
Statistical Learning– MATH 6333
Set 5 (Support Vector Machines - SVM)

Tamer Oraby
UTRGV

tamer.oraby@utrgv.edu

∗Last updated October 27, 2021

Recall ...
From linear algebra ...

▶ β∗ = β
∥β∥ is orthonormal to the

separating hyperplane

L = {x : β0 + xTβ = 0}

Recall ...
From linear algebra ...

▶ β∗ = β
∥β∥ is orthonormal to the

separating hyperplane

L = {x : β0 + xTβ = 0}

if
(x1 − x0)

Tβ∗ = 0

for any x0, x1 ∈ L.

Recall ...
From linear algebra ...

▶ β∗ = β
∥β∥ is orthonormal to the

separating hyperplane

L = {x : β0 + xTβ = 0}

if
(x1 − x0)

Tβ∗ = 0

for any x0, x1 ∈ L.

▶ For x /∈ L, the signed distance of x to L
is

(x − x0)
Tβ∗ =

β0 + xTβ

∥β∥
∝ β0 + xTβ

Recall ...
From linear algebra ...

▶ β∗ = β
∥β∥ is orthonormal to the

separating hyperplane

L = {x : β0 + xTβ = 0}

if
(x1 − x0)

Tβ∗ = 0

for any x0, x1 ∈ L.

▶ For x /∈ L, the signed distance of x to L
is

(x − x0)
Tβ∗ =

β0 + xTβ

∥β∥
∝ β0 + xTβ

▶ Note that, signed distance of x1 ∈ L is
zero.

Recall ...
From linear algebra ...

▶ The "actual" distance between two
hyperplanes

L1 = {x : β0,1 + xTβ = 0}

and

L2 = {x : β0,2 + xTβ = 0}

is
|β0,1 − β0,2|

∥β∥

Other Classification
Methods

Other Classification Methods

1. Maximal Margin Classifier (aka Optimal Separating
Hyperplane)

2. Support Vector Classifier (aka Soft Margin Classifier)

3. Support Vector Machine

4. Flexible Discriminant Methods

Separating Hyperplanes -
Maximal Margin Classifier

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

OSH maximizes the margins (signed distances M) of the slab

▶ Solve
max
β0,β

M

subject to

1
∥β∥

yi(β0 + xT
i β) ≥ M

for i = 1,2, . . . ,N.

▶ Set ∥β∥ = 1
M

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

OSH maximizes the margins (signed distances M) of the slab

▶ Solve
max
β0,β

M

subject to

1
∥β∥

yi(β0 + xT
i β) ≥ M

for i = 1,2, . . . ,N.

▶ Set ∥β∥ = 1
M

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Then the problem becomes equivalent
to the convex optimization problem

min
β0,β

1
2
∥β∥2

subject to

yi(β0 + xT
i β) ≥ 1

for i = 1,2, . . . ,N.

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Step 1: is the Lagrange problem to

min
β0,β

Lp

where

Lp =
1
2
∥β∥2 −

N∑
i=1

αi(yi(β0 + xT
i β)− 1)

s.t. αi ≥ 0
▶ Setting derivatives equal to zero leads to

N∑
i=1

αiyi = 0 and
N∑

i=1

αiyixi = β

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Step 1: is the Lagrange problem to

min
β0,β

Lp

where

Lp =
1
2
∥β∥2 −

N∑
i=1

αi(yi(β0 + xT
i β)− 1)

s.t. αi ≥ 0
▶ Setting derivatives equal to zero leads to

N∑
i=1

αiyi = 0 and
N∑

i=1

αiyixi = β

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Substituting with those into Lp we get

Lp =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Step 2: Using Wolfe dual optimization, the problem
becomes

max
αi

LD

where

LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj

subject to (the Karush-Kuhn-Tucker conditions)

N∑
i=1

αiyi = 0 and
N∑

i=1

αiyixi = β

αi ≥ 0

and
αi(yi(β0 + xT

i β)− 1) = 0

for i = 1,2, . . . ,N.

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Here, β depends on α through the KKT conditions.
▶ If optimal αi = 0, then yi(β0 + xT

i β)− 1 > 0 and so the
point is not on the margin line.

▶ If αi > 0, then yi(β0 + xT
i β)− 1 = 0 and so the point is on

the margin line and which will contribute to the values of β
that will make up the decision boundary based on this
support points on the slab’s boundaries.

▶ Separation will occur according to Ĝ(x) = sign(β̂0 + xT β̂).
▶ where β̂ =

∑
i∈∂slab α

∗
i yixi and β̂0 = yi − xT

i β̂ for any
i ∈ ∂slab

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Here, β depends on α through the KKT conditions.
▶ If optimal αi = 0, then yi(β0 + xT

i β)− 1 > 0 and so the
point is not on the margin line.

▶ If αi > 0, then yi(β0 + xT
i β)− 1 = 0 and so the point is on

the margin line and which will contribute to the values of β
that will make up the decision boundary based on this
support points on the slab’s boundaries.

▶ Separation will occur according to Ĝ(x) = sign(β̂0 + xT β̂).
▶ where β̂ =

∑
i∈∂slab α

∗
i yixi and β̂0 = yi − xT

i β̂ for any
i ∈ ∂slab

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Here, β depends on α through the KKT conditions.
▶ If optimal αi = 0, then yi(β0 + xT

i β)− 1 > 0 and so the
point is not on the margin line.

▶ If αi > 0, then yi(β0 + xT
i β)− 1 = 0 and so the point is on

the margin line and which will contribute to the values of β
that will make up the decision boundary based on this
support points on the slab’s boundaries.

▶ Separation will occur according to Ĝ(x) = sign(β̂0 + xT β̂).
▶ where β̂ =

∑
i∈∂slab α

∗
i yixi and β̂0 = yi − xT

i β̂ for any
i ∈ ∂slab

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Here, β depends on α through the KKT conditions.
▶ If optimal αi = 0, then yi(β0 + xT

i β)− 1 > 0 and so the
point is not on the margin line.

▶ If αi > 0, then yi(β0 + xT
i β)− 1 = 0 and so the point is on

the margin line and which will contribute to the values of β
that will make up the decision boundary based on this
support points on the slab’s boundaries.

▶ Separation will occur according to Ĝ(x) = sign(β̂0 + xT β̂).
▶ where β̂ =

∑
i∈∂slab α

∗
i yixi and β̂0 = yi − xT

i β̂ for any
i ∈ ∂slab

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Here, β depends on α through the KKT conditions.
▶ If optimal αi = 0, then yi(β0 + xT

i β)− 1 > 0 and so the
point is not on the margin line.

