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Tβ∗ =
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∥β∥
∝ β0 + xTβ

▶ Note that, signed distance of x1 ∈ L is
zero.



Recall ...
From linear algebra ...

▶ The "actual" distance between two
hyperplanes

L1 = {x : β0,1 + xTβ = 0}

and

L2 = {x : β0,2 + xTβ = 0}

is
|β0,1 − β0,2|

∥β∥
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Other Classification Methods

1. Maximal Margin Classifier (aka Optimal Separating
Hyperplane)

2. Support Vector Classifier (aka Soft Margin Classifier)

3. Support Vector Machine

4. Flexible Discriminant Methods



Separating Hyperplanes -
Maximal Margin Classifier



Maximal Margin Classifier
aka Optimal Separating Hyperplanes

OSH maximizes the margins (signed distances M) of the slab

▶ Solve
max
β0,β

M

subject to

1
∥β∥

yi(β0 + xT
i β) ≥ M

for i = 1,2, . . . ,N.

▶ Set ∥β∥ = 1
M
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Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Then the problem becomes equivalent
to the convex optimization problem

min
β0,β

1
2
∥β∥2

subject to

yi(β0 + xT
i β) ≥ 1

for i = 1,2, . . . ,N.



Maximal Margin Classifier
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▶ Step 1: is the Lagrange problem to

min
β0,β

Lp

where

Lp =
1
2
∥β∥2 −

N∑
i=1

αi(yi(β0 + xT
i β)− 1)

s.t. αi ≥ 0
▶ Setting derivatives equal to zero leads to
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αiyi = 0 and
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Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Substituting with those into Lp we get

Lp =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj



Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Step 2: Using Wolfe dual optimization, the problem
becomes

max
αi

LD

where

LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj

subject to (the Karush-Kuhn-Tucker conditions)

N∑
i=1

αiyi = 0 and
N∑

i=1

αiyixi = β

αi ≥ 0

and
αi(yi(β0 + xT

i β)− 1) = 0

for i = 1,2, . . . ,N.



Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Here, β depends on α through the KKT conditions.
▶ If optimal αi = 0, then yi(β0 + xT

i β)− 1 > 0 and so the
point is not on the margin line.

▶ If αi > 0, then yi(β0 + xT
i β)− 1 = 0 and so the point is on

the margin line and which will contribute to the values of β
that will make up the decision boundary based on this
support points on the slab’s boundaries.

▶ Separation will occur according to Ĝ(x) = sign(β̂0 + xT β̂).
▶ where β̂ =

∑
i∈∂slab α

∗
i yixi and β̂0 = yi − xT

i β̂ for any
i ∈ ∂slab
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▶ where β̂ =

∑
i∈∂slab α

∗
i yixi and β̂0 = yi − xT

i β̂ for any
i ∈ ∂slab



Maximal Margin Classifier
aka Optimal Separating Hyperplanes

▶ Here, β depends on α through the KKT conditions.
▶ If optimal αi = 0, then yi(β0 + xT

i β)− 1 > 0 and so the
point is not on the margin line.

▶ If αi > 0, then yi(β0 + xT
i β)− 1 = 0 and so the point is on

the margin line and which will contribute to the values of β
that will make up the decision boundary based on this
support points on the slab’s boundaries.

▶ Separation will occur according to Ĝ(x) = sign(β̂0 + xT β̂).
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Maximal Margin Classifier
aka Optimal Separating Hyperplanes

Example (Simulated data in R2)

The blue line is the OHS and the red line is due to logistic
regression.



Separating Hyperplanes -
Support Vector Classifier



Support Vector Classifier
aka Soft Margin Classifier

Example (Simulated data in R2)

Maximal Margin Classifier works for the left panel with
yi(xT

i β + β0) ≥ 1 since the points are linearly separable. But it
is not the case in the right panel where yi(xT

i β + β0) < 1.
Adding slack variables ξi ≥ 0 gives yi(xT

i β + β0) + ξi ≥ 1.
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Support Vector Classifier
aka Soft Margin Classifier

If the vectors are not linearly separable. Let ξi is the smallest
such that yi(xT

i β + β0) + ξi = 1 and

▶ if ξi = 0, then yi(xT
i β + β0) = 1 so it is accurately classified

point, otherwise

yi(xT
i β + β0) = 1 − ξi

▶ if 0 < ξi ≤ 1, then 0 ≤ yi(xT
i β + β0) < 1 so it is "also"

accurately classified point. Yet, that point (vector) has
violated the margin.

