y_{[1, K]-\{k\}}=-1$) and estimate $f_{k}(x)$. Then use $\hat{G}\left(x_{*}\right)=\operatorname{argmax}_{k} f_{k}\left(x_{*}\right)$.

Notation: $[1, K]=\{1,2, \ldots, K\}$

Support Vector Machine

- One-versus-one classification:

In a C_{2}^{K} round-robin, two classes k, k^{\prime} play against each other coded $y_{k}+1$ and $y_{k^{\prime}}=-1$ and tally the classifications of x_{*} and assign it at the end of to the class with the highest number of classifications/votes.

- One-versus-all classification:

Here, one class k (with $y_{k}=+1$) plays against the rest $K-1$ classes (with $y_{[1, K]-\{k\}}=-1$) and estimate $f_{k}(x)$. Then use $\hat{G}\left(x_{*}\right)=\operatorname{argmax}_{k} f_{k}\left(x_{*}\right)$.

Notation: $[1, K]=\{1,2, \ldots, K\}$

Support Vector Machine

- One-versus-one classification:

In a C_{2}^{K} round-robin, two classes k, k^{\prime} play against each other coded $y_{k}+1$ and $y_{k^{\prime}}=-1$ and tally the classifications of x_{*} and assign it at the end of to the class with the highest number of classifications/votes.

- One-versus-all classification:

Here, one class k (with $y_{k}=+1$) plays against the rest $K-1$ classes (with $y_{[1, K]-\{k\}}=-1$) and estimate $f_{k}(x)$. Then use $\hat{G}\left(x_{*}\right)=\operatorname{argmax}_{k} f_{k}\left(x_{*}\right)$.

Notation: $[1, K]=\{1,2, \ldots, K\}$

SVM's relationship to Hinge Loss function and others

Support Vector Machine

In case of,
linear $\left(f(x)=\beta_{0}+x^{\top} \beta\right.$) or nonlinear $\left(f(x)=\beta_{0}+h(x)^{\top} \beta\right)$ classification problems

- The optimization problem is

$$
\min _{\beta_{0}, \beta, \xi} \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N} \xi_{i}
$$

subject to

$$
y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i} \geq 1
$$

and

$$
\xi_{i} \geq 0
$$

for $i=1,2, \ldots, N$.

- The constraints are equivalent to the constraint

Support Vector Machine

In case of,
linear $\left(f(x)=\beta_{0}+x^{\top} \beta\right.$) or nonlinear $\left(f(x)=\beta_{0}+h(x)^{\top} \beta\right)$ classification problems

- The optimization problem is

$$
\min _{\beta_{0}, \beta, \xi} \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N} \xi_{i}
$$

subject to

$$
y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)+\xi_{i} \geq 1
$$

and

$$
\xi_{i} \geq 0
$$

for $i=1,2, \ldots, N$.

- The constraints are equivalent to the constraint

$$
\xi_{i} \geq\left[1-y_{i} f\left(x_{i}\right)\right]_{+}
$$

giving are the smallest value attainable by ξ_{i} for all i.

Support Vector Machine

- The minimization problem becomes

$$
\min _{\beta_{0}, \beta} \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N}\left[1-y_{i} f\left(x_{i}\right)\right]_{+}
$$

where $C>0$.
\Rightarrow Setting $C=\frac{1}{2 \lambda}$, it further becomes

Support Vector Machine

- The minimization problem becomes

$$
\min _{\beta_{0}, \beta} \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N}\left[1-y_{i} f\left(x_{i}\right)\right]_{+}
$$

where $C>0$.

- Setting $C=\frac{1}{2 \lambda}$, it further becomes

$$
\min _{\beta_{0}, \beta} \sum_{i=1}^{N}\left[1-y_{i} f\left(x_{i}\right)\right]_{+}+\lambda\|\beta\|^{2}
$$

Support Vector Machine

- The minimization problem becomes

$$
\min _{\beta_{0}, \beta} \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N}\left[1-y_{i} f\left(x_{i}\right)\right]_{+}
$$

where $C>0$.