▶ If αi > 0, then yi(β0 + xT
i β)− 1 = 0 and so the point is on

the margin line and which will contribute to the values of β
that will make up the decision boundary based on this
support points on the slab’s boundaries.

▶ Separation will occur according to Ĝ(x) = sign(β̂0 + xT β̂).
▶ where β̂ =

∑
i∈∂slab α

∗
i yixi and β̂0 = yi − xT

i β̂ for any
i ∈ ∂slab

Maximal Margin Classifier
aka Optimal Separating Hyperplanes

Example (Simulated data in R2)

The blue line is the OHS and the red line is due to logistic
regression.

Separating Hyperplanes -
Support Vector Classifier

Support Vector Classifier
aka Soft Margin Classifier

Example (Simulated data in R2)

Maximal Margin Classifier works for the left panel with
yi(xT

i β + β0) ≥ 1 since the points are linearly separable. But it
is not the case in the right panel where yi(xT

i β + β0) < 1.
Adding slack variables ξi ≥ 0 gives yi(xT

i β + β0) + ξi ≥ 1.

Support Vector Classifier
aka Soft Margin Classifier

Example (Simulated data in R2)

Maximal Margin Classifier works for the left panel with
yi(xT

i β + β0) ≥ 1 since the points are linearly separable. But it
is not the case in the right panel where yi(xT

i β + β0) < 1.
Adding slack variables ξi ≥ 0 gives yi(xT

i β + β0) + ξi ≥ 1.

Support Vector Classifier
aka Soft Margin Classifier

If the vectors are not linearly separable. Let ξi is the smallest
such that yi(xT

i β + β0) + ξi = 1 and

▶ if ξi = 0, then yi(xT
i β + β0) = 1 so it is accurately classified

point, otherwise

yi(xT
i β + β0) = 1 − ξi

▶ if 0 < ξi ≤ 1, then 0 ≤ yi(xT
i β + β0) < 1 so it is "also"

accurately classified point. Yet, that point (vector) has
violated the margin.

▶ if ξi > 1, then yi(xT
i β + β0) < 0, and so it is inaccurately

classified point. That point (vector) is on the wrong side of
the hyperplane.

Support Vector Classifier
aka Soft Margin Classifier

If the vectors are not linearly separable. Let ξi is the smallest
such that yi(xT

i β + β0) + ξi = 1 and

▶ if ξi = 0, then yi(xT
i β + β0) = 1 so it is accurately classified

point, otherwise

yi(xT
i β + β0) = 1 − ξi

▶ if 0 < ξi ≤ 1, then 0 ≤ yi(xT
i β + β0) < 1 so it is "also"

accurately classified point. Yet, that point (vector) has
violated the margin.

▶ if ξi > 1, then yi(xT
i β + β0) < 0, and so it is inaccurately

classified point. That point (vector) is on the wrong side of
the hyperplane.

Support Vector Classifier
aka Soft Margin Classifier

If the vectors are not linearly separable. Let ξi is the smallest
such that yi(xT

i β + β0) + ξi = 1 and

▶ if ξi = 0, then yi(xT
i β + β0) = 1 so it is accurately classified

point, otherwise

yi(xT
i β + β0) = 1 − ξi

▶ if 0 < ξi ≤ 1, then 0 ≤ yi(xT
i β + β0) < 1 so it is "also"

accurately classified point. Yet, that point (vector) has
violated the margin.

▶ if ξi > 1, then yi(xT
i β + β0) < 0, and so it is inaccurately

classified point. That point (vector) is on the wrong side of
the hyperplane.

Support Vector Classifier
aka Soft Margin Classifier

▶ Thus, the misclassification rate is
∑N

i=1 I(ξi > 1).

▶ It makes sense to include it in the optimization problem by
minimizing

∑N
i=1 I(ξi > 1).

▶ But,
∑N

i=1 I(ξi > 1) is not differentiable in ξi .

▶ However, since I(ξi > 1) ≤ ξi for all i then it is sufficient to
minimize

∑N
i=1 ξi .

Support Vector Classifier
aka Soft Margin Classifier

▶ Thus, the misclassification rate is
∑N

i=1 I(ξi > 1).

▶ It makes sense to include it in the optimization problem by
minimizing

∑N
i=1 I(ξi > 1).

▶ But,
∑N

i=1 I(ξi > 1) is not differentiable in ξi .

▶ However, since I(ξi > 1) ≤ ξi for all i then it is sufficient to
minimize

∑N
i=1 ξi .

Support Vector Classifier
aka Soft Margin Classifier

▶ Thus, the misclassification rate is
∑N

i=1 I(ξi > 1).

▶ It makes sense to include it in the optimization problem by
minimizing

∑N
i=1 I(ξi > 1).

▶ But,
∑N

i=1 I(ξi > 1) is not differentiable in ξi .

▶ However, since I(ξi > 1) ≤ ξi for all i then it is sufficient to
minimize

∑N
i=1 ξi .

Support Vector Classifier
aka Soft Margin Classifier

▶ Thus, the misclassification rate is
∑N

i=1 I(ξi > 1).

▶ It makes sense to include it in the optimization problem by
minimizing

∑N
i=1 I(ξi > 1).

▶ But,
∑N

i=1 I(ξi > 1) is not differentiable in ξi .

▶ However, since I(ξi > 1) ≤ ξi for all i then it is sufficient to
minimize

∑N
i=1 ξi .

Support Vector Classifier
aka Soft Margin Classifier

▶ So the optimization problem becomes

min
β0,β,ξ

1
2
∥β∥2 + C

N∑
i=1

ξi

subject to
yi(β0 + xT

i β) + ξi ≥ 1

and
ξi ≥ 0

for i = 1,2, . . . ,N.
▶ Where C > 0 is a tuning parameter that is the reciprocal of

the cost the problem can afford from misclassification.
▶ When C = ∞, the cost is zero and only solution is the zero

solution.

Support Vector Classifier
aka Soft Margin Classifier

▶ So the optimization problem becomes

min
β0,β,ξ

1
2
∥β∥2 + C

N∑
i=1

ξi

subject to
yi(β0 + xT

i β) + ξi ≥ 1

and
ξi ≥ 0

for i = 1,2, . . . ,N.
▶ Where C > 0 is a tuning parameter that is the reciprocal of

the cost the problem can afford from misclassification.
▶ When C = ∞, the cost is zero and only solution is the zero

solution.

Support Vector Classifier
aka Soft Margin Classifier

▶ So the optimization problem becomes

min
β0,β,ξ

1
2
∥β∥2 + C

N∑
i=1

ξi

subject to
yi(β0 + xT

i β) + ξi ≥ 1

and
ξi ≥ 0

for i = 1,2, . . . ,N.
▶ Where C > 0 is a tuning parameter that is the reciprocal of

the cost the problem can afford from misclassification.
▶ When C = ∞, the cost is zero and only solution is the zero

solution.