▶ if ξi > 1, then yi(xT
i β + β0) < 0, and so it is inaccurately

classified point. That point (vector) is on the wrong side of
the hyperplane.
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Support Vector Classifier
aka Soft Margin Classifier

▶ Thus, the misclassification rate is
∑N

i=1 I(ξi > 1).

▶ It makes sense to include it in the optimization problem by
minimizing

∑N
i=1 I(ξi > 1).

▶ But,
∑N

i=1 I(ξi > 1) is not differentiable in ξi .

▶ However, since I(ξi > 1) ≤ ξi for all i then it is sufficient to
minimize

∑N
i=1 ξi .
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Support Vector Classifier
aka Soft Margin Classifier

▶ So the optimization problem becomes

min
β0,β,ξ

1
2
∥β∥2 + C

N∑
i=1

ξi

subject to
yi(β0 + xT

i β) + ξi ≥ 1

and
ξi ≥ 0

for i = 1,2, . . . ,N.
▶ Where C > 0 is a tuning parameter that is the reciprocal of

the cost the problem can afford from misclassification.
▶ When C = ∞, the cost is zero and only solution is the zero

solution.
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Support Vector Classifier
aka Soft Margin Classifier

▶ Step 1: is the Lagrange problem to

min
β0,β,ξ

Lp

where

Lp =
1
2
∥β∥2 + C

N∑
i=1

ξi −
N∑

i=1

αi(yi(β0 + xT
i β) + ξi − 1)−

N∑
i=1

µiξi

=
1
2
∥β∥2 +

N∑
i=1

(C − αi − µi)ξi −
N∑

i=1

αi(yi(β0 + xT
i β)− 1)

s.t. the Lagrange multipliers αi , µi ≥ 0 and the slack
variables ξi ≥ 0.

▶ Setting derivatives equal to zero leads to
N∑

i=1

αiyi = 0 and
N∑

i=1

αiyixi = β and C − αi − µi = 0 for all i
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▶ Substituting with those into Lp we get

Lp =
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i=1

αi −
1
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N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj

▶ Note that since C = αi + µi , then 0 ≤ αi ≤ C.
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Support Vector Classifier
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▶ Step 2: Using Wolfe dual optimization, the problem
becomes

max
αi

LD

where

LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj
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and µiξi = 0 for i = 1,2, . . . ,N.



Support Vector Classifier
aka Soft Margin Classifier

▶ Again, β depends on optimal α∗ through the KKT
conditions.

▶ If optimal α∗
i = 0, then µi = C and ξi = 0 and so

yi(β0 + xT
i β)− 1 > 0. Thus, the point/vector is not on the

margin line.

▶ If optimal 0 < α∗
i < C, then µi ̸= 0 and ξi = 0 and so

yi(β0 + xT
i β)− 1 = 0. Thus, the point/vector is on the

margin line and α∗
i will contribute to the values of β that will

make up the decision boundary. Those points are called
margin support vectors.

▶ ...
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Support Vector Classifier
aka Soft Margin Classifier

▶ If optimal α∗
i = C, then µi = 0 and ξi ≥ 0 and so

yi(β0 + xT
i β) + ξi − 1 = 0.

▶ If ξ ≤ 1, the point/vector beyond the margin line but before
the hyperplane. Those points are called non-margin
support vectors. (A violator but accurately classified.)

▶ If ξ > 1, the point/vector beyond the hyperplane. (A
misclassification.)

▶ with β̂ =
∑

i∈slab α
∗
i yixi and β̂0 = yi − xT

i β̂ for any i ∈ slab

▶ separation will occur according to

Ĝ(x) = sign(β̂0 + xT β̂) = sign(β̂0 +
∑

i∈slab

α∗
i yixT

i x)
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Example (Simulated data in R2)

The broken purple curve is the Bayes decision boundary. 62%
observations are support points.
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Example (Simulated data in R2)

The broken purple curve is the Bayes decision boundary. 85%
observations are support points.
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Regression and Kernels

▶ Let {hm(x),m = 1,2, . . . ,M} be a set of basis
transformations, each of which maps Rp into R, e.g.

