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Classification Methods

1. Multiple linear regression and K-NN
2. Logistic (binomial) regression, and multinomial regression
3. Log-linear (Poisson) regression, and negative binomial

regression
4. Linear discriminant analysis (LDA)
5. Quadratic discriminant analysis (QDA)
6. Naïve Bayes

for inference and prediction. Here, we use 0-1 loss function.
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Classification Methods
Special case for illustration

The linear classification model (classifier)

fk (X ) = βk ,0 + βk ,1x1 + · · ·+ βk ,pxp = Xβk

for the training data

T = {(xi1, xi2, . . . , xip, yi or Gi) : i = 1,2, . . . ,N}

where
G ∈ G = {class1, . . . , classK}

The idea is to classify items using linear decision boundaries
(affine set/hyperplane) between classk and class`

Bk ,` = {x : xT β̂k = xT β̂`}

for k 6= ` and k , ` = 1, . . . ,K .
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Classification Methods

The left panel: decision boundaries are linear in X1 and X2.

The right panel: decision boundaries are linear in
X1,X2,X1X2,X 2

1 and X 2
2 .
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Classification Methods
Example (South African Heart Disease Data)
A retrospective sample of males in a heart-disease high-risk
region of the Western Cape, South Africa.

Variables
Name Description Type
sbp systolic blood pressure continuous
tobacco cumulative tobacco (kg) continuous
ldl low density lipoprotein cholesterol continuous
adiposity waist circumference continuous
famhist family history of heart disease

(Present, Absent)
dichotomous

typea type-A behavior continuous
obesity body mass index (BMI) continuous
alcohol current alcohol consumption continuous
age age at onset continuous
chd response, coronary heart disease

(1=yes,0=no)
dichotomous



Classification Methods

Example (Classification of iris flowers)

Goal: To classify an iris flower based on the inputs: sepal
length in cm, sepal width in cm, petal length in cm, and petal
width in cm. Iris data and its description are available at
https://archive.ics.uci.edu/ml/datasets/iris

https://archive.ics.uci.edu/ml/datasets/iris


Classification Methods

Example (Vowel Recognition (Speech) Data)
Recognition of the eleven steady state vowels of British English
using the following list of words that are uttered once

Number Vowel Word Number Vowel Word
1 i heed 7 O hod
2 I hid 8 C: hoard
3 E head 9 U hood
4 A had 10 u: who’d
5 a: hard 11 3: heard
6 Y hud

The response y is the vowel number and the inputs
x .1, . . . , x .10 are log areas calculated using speech signals.



Classification Methods

All textbook data, including SA heart disease data and vowel
recognition data, and their description are available at
https://web.stanford.edu/~hastie/
ElemStatLearn/data.html

https://web.stanford.edu/~hastie/ElemStatLearn/data.html
https://web.stanford.edu/~hastie/ElemStatLearn/data.html
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Classification - Partitioning Methods

Partitioning methods split the space of inputs into a number of
disjoint sub-spaces.

Using a discriminant functions δk (x) for k = 1, . . . ,K , a
classification prediction about an input x∗ could be made using

k∗ = argmax δk (x∗)

and the decision boundary between classk and class`

Bk ,` = {x : δk (x) = δ`(x)}

for k 6= ` and k , ` = 1, . . . ,K .
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Classification - Partitioning Methods

Example (Illustrative example - not real)
For G = {1,2,3,4}, let the discriminant function be

δ(x) = c × (.1 + .2x , .2 + .15x , .3− .1x , .1 + .05x)

for 0 < x < 1 and some constant c > 0.

For x∗ = .25,

δ(x∗) = c × (.15, .2375, .275, .1125),

thus k∗ = 3.

Also, the decision boundary between class1 and class3

B1,3 = {x : x =
2
3
}.
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Classification - Partitioning Methods

Two general types:
I Probability-based Classification Methods; e.g., multiple

linear regression and logistic regression
I Bayes-based Classification Methods; e.g., linear and

quadratic discriminant analyses, and naïve Bayes



Classification Methods

Example (Vowel Recognition (Speech) Data)



Probability-based
Classification Methods



(Multi-response or
K -response) Multiple

Linear Regression



Probability-based Classification Methods - Partitioning
Methods
Multiple Linear Regression

Response Yi of item i ,

Yi = (I(Gi = 1), . . . , I(Gi = k), . . . , I(Gi = K ))

= (0, . . . , 1︸︷︷︸
k th element

, . . . ,0)

is an indicator that item i belongs to class k . It is a vector of
indicator variables I(G = k), k = 1, . . . ,K .

The N × K indicator response matrix Y =


Y1
Y2
...

YN


Let us call column k of the matrix Y by

yk := (I(G1 = k), . . . , I(GN = k))T .



Probability-based Classification Methods - Partitioning
Methods
Multiple Linear Regression

Response Yi of item i ,

Yi = (I(Gi = 1), . . . , I(Gi = k), . . . , I(Gi = K ))

= (0, . . . , 1︸︷︷︸
k th element

, . . . ,0)

is an indicator that item i belongs to class k . It is a vector of
indicator variables I(G = k), k = 1, . . . ,K .

The N × K indicator response matrix Y =


Y1
Y2
...