Support Vector Classifier
aka Soft Margin Classifier

▶ Step 1: is the Lagrange problem to

min
β0,β,ξ

Lp

where

Lp =
1
2
∥β∥2 + C

N∑
i=1

ξi −
N∑

i=1

αi(yi(β0 + xT
i β) + ξi − 1)−

N∑
i=1

µiξi

=
1
2
∥β∥2 +

N∑
i=1

(C − αi − µi)ξi −
N∑

i=1

αi(yi(β0 + xT
i β)− 1)

s.t. the Lagrange multipliers αi , µi ≥ 0 and the slack
variables ξi ≥ 0.

▶ Setting derivatives equal to zero leads to
N∑

i=1

αiyi = 0 and
N∑

i=1

αiyixi = β and C − αi − µi = 0 for all i

Support Vector Classifier
aka Soft Margin Classifier

▶ Step 1: is the Lagrange problem to

min
β0,β,ξ

Lp

where

Lp =
1
2
∥β∥2 + C

N∑
i=1

ξi −
N∑

i=1

αi(yi(β0 + xT
i β) + ξi − 1)−

N∑
i=1

µiξi

=
1
2
∥β∥2 +

N∑
i=1

(C − αi − µi)ξi −
N∑

i=1

αi(yi(β0 + xT
i β)− 1)

s.t. the Lagrange multipliers αi , µi ≥ 0 and the slack
variables ξi ≥ 0.

▶ Setting derivatives equal to zero leads to
N∑

i=1

αiyi = 0 and
N∑

i=1

αiyixi = β and C − αi − µi = 0 for all i

Support Vector Classifier
aka Soft Margin Classifier

▶ Step 1: is the Lagrange problem to

min
β0,β,ξ

Lp

where

Lp =
1
2
∥β∥2 + C

N∑
i=1

ξi −
N∑

i=1

αi(yi(β0 + xT
i β) + ξi − 1)−

N∑
i=1

µiξi

=
1
2
∥β∥2 +

N∑
i=1

(C − αi − µi)ξi −
N∑

i=1

αi(yi(β0 + xT
i β)− 1)

s.t. the Lagrange multipliers αi , µi ≥ 0 and the slack
variables ξi ≥ 0.

▶ Setting derivatives equal to zero leads to
N∑

i=1

αiyi = 0 and
N∑

i=1

αiyixi = β and C − αi − µi = 0 for all i

Support Vector Classifier
aka Soft Margin Classifier

▶ Substituting with those into Lp we get

Lp =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj

▶ Note that since C = αi + µi , then 0 ≤ αi ≤ C.

Support Vector Classifier
aka Soft Margin Classifier

▶ Substituting with those into Lp we get

Lp =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj

▶ Note that since C = αi + µi , then 0 ≤ αi ≤ C.

Support Vector Classifier
aka Soft Margin Classifier

▶ Step 2: Using Wolfe dual optimization, the problem
becomes

max
αi

LD

where

LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj

subject to (the Karush-Kuhn-Tucker conditions)
N∑

i=1

αiyi = 0 and
N∑

i=1

αiyixi = β and C − αi − µi = 0 for all i

0 ≤ αi ≤ C

and

αi(yi(β0 + xT
i β) + ξi − 1) = 0 and yi(β0 + xT

i β) + ξi − 1 ≥ 0

and µiξi = 0 for i = 1,2, . . . ,N.

Support Vector Classifier
aka Soft Margin Classifier

▶ Again, β depends on optimal α∗ through the KKT
conditions.

▶ If optimal α∗
i = 0, then µi = C and ξi = 0 and so

yi(β0 + xT
i β)− 1 > 0. Thus, the point/vector is not on the

margin line.

▶ If optimal 0 < α∗
i < C, then µi ̸= 0 and ξi = 0 and so

yi(β0 + xT
i β)− 1 = 0. Thus, the point/vector is on the

margin line and α∗
i will contribute to the values of β that will

make up the decision boundary. Those points are called
margin support vectors.

▶ ...

Support Vector Classifier
aka Soft Margin Classifier

▶ Again, β depends on optimal α∗ through the KKT
conditions.

▶ If optimal α∗
i = 0, then µi = C and ξi = 0 and so

yi(β0 + xT
i β)− 1 > 0. Thus, the point/vector is not on the

margin line.

▶ If optimal 0 < α∗
i < C, then µi ̸= 0 and ξi = 0 and so

yi(β0 + xT
i β)− 1 = 0. Thus, the point/vector is on the

margin line and α∗
i will contribute to the values of β that will

make up the decision boundary. Those points are called
margin support vectors.

▶ ...

Support Vector Classifier
aka Soft Margin Classifier

▶ Again, β depends on optimal α∗ through the KKT
conditions.

▶ If optimal α∗
i = 0, then µi = C and ξi = 0 and so

yi(β0 + xT
i β)− 1 > 0. Thus, the point/vector is not on the

margin line.

▶ If optimal 0 < α∗
i < C, then µi ̸= 0 and ξi = 0 and so

yi(β0 + xT
i β)− 1 = 0. Thus, the point/vector is on the

margin line and α∗
i will contribute to the values of β that will

make up the decision boundary. Those points are called
margin support vectors.

▶ ...

Support Vector Classifier
aka Soft Margin Classifier

▶ Again, β depends on optimal α∗ through the KKT
conditions.

▶ If optimal α∗
i = 0, then µi = C and ξi = 0 and so

yi(β0 + xT
i β)− 1 > 0. Thus, the point/vector is not on the

margin line.

▶ If optimal 0 < α∗
i < C, then µi ̸= 0 and ξi = 0 and so

yi(β0 + xT
i β)− 1 = 0. Thus, the point/vector is on the

margin line and α∗
i will contribute to the values of β that will

make up the decision boundary. Those points are called
margin support vectors.

▶ ...

Support Vector Classifier
aka Soft Margin Classifier

▶ If optimal α∗
i = C, then µi = 0 and ξi ≥ 0 and so

yi(β0 + xT
i β) + ξi − 1 = 0.

▶ If ξ ≤ 1, the point/vector beyond the margin line but before
the hyperplane. Those points are called non-margin
support vectors. (A violator but accurately classified.)

▶ If ξ > 1, the point/vector beyond the hyperplane. (A
misclassification.)

▶ with β̂ =
∑

i∈slab α
∗
i yixi and β̂0 = yi − xT

i β̂ for any i ∈ slab

▶ separation will occur according to

Ĝ(x) = sign(β̂0 + xT β̂) = sign(β̂0 +
∑

i∈slab

α∗
i yixT

i x)

Support Vector Classifier
aka Soft Margin Classifier

▶ If optimal α∗
i = C, then µi = 0 and ξi ≥ 0 and so

yi(β0 + xT
i β) + ξi − 1 = 0.