1. hm(x) = Xm, Xj , X 2
j , XiXj , log(Xj)

2. piece-wise constants hm(x) = cmI(Lm ≤ X < Um) with
−∞ = L1 < U1 ≤ L2 < U2 ≤ L3 < · · · ≤ LM < UM = ∞

3. hm(x) =
∑

i∈Am
cm,iXi for some set Am

4. hm is a polynomial or spline function

▶ A regression function

f (x) = β0 +
M∑

m=1

βmhm(x)

is a linear function in hm in the new M− dimensional space
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Regression and Kernels

▶ whose estimate is

f̂ (x) = β̂0 +
M∑

m=1

β̂mhm(x)

where parameters β0 and β are estimated by minimizing
the L2-penalized objective function

RSSλ(β0, β) =
N∑

i=1

L(yi , f (xi)) + λ

M∑
m=1

β2
m

with M > N.
▶ L could be the squared loss function L(x , y) = (x − y)2

▶ thus, after estimating β0 a priori (let us set β̂0 = 0 for
simplicity) ...
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Regression and Kernels

▶ the objective function is

RSSλ(β) = (y − Xhβ)
T (y − Xhβ) + λ||β||2

where the N × M matrix

Xh =


h1(x1) h2(x1) · · · hM(x1)
h1(x2) h2((x2) · · · hM(x2)

...
...

. . .
...

h1(xN) h2(xN) · · · hM(xN)


is of the model y = Xhβ



Regression and Kernels
▶ The penalized least squares solution is determined by

differentiation of RSSλ(β) and setting the result equal to
zero

−X T
h (y − Xhβ) + λβ = 0

−XhX T
h (y − Xhβ) + λXhβ = 0

and so for λ > 0

ŷ = Xhβ̂ = (XhX T
h + λI)−1XhX T

h y

▶ The N × N matrix XhX T
h has the ij th elements

M∑
m=1

hm(xi)hm(xj) = h(xi)
T h(xj) = < h(xi),h(xj) >︸ ︷︷ ︸

inner product

which requires a total of N2M calculations.
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Regression and Kernels

▶ Thus, for a new x∗,

f̂ (x∗) = h(x∗)T β̂ =
N∑

i=1

α̂ih(x∗)T h(xi)

where α̂i = (XhX T
h + λI)−1yi

▶ which could be computationally simplified using a Kernel K
and

f̂ (x∗) =
N∑

i=1

α̂iK (x∗, xi)

since kernel computations requires a total of N2/2
calculations.
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Non-linear Classification
via Support Vector

Machine



Support Vector Machine

Example (Simulated data in R2)

Left panel: using a polynomial of degree 3 kernel and right
panel: using radial kernel.



Support Vector Machine

▶ In the linear classification case, SVC uses

Ĝ(x) = sign(β̂0 + xT β̂) = sign(β̂0 +
∑

i∈slab

α∗
i yi xT

i x︸︷︷︸
inner product

)

▶ In the non-linear classification case, SVC uses

Ĝ(x) = sign(β̂0 +
∑

i∈slab

α∗
i yi h(xi)

T h(x)︸ ︷︷ ︸
inner product

)

for some {hm(x),m = 1,2, . . . ,M} set of basis
transformations. Note that 0 < α∗

i < C for i ∈ slab.
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Support Vector Machine

▶ In general classification case, SVM is a SVC that uses
kernels so that

Ĝ(x) = sign(β̂0 +
∑

i∈slab

α∗
i yi K (xi , x)︸ ︷︷ ︸

kernel

)

and the previously described optimization problem in SVC
is still valid.

▶ DIY analytically Show that Ĝ described using the kernel is
the decision rule obtained via the optimization problem
described in SVC.