- Setting $C=\frac{1}{2 \lambda}$, it further becomes

$$
\min _{\beta_{0}, \beta} \sum_{i=1}^{N} \underbrace{\left[1-y_{i} f\left(x_{i}\right)\right]_{+}}_{\text {hinge loss function }}+\lambda\|\beta\|^{2}
$$

which is an L_{2} regularized problem with a new loss function (hinge loss function) that allows no contribution from the non-support vectors.

Support Vector Machine

Note: $y_{i} f\left(x_{i}\right)>1$ is for accurately classified points, and using hinge loss function, makes their contribution nil.

Support Vector Machine

- Minimizing the L_{2}-penalized objective function

$$
R S S_{\lambda}\left(\beta_{0}, \beta\right)=\sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \sum_{m=1}^{M} \beta_{m}^{2}
$$

with $M>N$.

- L could take other forms for other functional forms of f

Support Vector Machine

- Minimizing the L_{2}-penalized objective function

$$
R S S_{\lambda}\left(\beta_{0}, \beta\right)=\sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \sum_{m=1}^{M} \beta_{m}^{2}
$$

with $M>N$.

- L could take other forms for other functional forms of f

Support Vector Machine

Loss Function	$L[y, f(x)]$	Minimizing Function
Binomial Deviance	$\log \left[1+e^{-y f(x)}\right]$	$f(x)=\log \frac{\operatorname{Pr}(Y=+1 \mid x)}{\operatorname{Pr}(Y=-1 \mid x)}$
SVM Hinge Loss	$[1-y f(x)]_{+}$	$f(x)=\operatorname{sign}\left[\operatorname{Pr}(Y=+1 \mid x)-\frac{1}{2}\right]$
Squared Error	$[y-f(x)]^{2}=[1-y f(x)]^{2}$	$f(x)=2 \operatorname{Pr}(Y=+1 \mid x)-1$
"Huberised" Square Hinge Loss	$-4 y f(x), \quad y f(x)<-1$	$f(x)=2 \operatorname{Pr}(Y=+1 \mid x)-1$

Also, ...

L_{2}-Regularized Logistic Regression

- Recall, the L_{2}-Regularized Logistic Regression for any $f(x)$ is due to the maximization problem

$$
\max _{\beta} \sum_{i=1}^{N}\left[\tilde{y}_{i} f\left(x_{i}\right)-\log \left(1+e^{f\left(x_{i}\right)}\right)\right]-\lambda \sum_{j=1}^{p} \beta_{j}^{2}
$$

for $\tilde{y}_{i}=0,1$

- $\tilde{y}_{i} f\left(x_{i}\right)-\log \left(1+e^{f\left(x_{i}\right)}\right)=-\log \left(1+e^{y_{i} f\left(x_{i}\right)}\right)$
- So the optimization problem becomes, for $y_{i}= \pm 1$

Also, ...

L_{2}-Regularized Logistic Regression

- Recall, the L_{2}-Regularized Logistic Regression for any $f(x)$ is due to the maximization problem

$$
\max _{\beta} \sum_{i=1}^{N}\left[\tilde{y}_{i} f\left(x_{i}\right)-\log \left(1+e^{f\left(x_{i}\right)}\right)\right]-\lambda \sum_{j=1}^{p} \beta_{j}^{2}
$$

for $\tilde{y}_{i}=0,1$

- which is easily transformed into ± 1 using $\tilde{y}_{i}=\frac{y_{i}+1}{2}$ for

$$
y_{i}=-1,+1
$$

- So the optimization problem becomes, for $y_{i}= \pm 1$

Also, ...

L_{2}-Regularized Logistic Regression

- Recall, the L_{2}-Regularized Logistic Regression for any $f(x)$ is due to the maximization problem

$$
\max _{\beta} \sum_{i=1}^{N}\left[\tilde{y}_{i} f\left(x_{i}\right)-\log \left(1+e^{f\left(x_{i}\right)}\right)\right]-\lambda \sum_{j=1}^{p} \beta_{j}^{2}
$$

for $\tilde{y}_{i}=0,1$

- which is easily transformed into ± 1 using $\tilde{y}_{i}=\frac{y_{i}+1}{2}$ for $y_{i}=-1,+1$
- $\tilde{y}_{i} f\left(x_{i}\right)-\log \left(1+e^{f\left(x_{i}\right)}\right)=-\log \left(1+e^{y_{i} f\left(x_{i}\right)}\right)$
\Rightarrow So the optimization problem becomes, for $y_{i}= \pm 1$

Also, ...