▶ If ξ ≤ 1, the point/vector beyond the margin line but before
the hyperplane. Those points are called non-margin
support vectors. (A violator but accurately classified.)

▶ If ξ > 1, the point/vector beyond the hyperplane. (A
misclassification.)

▶ with β̂ =
∑

i∈slab α
∗
i yixi and β̂0 = yi − xT

i β̂ for any i ∈ slab

▶ separation will occur according to

Ĝ(x) = sign(β̂0 + xT β̂) = sign(β̂0 +
∑

i∈slab

α∗
i yixT

i x)

Support Vector Classifier
aka Soft Margin Classifier

▶ If optimal α∗
i = C, then µi = 0 and ξi ≥ 0 and so

yi(β0 + xT
i β) + ξi − 1 = 0.

▶ If ξ ≤ 1, the point/vector beyond the margin line but before
the hyperplane. Those points are called non-margin
support vectors. (A violator but accurately classified.)

▶ If ξ > 1, the point/vector beyond the hyperplane. (A
misclassification.)

▶ with β̂ =
∑

i∈slab α
∗
i yixi and β̂0 = yi − xT

i β̂ for any i ∈ slab

▶ separation will occur according to

Ĝ(x) = sign(β̂0 + xT β̂) = sign(β̂0 +
∑

i∈slab

α∗
i yixT

i x)

Support Vector Classifier
aka Soft Margin Classifier

▶ If optimal α∗
i = C, then µi = 0 and ξi ≥ 0 and so

yi(β0 + xT
i β) + ξi − 1 = 0.

▶ If ξ ≤ 1, the point/vector beyond the margin line but before
the hyperplane. Those points are called non-margin
support vectors. (A violator but accurately classified.)

▶ If ξ > 1, the point/vector beyond the hyperplane. (A
misclassification.)

▶ with β̂ =
∑

i∈slab α
∗
i yixi and β̂0 = yi − xT

i β̂ for any i ∈ slab

▶ separation will occur according to

Ĝ(x) = sign(β̂0 + xT β̂) = sign(β̂0 +
∑

i∈slab

α∗
i yixT

i x)

Support Vector Classifier
aka Soft Margin Classifier

▶ If optimal α∗
i = C, then µi = 0 and ξi ≥ 0 and so

yi(β0 + xT
i β) + ξi − 1 = 0.

▶ If ξ ≤ 1, the point/vector beyond the margin line but before
the hyperplane. Those points are called non-margin
support vectors. (A violator but accurately classified.)

▶ If ξ > 1, the point/vector beyond the hyperplane. (A
misclassification.)

▶ with β̂ =
∑

i∈slab α
∗
i yixi and β̂0 = yi − xT

i β̂ for any i ∈ slab

▶ separation will occur according to

Ĝ(x) = sign(β̂0 + xT β̂) = sign(β̂0 +
∑

i∈slab

α∗
i yixT

i x)

Support Vector Classifier
aka Soft Margin Classifier

Example (Simulated data in R2)

The broken purple curve is the Bayes decision boundary. 62%
observations are support points.

Support Vector Classifier
aka Soft Margin Classifier

Example (Simulated data in R2)

The broken purple curve is the Bayes decision boundary. 85%
observations are support points.

Regression and Kernels

Regression and Kernels

▶ Let {hm(x),m = 1,2, . . . ,M} be a set of basis
transformations, each of which maps Rp into R, e.g.

1. hm(x) = Xm, Xj , X 2
j , XiXj , log(Xj)

2. piece-wise constants hm(x) = cmI(Lm ≤ X < Um) with
−∞ = L1 < U1 ≤ L2 < U2 ≤ L3 < · · · ≤ LM < UM = ∞

3. hm(x) =
∑

i∈Am
cm,iXi for some set Am

4. hm is a polynomial or spline function

▶ A regression function

f (x) = β0 +
M∑

m=1

βmhm(x)

is a linear function in hm in the new M− dimensional space

Regression and Kernels

▶ Let {hm(x),m = 1,2, . . . ,M} be a set of basis
transformations, each of which maps Rp into R, e.g.

1. hm(x) = Xm, Xj , X 2
j , XiXj , log(Xj)

2. piece-wise constants hm(x) = cmI(Lm ≤ X < Um) with
−∞ = L1 < U1 ≤ L2 < U2 ≤ L3 < · · · ≤ LM < UM = ∞

3. hm(x) =
∑

i∈Am
cm,iXi for some set Am

4. hm is a polynomial or spline function

▶ A regression function

f (x) = β0 +
M∑

m=1

βmhm(x)

is a linear function in hm in the new M− dimensional space

Regression and Kernels

▶ Let {hm(x),m = 1,2, . . . ,M} be a set of basis
transformations, each of which maps Rp into R, e.g.

1. hm(x) = Xm, Xj , X 2
j , XiXj , log(Xj)

2. piece-wise constants hm(x) = cmI(Lm ≤ X < Um) with
−∞ = L1 < U1 ≤ L2 < U2 ≤ L3 < · · · ≤ LM < UM = ∞

3. hm(x) =
∑

i∈Am
cm,iXi for some set Am

4. hm is a polynomial or spline function

▶ A regression function

f (x) = β0 +
M∑

m=1

βmhm(x)

is a linear function in hm in the new M− dimensional space

Regression and Kernels

▶ Let {hm(x),m = 1,2, . . . ,M} be a set of basis
transformations, each of which maps Rp into R, e.g.

1. hm(x) = Xm, Xj , X 2
j , XiXj , log(Xj)

2. piece-wise constants hm(x) = cmI(Lm ≤ X < Um) with
−∞ = L1 < U1 ≤ L2 < U2 ≤ L3 < · · · ≤ LM < UM = ∞

3. hm(x) =
∑

i∈Am
cm,iXi for some set Am

4. hm is a polynomial or spline function

▶ A regression function

f (x) = β0 +
M∑

m=1

βmhm(x)

is a linear function in hm in the new M− dimensional space

Regression and Kernels

▶ Let {hm(x),m = 1,2, . . . ,M} be a set of basis
transformations, each of which maps Rp into R, e.g.

1. hm(x) = Xm, Xj , X 2
j , XiXj , log(Xj)

2. piece-wise constants hm(x) = cmI(Lm ≤ X < Um) with
−∞ = L1 < U1 ≤ L2 < U2 ≤ L3 < · · · ≤ LM < UM = ∞

3. hm(x) =
∑

i∈Am
cm,iXi for some set Am

4. hm is a polynomial or spline function

▶ A regression function

f (x) = β0 +
M∑

m=1

βmhm(x)

is a linear function in hm in the new M− dimensional space

Regression and Kernels

▶ Let {hm(x),m = 1,2, . . . ,M} be a set of basis
transformations, each of which maps Rp into R, e.g.