▶ If we don’t use penalized objective functions (the
regularization parameter λ = 0), then we need the
symmetric kernel K to be positive definite function.
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Support Vector Machine

▶ K is positive definite if there exists a function h such
K (xi , xj) =< h(xi),h(xj) >

▶ Mercer’s condition: A symmetric real-valued function
K (x , y) is said to satisfy Mercer’s condition, if for all L2(Rp)
real-valued functions g,∫

Rp

∫
Rp

K (x , y)g(x)g(y)dxdy ≥ 0

▶ Theorem: Let K (x , y) be a symmetric real-valued function.
There exists a function h such K (x , y) =< h(x),h(y) > if
and only if K satisfies Mercer’s condition.
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Support Vector Machine
▶ Mercer-Hilbert Schmidt Theorem: Let K (x , y) be a

symmetric real-valued function that satisfies Mercer’s
condition, then there exists a set of orthonormal
eigenfunctions {vi(x)}∞i=1 such that∫

Rp
K (x , y)vi(y)dy = λivi(x)

for i = 1,2, . . . ,∞, and

K (x , y) =
∞∑

j=1

λjvj(x)vj(y)

.
▶ Thus, define hj(x) =

√
λjvj(x) so that

K (x , y) =< h(x),h(y) >
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Support Vector Machine

Popular Kernels in SVM are:
▶ Polynomial kernel of degree d

K (x , y) = (1 +

p∑
i=1

xiyi)
d

▶ (Gaussian) Radial kernel (strong local support)

K (x , y) = exp(−γ

p∑
i=1

(xi − yi)
2)

▶ (Laplace) Radial kernel (weak local support)

K (x , y) = exp(−γ

p∑
i=1

|xi − yi |)



Support Vector Machine

Popular Kernels in SVM are:
▶ Polynomial kernel of degree d

K (x , y) = (1 +

p∑
i=1

xiyi)
d

▶ (Gaussian) Radial kernel (strong local support)

K (x , y) = exp(−γ

p∑
i=1

(xi − yi)
2)

▶ (Laplace) Radial kernel (weak local support)

K (x , y) = exp(−γ

p∑
i=1

|xi − yi |)



Support Vector Machine

Popular Kernels in SVM are:
▶ Polynomial kernel of degree d

K (x , y) = (1 +

p∑
i=1

xiyi)
d

▶ (Gaussian) Radial kernel (strong local support)

K (x , y) = exp(−γ

p∑
i=1

(xi − yi)
2)

▶ (Laplace) Radial kernel (weak local support)

K (x , y) = exp(−γ

p∑
i=1

|xi − yi |)



Support Vector Machine

Popular Kernels in SVM are:
▶ Cauchy kernel

K (x , y) = γ
1

1 +
∑p

i=1(xi − yi)2

▶ Neural kernel

K (x , y) = tanh(κ1

p∑
i=1

xiyi + κ2)
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Support Vector Machine

Example
Consider the polynomial kernel of degree 2, for x , y ∈ R2

K (x , y) = (1 + x1y1 + x2y2)
2

= 1 + x2
1 y2

1 + 2x1y1 + 2x1y1x2y2 + 2x2y2 + x2
2 y2

2

= h(x)T h(y)

such that h(x) = (1, x2
1 ,
√

2x1,
√

2x1x2,
√

2x2, x2
2 ) ∈ R6



Support Vector Machine

▶ SVM uses

Ĝ(x) = sign(β̂0 +
∑

i∈slab

α∗
i yi K (xi , x)︸ ︷︷ ︸

kernel

)

such that 0 < α∗
i < C for i ∈ slab.

▶ If C is large then most of ξi = 0 and that leads to wiggly
boundary in the input space (an overfitting situation).

▶ If C is small then most of αi are small and so is
β̂ =

∑
i∈slab α

∗
i yih(xi) and that leads to smooth boundary.
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Support Vector Machine
Example (Simulated data in R2)

C = 1. The broken purple curve is the Bayes decision
boundary.



Support Vector Machine
Example (Simulated data in R2)

C = 1. It closer to Bayes optimal. The broken purple curve is
the Bayes decision boundary.



SVM for more than two
classes



Support Vector Machine

▶ One-versus-one classification:
In a CK

2 round-robin, two classes k , k ′ play against each
other coded yk + 1 and yk ′ = −1 and tally the
classifications of x∗ and assign it at the end of to the class
with the highest number of classifications/votes.

▶ One-versus-all classification:
Here, one class k (with yk = +1) plays against the rest
K − 1 classes (with y[1,K ]−{k} = −1) and estimate fk (x).
Then use Ĝ(x∗) = argmaxk fk (x∗).