L_{2}-Regularized Logistic Regression

- Recall, the L_{2}-Regularized Logistic Regression for any $f(x)$ is due to the maximization problem

$$
\max _{\beta} \sum_{i=1}^{N}\left[\tilde{y}_{i} f\left(x_{i}\right)-\log \left(1+e^{f\left(x_{i}\right)}\right)\right]-\lambda \sum_{j=1}^{p} \beta_{j}^{2}
$$

for $\tilde{y}_{i}=0,1$

- which is easily transformed into ± 1 using $\tilde{y}_{i}=\frac{y_{i}+1}{2}$ for $y_{i}=-1,+1$
- $\tilde{y}_{i} f\left(x_{i}\right)-\log \left(1+e^{f\left(x_{i}\right)}\right)=-\log \left(1+e^{y_{i} f\left(x_{i}\right)}\right)$
- So the optimization problem becomes, for $y_{i}= \pm 1$

$$
\min _{\beta} \sum_{i=1}^{N} \log \left(1+e^{y_{i} f\left(x_{i}\right)}\right)+\lambda \sum_{j=1}^{p} \beta_{j}^{2}
$$

Also, ...

L_{2}-Regularized Logistic Regression

- Recall, the L_{2}-Regularized Logistic Regression for any $f(x)$ is due to the maximization problem

$$
\max _{\beta} \sum_{i=1}^{N}\left[\tilde{y}_{i} f\left(x_{i}\right)-\log \left(1+e^{f\left(x_{i}\right)}\right)\right]-\lambda \sum_{j=1}^{p} \beta_{j}^{2}
$$

for $\tilde{y}_{i}=0,1$

- which is easily transformed into ± 1 using $\tilde{y}_{i}=\frac{y_{i}+1}{2}$ for $y_{i}=-1,+1$
- $\tilde{y}_{i} f\left(x_{i}\right)-\log \left(1+e^{f\left(x_{i}\right)}\right)=-\log \left(1+e^{y_{i} f\left(x_{i}\right)}\right)$
- So the optimization problem becomes, for $y_{i}= \pm 1$

$$
\min _{\beta} \sum_{i=1}^{N} \underbrace{\log \left(1+e^{y_{i} f\left(x_{i}\right)}\right)}_{\text {binomial deviance }}+\lambda \sum_{j=1}^{p} \beta_{j}^{2}
$$

Support Vector Machine

Note: $y_{i} f\left(x_{i}\right)>1$ is for accurately classified points, and using binomial deviance (in a logistic regression approach), makes their contribution positive but very small.

Support Vector Machine

Example (SA Heart Disease)
DIY in R

1. Carry out SVC classification using e1071. It is svm with Kernel="linear"
2. Carry out SVM classification using e1071. Use kernel = "polynomial" and kernel = "radial"
3. To evaluate the performance of the classifiers: use the receiver operating characteristic (ROC) curve using ROCR.

Support Vector Machine

Example (SA Heart Disease)

DIY in R

1. Carry out SVC classification using e1071. It is svm with Kernel="linear"
2. Carry out SVM classification using e1071. Use kernel = "polynomial" and kernel = "radial"
3. To evaluate the performance of the classifiers: use the receiver operating characteristic (ROC) curve using ROCR.

Support Vector Machine

Example (SA Heart Disease)

DIY in R

1. Carry out SVC classification using e1071. It is svm with Kernel="linear"
2. Carry out SVM classification using e1071. Use kernel = "polynomial" and kernel = "radial"
3. To evaluate the performance of the classifiers: use the receiver operating characteristic (ROC) curve using ROCR.

Support Vector Machine

Example (SA Heart Disease)

DIY in R

1. Carry out SVC classification using e1071. It is svm with Kernel="linear"
2. Carry out SVM classification using e1071. Use kernel = "polynomial" and kernel = "radial"
3. To evaluate the performance of the classifiers: use the receiver operating characteristic (ROC) curve using ROCR.

Please study the different methods in the ISL book. See also SVM with multiple classes.

End of Set 5