1. hm(x) = Xm, Xj , X 2
j , XiXj , log(Xj)

2. piece-wise constants hm(x) = cmI(Lm ≤ X < Um) with
−∞ = L1 < U1 ≤ L2 < U2 ≤ L3 < · · · ≤ LM < UM = ∞

3. hm(x) =
∑

i∈Am
cm,iXi for some set Am

4. hm is a polynomial or spline function

▶ A regression function

f (x) = β0 +
M∑

m=1

βmhm(x)

is a linear function in hm in the new M− dimensional space

Regression and Kernels

▶ whose estimate is

f̂ (x) = β̂0 +
M∑

m=1

β̂mhm(x)

where parameters β0 and β are estimated by minimizing
the L2-penalized objective function

RSSλ(β0, β) =
N∑

i=1

L(yi , f (xi)) + λ

M∑
m=1

β2
m

with M > N.
▶ L could be the squared loss function L(x , y) = (x − y)2

▶ thus, after estimating β0 a priori (let us set β̂0 = 0 for
simplicity) ...

Regression and Kernels

▶ whose estimate is

f̂ (x) = β̂0 +
M∑

m=1

β̂mhm(x)

where parameters β0 and β are estimated by minimizing
the L2-penalized objective function

RSSλ(β0, β) =
N∑

i=1

L(yi , f (xi)) + λ

M∑
m=1

β2
m

with M > N.
▶ L could be the squared loss function L(x , y) = (x − y)2

▶ thus, after estimating β0 a priori (let us set β̂0 = 0 for
simplicity) ...

Regression and Kernels

▶ whose estimate is

f̂ (x) = β̂0 +
M∑

m=1

β̂mhm(x)

where parameters β0 and β are estimated by minimizing
the L2-penalized objective function

RSSλ(β0, β) =
N∑

i=1

L(yi , f (xi)) + λ

M∑
m=1

β2
m

with M > N.
▶ L could be the squared loss function L(x , y) = (x − y)2

▶ thus, after estimating β0 a priori (let us set β̂0 = 0 for
simplicity) ...

Regression and Kernels

▶ the objective function is

RSSλ(β) = (y − Xhβ)
T (y − Xhβ) + λ||β||2

where the N × M matrix

Xh =


h1(x1) h2(x1) · · · hM(x1)
h1(x2) h2((x2) · · · hM(x2)

...
...

. . .
...

h1(xN) h2(xN) · · · hM(xN)


is of the model y = Xhβ

Regression and Kernels
▶ The penalized least squares solution is determined by

differentiation of RSSλ(β) and setting the result equal to
zero

−X T
h (y − Xhβ) + λβ = 0

−XhX T
h (y − Xhβ) + λXhβ = 0

and so for λ > 0

ŷ = Xhβ̂ = (XhX T
h + λI)−1XhX T

h y

▶ The N × N matrix XhX T
h has the ij th elements

M∑
m=1

hm(xi)hm(xj) = h(xi)
T h(xj) = < h(xi),h(xj) >︸ ︷︷ ︸

inner product

which requires a total of N2M calculations.

Regression and Kernels
▶ The penalized least squares solution is determined by

differentiation of RSSλ(β) and setting the result equal to
zero

−X T
h (y − Xhβ) + λβ = 0

−XhX T
h (y − Xhβ) + λXhβ = 0

and so for λ > 0

ŷ = Xhβ̂ = (XhX T
h + λI)−1XhX T

h y

▶ The N × N matrix XhX T
h has the ij th elements

M∑
m=1

hm(xi)hm(xj) = h(xi)
T h(xj) = < h(xi),h(xj) >︸ ︷︷ ︸

inner product

which requires a total of N2M calculations.

Regression and Kernels
▶ The penalized least squares solution is determined by

differentiation of RSSλ(β) and setting the result equal to
zero

−X T
h (y − Xhβ) + λβ = 0

−XhX T
h (y − Xhβ) + λXhβ = 0

and so for λ > 0

ŷ = Xhβ̂ = (XhX T
h + λI)−1XhX T

h y

▶ The N × N matrix XhX T
h has the ij th elements

M∑
m=1

hm(xi)hm(xj) = h(xi)
T h(xj) = < h(xi),h(xj) >︸ ︷︷ ︸

inner product

which requires a total of N2M calculations.

Regression and Kernels
▶ The penalized least squares solution is determined by

differentiation of RSSλ(β) and setting the result equal to
zero

−X T
h (y − Xhβ) + λβ = 0

−XhX T
h (y − Xhβ) + λXhβ = 0

and so for λ > 0

ŷ = Xhβ̂ = (XhX T
h + λI)−1XhX T

h y

▶ The N × N matrix XhX T
h has the ij th elements

M∑
m=1

hm(xi)hm(xj) = h(xi)
T h(xj) = < h(xi),h(xj) >︸ ︷︷ ︸

inner product

which requires a total of N2M calculations.

Regression and Kernels
▶ The penalized least squares solution is determined by

differentiation of RSSλ(β) and setting the result equal to
zero

−X T
h (y − Xhβ) + λβ = 0

−XhX T
h (y − Xhβ) + λXhβ = 0

and so for λ > 0

ŷ = Xhβ̂ = (XhX T
h + λI)−1XhX T

h y

▶ The N × N matrix XhX T
h has the ij th elements

M∑
m=1

hm(xi)hm(xj) = h(xi)
T h(xj) = < h(xi),h(xj) >︸ ︷︷ ︸

inner product

which requires a total of N2M calculations.

Regression and Kernels

▶ Thus, for a new x∗,

f̂ (x∗) = h(x∗)T β̂ =
N∑

i=1

α̂ih(x∗)T h(xi)

where α̂i = (XhX T
h + λI)−1yi

▶ which could be computationally simplified using a Kernel K
and

f̂ (x∗) =
N∑

i=1

α̂iK (x∗, xi)

since kernel computations requires a total of N2/2
calculations.

Regression and Kernels

▶ Thus, for a new x∗,

f̂ (x∗) = h(x∗)T β̂ =
N∑

i=1

α̂ih(x∗)T h(xi)

where α̂i = (XhX T
h + λI)−1yi

▶ which could be computationally simplified using a Kernel K
and

f̂ (x∗) =
N∑

i=1

α̂iK (x∗, xi)

since kernel computations requires a total of N2/2
calculations.