Notation: [1,K ] = {1,2, . . . ,K}
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SVM’s relationship to
Hinge Loss function and

others



Support Vector Machine
In case of,
linear (f (x) = β0 + xTβ) or nonlinear (f (x) = β0 + h(x)Tβ)
classification problems
▶ The optimization problem is

min
β0,β,ξ

1
2
∥β∥2 + C

N∑
i=1

ξi

subject to
yi(β0 + xT

i β) + ξi ≥ 1

and
ξi ≥ 0

for i = 1,2, . . . ,N.
▶ The constraints are equivalent to the constraint

ξi ≥ [1 − yi f (xi)]+

giving are the smallest value attainable by ξi for all i .
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Support Vector Machine

▶ The minimization problem becomes

min
β0,β

1
2
∥β∥2 + C

N∑
i=1

[1 − yi f (xi)]+

where C > 0.
▶ Setting C = 1

2λ , it further becomes

min
β0,β

N∑
i=1

[1 − yi f (xi)]+ + λ ∥β∥2
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▶ The minimization problem becomes

min
β0,β

1
2
∥β∥2 + C

N∑
i=1

[1 − yi f (xi)]+

where C > 0.
▶ Setting C = 1

2λ , it further becomes

min
β0,β

N∑
i=1

[1 − yi f (xi)]+︸ ︷︷ ︸
hinge loss function

+λ ∥β∥2

which is an L2 regularized problem with a new loss function
(hinge loss function) that allows no contribution from the
non-support vectors.



Support Vector Machine

Note: yi f (xi) > 1 is for accurately classified points, and using
hinge loss function, makes their contribution nil.



Support Vector Machine

▶ Minimizing the L2-penalized objective function

RSSλ(β0, β) =
N∑

i=1

L(yi , f (xi)) + λ

M∑
m=1

β2
m

with M > N.
▶ L could take other forms for other functional forms of f
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Also, ...
L2-Regularized Logistic Regression

▶ Recall, the L2-Regularized Logistic Regression for any f (x)
is due to the maximization problem

maxβ
N∑

i=1

[
ỹi f (xi)− log(1 + ef (xi ))

]
− λ

p∑
j=1

β2
j

for ỹi = 0,1

▶ which is easily transformed into ±1 using ỹi =
yi+1

2 for
yi = −1,+1

▶ ỹi f (xi)− log(1 + ef (xi )) = − log(1 + eyi f (xi ))

▶ So the optimization problem becomes, for yi = ±1

minβ

N∑
i=1

+λ

p∑
j=1

β2
j



Also, ...
L2-Regularized Logistic Regression

▶ Recall, the L2-Regularized Logistic Regression for any f (x)
is due to the maximization problem

maxβ
N∑

i=1

[
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for ỹi = 0,1

▶ which is easily transformed into ±1 using ỹi =
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yi+1

2 for
yi = −1,+1
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Also, ...
L2-Regularized Logistic Regression

▶ Recall, the L2-Regularized Logistic Regression for any f (x)
is due to the maximization problem

maxβ
N∑

i=1

[
ỹi f (xi)− log(1 + ef (xi ))

]
− λ

p∑
j=1

β2
j

for ỹi = 0,1

▶ which is easily transformed into ±1 using ỹi =
yi+1

2 for
yi = −1,+1

▶ ỹi f (xi)− log(1 + ef (xi )) = − log(1 + eyi f (xi ))

▶ So the optimization problem becomes, for yi = ±1

minβ

N∑
i=1

log(1 + eyi f (xi ))︸ ︷︷ ︸
binomial deviance

+λ

p∑
j=1

β2
j



Support Vector Machine

Note: yi f (xi) > 1 is for accurately classified points, and using
binomial deviance (in a logistic regression approach), makes
their contribution positive but very small.



Support Vector Machine

Example (SA Heart Disease)
DIY in R

1. Carry out SVC classification using e1071. It is svm with
Kernel="linear"

2. Carry out SVM classification using e1071. Use kernel =
"polynomial" and kernel = "radial"

3. To evaluate the performance of the classifiers: use the
receiver operating characteristic (ROC) curve using ROCR.
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Support Vector Machine

Example (SA Heart Disease)
DIY in R

1. Carry out SVC classification using e1071. It is svm with
Kernel="linear"

2. Carry out SVM classification using e1071. Use kernel =
"polynomial" and kernel = "radial"

3. To evaluate the performance of the classifiers: use the
receiver operating characteristic (ROC) curve using ROCR.

Please study the different methods in the ISL book. See also
SVM with multiple classes.



End of Set 5