Non-linear Classification
via Support Vector

Machine

Support Vector Machine

Example (Simulated data in R2)

Left panel: using a polynomial of degree 3 kernel and right
panel: using radial kernel.

Support Vector Machine

▶ In the linear classification case, SVC uses

Ĝ(x) = sign(β̂0 + xT β̂) = sign(β̂0 +
∑

i∈slab

α∗
i yi xT

i x︸︷︷︸
inner product

)

▶ In the non-linear classification case, SVC uses

Ĝ(x) = sign(β̂0 +
∑

i∈slab

α∗
i yi h(xi)

T h(x)︸ ︷︷ ︸
inner product

)

for some {hm(x),m = 1,2, . . . ,M} set of basis
transformations. Note that 0 < α∗

i < C for i ∈ slab.

Support Vector Machine

▶ In the linear classification case, SVC uses

Ĝ(x) = sign(β̂0 + xT β̂) = sign(β̂0 +
∑

i∈slab

α∗
i yi xT

i x︸︷︷︸
inner product

)

▶ In the non-linear classification case, SVC uses

Ĝ(x) = sign(β̂0 +
∑

i∈slab

α∗
i yi h(xi)

T h(x)︸ ︷︷ ︸
inner product

)

for some {hm(x),m = 1,2, . . . ,M} set of basis
transformations. Note that 0 < α∗

i < C for i ∈ slab.

Support Vector Machine

▶ In general classification case, SVM is a SVC that uses
kernels so that

Ĝ(x) = sign(β̂0 +
∑

i∈slab

α∗
i yi K (xi , x)︸ ︷︷ ︸

kernel

)

and the previously described optimization problem in SVC
is still valid.

▶ DIY analytically Show that Ĝ described using the kernel is
the decision rule obtained via the optimization problem
described in SVC.

▶ If we don’t use penalized objective functions (the
regularization parameter λ = 0), then we need the
symmetric kernel K to be positive definite function.

Support Vector Machine

▶ In general classification case, SVM is a SVC that uses
kernels so that

Ĝ(x) = sign(β̂0 +
∑

i∈slab

α∗
i yi K (xi , x)︸ ︷︷ ︸

kernel

)

and the previously described optimization problem in SVC
is still valid.

▶ DIY analytically Show that Ĝ described using the kernel is
the decision rule obtained via the optimization problem
described in SVC.

▶ If we don’t use penalized objective functions (the
regularization parameter λ = 0), then we need the
symmetric kernel K to be positive definite function.

Support Vector Machine

▶ In general classification case, SVM is a SVC that uses
kernels so that

Ĝ(x) = sign(β̂0 +
∑

i∈slab

α∗
i yi K (xi , x)︸ ︷︷ ︸

kernel

)

and the previously described optimization problem in SVC
is still valid.

▶ DIY analytically Show that Ĝ described using the kernel is
the decision rule obtained via the optimization problem
described in SVC.

▶ If we don’t use penalized objective functions (the
regularization parameter λ = 0), then we need the
symmetric kernel K to be positive definite function.

Support Vector Machine

▶ K is positive definite if there exists a function h such
K (xi , xj) =< h(xi),h(xj) >

▶ Mercer’s condition: A symmetric real-valued function
K (x , y) is said to satisfy Mercer’s condition, if for all L2(Rp)
real-valued functions g,∫

Rp

∫
Rp

K (x , y)g(x)g(y)dxdy ≥ 0

▶ Theorem: Let K (x , y) be a symmetric real-valued function.
There exists a function h such K (x , y) =< h(x),h(y) > if
and only if K satisfies Mercer’s condition.

Support Vector Machine

▶ K is positive definite if there exists a function h such
K (xi , xj) =< h(xi),h(xj) >

▶ Mercer’s condition: A symmetric real-valued function
K (x , y) is said to satisfy Mercer’s condition, if for all L2(Rp)
real-valued functions g,∫

Rp

∫
Rp

K (x , y)g(x)g(y)dxdy ≥ 0

▶ Theorem: Let K (x , y) be a symmetric real-valued function.
There exists a function h such K (x , y) =< h(x),h(y) > if
and only if K satisfies Mercer’s condition.

Support Vector Machine

▶ K is positive definite if there exists a function h such
K (xi , xj) =< h(xi),h(xj) >

▶ Mercer’s condition: A symmetric real-valued function
K (x , y) is said to satisfy Mercer’s condition, if for all L2(Rp)
real-valued functions g,∫

Rp

∫
Rp

K (x , y)g(x)g(y)dxdy ≥ 0

▶ Theorem: Let K (x , y) be a symmetric real-valued function.
There exists a function h such K (x , y) =< h(x),h(y) > if
and only if K satisfies Mercer’s condition.

Support Vector Machine
▶ Mercer-Hilbert Schmidt Theorem: Let K (x , y) be a

symmetric real-valued function that satisfies Mercer’s
condition, then there exists a set of orthonormal
eigenfunctions {vi(x)}∞i=1 such that∫

Rp
K (x , y)vi(y)dy = λivi(x)

for i = 1,2, . . . ,∞, and

K (x , y) =
∞∑

j=1

λjvj(x)vj(y)

.
▶ Thus, define hj(x) =

√
λjvj(x) so that

K (x , y) =< h(x),h(y) >

Support Vector Machine
▶ Mercer-Hilbert Schmidt Theorem: Let K (x , y) be a

symmetric real-valued function that satisfies Mercer’s
condition, then there exists a set of orthonormal
eigenfunctions {vi(x)}∞i=1 such that∫

Rp
K (x , y)vi(y)dy = λivi(x)

for i = 1,2, . . . ,∞, and

K (x , y) =
∞∑

j=1

λjvj(x)vj(y)

.
▶ Thus, define hj(x) =

√
λjvj(x) so that

K (x , y) =< h(x),h(y) >

Support Vector Machine

Popular Kernels in SVM are:
▶ Polynomial kernel of degree d

K (x , y) = (1 +

p∑
i=1

xiyi)
d

▶ (Gaussian) Radial kernel (strong local support)

K (x , y) = exp(−γ

p∑
i=1

(xi − yi)
2)

▶ (Laplace) Radial kernel (weak local support)

K (x , y) = exp(−γ

p∑
i=1

|xi − yi |)

Support Vector Machine

Popular Kernels in SVM are:
▶ Polynomial kernel of degree d

K (x , y) = (1 +

p∑
i=1

xiyi)
d

▶ (Gaussian) Radial kernel (strong local support)

K (x , y) = exp(−γ

p∑
i=1

(xi − yi)
2)

▶ (Laplace) Radial kernel (weak local support)

K (x , y) = exp(−γ

p∑
i=1

|xi − yi |)

Support Vector Machine

Popular Kernels in SVM are:
▶ Polynomial kernel of degree d

K (x , y) = (1 +

p∑
i=1

xiyi)
d

▶ (Gaussian) Radial kernel (strong local support)

K (x , y) = exp(−γ

p∑
i=1

(xi − yi)
2)

▶ (Laplace) Radial kernel (weak local support)

K (x , y) = exp(−γ

p∑
i=1

|xi − yi |)

Support Vector Machine

Popular Kernels in SVM are:
▶ Cauchy kernel

K (x , y) = γ
1

1 +
∑p

i=1(xi − yi)2

▶ Neural kernel

K (x , y) = tanh(κ1

p∑
i=1

xiyi + κ2)

Support Vector Machine

Popular Kernels in SVM are:
▶ Cauchy kernel

K (x , y) = γ
1

1 +
∑p

i=1(xi − yi)2

▶ Neural kernel

K (x , y) = tanh(κ1

p∑
i=1

xiyi + κ2)

Support Vector Machine

Example
Consider the polynomial kernel of degree 2, for x , y ∈ R2

K (x , y) = (1 + x1y1 + x2y2)
2

= 1 + x2
1 y2

1 + 2x1y1 + 2x1y1x2y2 + 2x2y2 + x2
2 y2

2

= h(x)T h(y)

such that h(x) = (1, x2
1 ,
√

2x1,
√

2x1x2,
√

2x2, x2
2) ∈ R6

Support Vector Machine

▶ SVM uses

Ĝ(x) = sign(β̂0 +
∑

i∈slab

α∗
i yi K (xi , x)︸ ︷︷ ︸

kernel

)

such that 0 < α∗
i < C for i ∈ slab.

▶ If C is large then most of ξi = 0 and that leads to wiggly
boundary in the input space (an overfitting situation).

▶ If C is small then most of αi are small and so is
β̂ =

∑
i∈slab α

∗
i yih(xi) and that leads to smooth boundary.

Support Vector Machine

▶ SVM uses

Ĝ(x) = sign(β̂0 +
∑

i∈slab

α∗
i yi K (xi , x)︸ ︷︷ ︸

kernel

)

such that 0 < α∗
i < C for i ∈ slab.

▶ If C is large then most of ξi = 0 and that leads to wiggly
boundary in the input space (an overfitting situation).

▶ If C is small then most of αi are small and so is
β̂ =

∑
i∈slab α

∗
i yih(xi) and that leads to smooth boundary.

Support Vector Machine

▶ SVM uses

Ĝ(x) = sign(β̂0 +
∑

i∈slab

α∗
i yi K (xi , x)︸ ︷︷ ︸

kernel

)

such that 0 < α∗
i < C for i ∈ slab.

▶ If C is large then most of ξi = 0 and that leads to wiggly
boundary in the input space (an overfitting situation).

▶ If C is small then most of αi are small and so is
β̂ =

∑
i∈slab α

∗
i yih(xi) and that leads to smooth boundary.

Support Vector Machine
Example (Simulated data in R2)

C = 1. The broken purple curve is the Bayes decision
boundary.

Support Vector Machine
Example (Simulated data in R2)

C = 1. It closer to Bayes optimal. The broken purple curve is
the Bayes decision boundary.

SVM for more than two
classes

Support Vector Machine

▶ One-versus-one classification:
In a CK

2 round-robin, two classes k , k ′ play against each
other coded yk + 1 and yk ′ = −1 and tally the
classifications of x∗ and assign it at the end of to the class
with the highest number of classifications/votes.

▶ One-versus-all classification:
Here, one class k (with yk = +1) plays against the rest
K − 1 classes (with y[1,K]−{k} = −1) and estimate fk (x).
Then use Ĝ(x∗) = argmaxk fk (x∗).

Notation: [1,K] = {1,2, . . . ,K}

Support Vector Machine

▶ One-versus-one classification:
In a CK

2 round-robin, two classes k , k ′ play against each
other coded yk + 1 and yk ′ = −1 and tally the
classifications of x∗ and assign it at the end of to the class
with the highest number of classifications/votes.

▶ One-versus-all classification:
Here, one class k (with yk = +1) plays against the rest
K − 1 classes (with y[1,K]−{k} = −1) and estimate fk (x).
Then use Ĝ(x∗) = argmaxk fk (x∗).

Notation: [1,K] = {1,2, . . . ,K}

Support Vector Machine

▶ One-versus-one classification:
In a CK

2 round-robin, two classes k , k ′ play against each
other coded yk + 1 and yk ′ = −1 and tally the
classifications of x∗ and assign it at the end of to the class
with the highest number of classifications/votes.

▶ One-versus-all classification:
Here, one class k (with yk = +1) plays against the rest
K − 1 classes (with y[1,K]−{k} = −1) and estimate fk (x).
Then use Ĝ(x∗) = argmaxk fk (x∗).

Notation: [1,K] = {1,2, . . . ,K}

Support Vector Machine

▶ One-versus-one classification:
In a CK

2 round-robin, two classes k , k ′ play against each
other coded yk + 1 and yk ′ = −1 and tally the
classifications of x∗ and assign it at the end of to the class
with the highest number of classifications/votes.

▶ One-versus-all classification:
Here, one class k (with yk = +1) plays against the rest
K − 1 classes (with y[1,K]−{k} = −1) and estimate fk (x).
Then use Ĝ(x∗) = argmaxk fk (x∗).

Notation: [1,K] = {1,2, . . . ,K}

SVM’s relationship to
Hinge Loss function and

others

Support Vector Machine
In case of,
linear (f (x) = β0 + xTβ) or nonlinear (f (x) = β0 + h(x)Tβ)
classification problems
▶ The optimization problem is

min
β0,β,ξ

1
2
∥β∥2 + C

N∑
i=1

ξi

subject to
yi(β0 + xT

i β) + ξi ≥ 1

and
ξi ≥ 0

for i = 1,2, . . . ,N.
▶ The constraints are equivalent to the constraint

ξi ≥ [1 − yi f (xi)]+

giving are the smallest value attainable by ξi for all i .

Support Vector Machine
In case of,
linear (f (x) = β0 + xTβ) or nonlinear (f (x) = β0 + h(x)Tβ)
classification problems
▶ The optimization problem is

min
β0,β,ξ

1
2
∥β∥2 + C

N∑
i=1

ξi

subject to
yi(β0 + xT

i β) + ξi ≥ 1

and
ξi ≥ 0

for i = 1,2, . . . ,N.
▶ The constraints are equivalent to the constraint

ξi ≥ [1 − yi f (xi)]+

giving are the smallest value attainable by ξi for all i .

Support Vector Machine

▶ The minimization problem becomes

min
β0,β

1
2
∥β∥2 + C

N∑
i=1

[1 − yi f (xi)]+

where C > 0.
▶ Setting C = 1

2λ , it further becomes

min
β0,β

N∑
i=1

[1 − yi f (xi)]+ + λ ∥β∥2

Support Vector Machine

▶ The minimization problem becomes

min
β0,β

1
2
∥β∥2 + C

N∑
i=1

[1 − yi f (xi)]+

where C > 0.
▶ Setting C = 1

2λ , it further becomes

min
β0,β

N∑
i=1

[1 − yi f (xi)]+ + λ ∥β∥2

Support Vector Machine

▶ The minimization problem becomes

min
β0,β

1
2
∥β∥2 + C

N∑
i=1

[1 − yi f (xi)]+

where C > 0.
▶ Setting C = 1

2λ , it further becomes

min
β0,β

N∑
i=1

[1 − yi f (xi)]+︸ ︷︷ ︸
hinge loss function

+λ ∥β∥2

which is an L2 regularized problem with a new loss function
(hinge loss function) that allows no contribution from the
non-support vectors.

Support Vector Machine

Note: yi f (xi) > 1 is for accurately classified points, and using
hinge loss function, makes their contribution nil.

Support Vector Machine

▶ Minimizing the L2-penalized objective function

RSSλ(β0, β) =
N∑

i=1

L(yi , f (xi)) + λ

M∑
m=1

β2
m

with M > N.
▶ L could take other forms for other functional forms of f

Support Vector Machine

▶ Minimizing the L2-penalized objective function

RSSλ(β0, β) =
N∑

i=1

L(yi , f (xi)) + λ

M∑
m=1

β2
m

with M > N.
▶ L could take other forms for other functional forms of f

Support Vector Machine

Also, ...
L2-Regularized Logistic Regression

▶ Recall, the L2-Regularized Logistic Regression for any f (x)
is due to the maximization problem

maxβ
N∑

i=1

[
ỹi f (xi)− log(1 + ef (xi))

]
− λ

p∑
j=1

β2
j

for ỹi = 0,1

▶ which is easily transformed into ±1 using ỹi =
yi+1

2 for
yi = −1,+1

▶ ỹi f (xi)− log(1 + ef (xi)) = − log(1 + eyi f (xi))

▶ So the optimization problem becomes, for yi = ±1

minβ

N∑
i=1

+λ

p∑
j=1

β2
j

Also, ...
L2-Regularized Logistic Regression

▶ Recall, the L2-Regularized Logistic Regression for any f (x)
is due to the maximization problem

maxβ
N∑

i=1

[
ỹi f (xi)− log(1 + ef (xi))

]
− λ

p∑
j=1

β2
j

for ỹi = 0,1

▶ which is easily transformed into ±1 using ỹi =
yi+1

2 for
yi = −1,+1

▶ ỹi f (xi)− log(1 + ef (xi)) = − log(1 + eyi f (xi))

▶ So the optimization problem becomes, for yi = ±1

minβ

N∑
i=1

+λ

p∑
j=1

β2
j

Also, ...
L2-Regularized Logistic Regression

▶ Recall, the L2-Regularized Logistic Regression for any f (x)
is due to the maximization problem

maxβ
N∑

i=1

[
ỹi f (xi)− log(1 + ef (xi))

]
− λ

p∑
j=1

β2
j

for ỹi = 0,1

▶ which is easily transformed into ±1 using ỹi =
yi+1

2 for
yi = −1,+1

▶ ỹi f (xi)− log(1 + ef (xi)) = − log(1 + eyi f (xi))

▶ So the optimization problem becomes, for yi = ±1

minβ

N∑
i=1

+λ

p∑
j=1

β2
j

Also, ...
L2-Regularized Logistic Regression

▶ Recall, the L2-Regularized Logistic Regression for any f (x)
is due to the maximization problem

maxβ
N∑

i=1

[
ỹi f (xi)− log(1 + ef (xi))

]
− λ

p∑
j=1

β2
j

for ỹi = 0,1

▶ which is easily transformed into ±1 using ỹi =
yi+1

2 for
yi = −1,+1

▶ ỹi f (xi)− log(1 + ef (xi)) = − log(1 + eyi f (xi))

▶ So the optimization problem becomes, for yi = ±1

minβ

N∑
i=1

log(1 + eyi f (xi)) + λ

p∑
j=1

β2
j

Also, ...
L2-Regularized Logistic Regression

▶ Recall, the L2-Regularized Logistic Regression for any f (x)
is due to the maximization problem

maxβ
N∑

i=1

[
ỹi f (xi)− log(1 + ef (xi))

]
− λ

p∑
j=1

β2
j

for ỹi = 0,1

▶ which is easily transformed into ±1 using ỹi =
yi+1

2 for
yi = −1,+1

▶ ỹi f (xi)− log(1 + ef (xi)) = − log(1 + eyi f (xi))

▶ So the optimization problem becomes, for yi = ±1

minβ

N∑
i=1

log(1 + eyi f (xi))︸ ︷︷ ︸
binomial deviance

+λ

p∑
j=1

β2
j

Support Vector Machine

Note: yi f (xi) > 1 is for accurately classified points, and using
binomial deviance (in a logistic regression approach), makes
their contribution positive but very small.

Support Vector Machine

Example (SA Heart Disease)
DIY in R

1. Carry out SVC classification using e1071. It is svm with
Kernel="linear"

2. Carry out SVM classification using e1071. Use kernel =
"polynomial" and kernel = "radial"

3. To evaluate the performance of the classifiers: use the
receiver operating characteristic (ROC) curve using ROCR.

Support Vector Machine

Example (SA Heart Disease)
DIY in R

1. Carry out SVC classification using e1071. It is svm with
Kernel="linear"

2. Carry out SVM classification using e1071. Use kernel =
"polynomial" and kernel = "radial"

3. To evaluate the performance of the classifiers: use the
receiver operating characteristic (ROC) curve using ROCR.

Support Vector Machine

Example (SA Heart Disease)
DIY in R

1. Carry out SVC classification using e1071. It is svm with
Kernel="linear"

2. Carry out SVM classification using e1071. Use kernel =
"polynomial" and kernel = "radial"

3. To evaluate the performance of the classifiers: use the
receiver operating characteristic (ROC) curve using ROCR.

Support Vector Machine

Example (SA Heart Disease)
DIY in R

1. Carry out SVC classification using e1071. It is svm with
Kernel="linear"

2. Carry out SVM classification using e1071. Use kernel =
"polynomial" and kernel = "radial"

3. To evaluate the performance of the classifiers: use the
receiver operating characteristic (ROC) curve using ROCR.

Please study the different methods in the ISL book. See also
SVM with multiple classes.

End of Set 5