YN


Let us call column k of the matrix Y by

yk := (I(G1 = k), . . . , I(GN = k))T .



Probability-based Classification Methods - Partitioning
Methods
Multiple Linear Regression

Response Yi of item i ,

Yi = (I(Gi = 1), . . . , I(Gi = k), . . . , I(Gi = K ))

= (0, . . . , 1︸︷︷︸
k th element

, . . . ,0)

is an indicator that item i belongs to class k . It is a vector of
indicator variables I(G = k), k = 1, . . . ,K .

The N × K indicator response matrix Y =


Y1
Y2
...

YN


Let us call column k of the matrix Y by

yk := (I(G1 = k), . . . , I(GN = k))T .



Probability-based Classification Methods - Partitioning
Methods
Multiple Linear Regression

The model is
Y = XB + E

where
I B is a (p + 1)× K coefficient matrix

I X is the N × (p + 1) model matrix with ones in the first
column

I E is a N × K matrix noise

It is a K simultaneous regression problems of the columns

yk = (I(G1 = k), . . . , I(GN = k))T

over the inputs X to estimate the column vector βk .



Probability-based Classification Methods - Partitioning
Methods
Multiple Linear Regression

Predictions of the training data X are

Ŷ = XB̂ = X (X T X )−1X T Y

For a new input x∗ (with 1 in the first entry), the prediction
f̂ (x∗) = (f̂1(x∗), . . . , f̂K (x∗)) is the discriminant function
δ(x∗) = (δ1(x∗), . . . , δK (x∗)) and is given by

f̂ (x∗) = xT
∗ B̂

where f̂k (x) ∈ R and
∑K

k=1 f̂k (x) = 1 for any x .

The optimal class k∗ is

Ĝ(x∗) = argmaxk∈G f̂k (x∗)
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Probability-based Classification Methods - Partitioning
Methods
Multiple Linear Regression

But that method has problems when K ≥ 3. For example,



Probability-based Classification Methods - Partitioning
Methods
Multiple Linear Regression

Still MLR is a valid method for classification, but where is the
probability in it?



Probability-based Classification Methods - Partitioning
Methods
Multiple Linear Regression

Note that the regression function

E(I(G = k)|X = x) = P(G = k |X = x)

is the discriminant function δk (x) that is modeled by

fk (x) = βk ,0 + βk ,1x1 + · · ·+ βk ,pxp = xTβk

and is estimated by f̂k (x), while it could be outside the interval
[0,1]. (A drawback.)

The optimal class k∗ is

Ĝ(x∗) = argmaxk∈G f̂k (x∗) = argmink∈G ||̂f (x∗)− tT
k ||

where the target vector tk is a vector of 1 in the k th location and
zeros otherwise.
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Probability-based Classification Methods - Partitioning
Methods
A Preamble to Generalized Linear Regression

Generalized Linear Regression, takes the form

g(E(Y |X = x)) = xTβ

I g(µ) is the link function in the mean µ = E(Y |X = x) of an
exponential family distribution of [Y |X = x ].

I If [Y |X = x ] ∼ N(µ, σ2), which is an exponential family with
mean µ.

I Then g is the identity link function g(µ) = µ. So the
generalized linear regression is nothing but multiple linear
regression:

g(E(Y |X = x)) = E(Y |X = x) = xTβ
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Probability-based Classification Methods - Partitioning
Methods
A Preamble to Generalized Linear Regression

I If [Y |X = x ] ∼ Poisson(λ), which is an exponential family
with mean µ = λ.

I Then g is the logarithmic link function g(λ) = log(λ). So
the generalized linear regression is the log-linear (Poisson)
regression:

g(E(Y |X = x)) = log(E(Y |X = x)) = xTβ

or
E(Y |X = x) = exTβ
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Probability-based Classification Methods - Partitioning
Methods
A Preamble to Generalized Linear Regression

I If [Y |X = x ] ∼ Bernoulli(p) ≡ Binomial(1,p), which is an
exponential family with mean µ = p.

I That is
E(Y |X = x) = P(Y = 1|X = x) = 1− P(Y = 0|X = x).

I Then g is the logit link function g(p) = logit(p) := log( p
1−p ).

So the generalized linear regression is the logistic
(Binomial) regression:

logit(E(Y |X = x)) = xTβ
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A Preamble to Generalized Linear Regression

which is
logit(P(Y = 1|X = x)) = xTβ

and is

log

(
P(Y = 1|X = x)

P(Y = 0|X = x)

)
= xTβ

or equivalently

P(Y = 1|X = x) =
exTβ

1 + exTβ

and
P(Y = 0|X = x) =

1
1 + exTβ

In terms of groups, G = 1 when Y = 1 and G = 2 when Y = 0.
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Multinomial
(K− response or softmax)

Logistic Regression



Probability-based Classification Methods - Partitioning
Methods
Multinomial distribution

I Recall: (Y1,Y2, . . . ,YK ) ∼multinomial(n,p1,p2, . . . ,pK ) has
a probability function given by

P(Y1 = y1,Y2 = y2, . . . ,YK = yK ) =
n!

y1! y2! · · · yK !
py1

1 py2
2 · · · p

yK
K

for yk = 0,1, . . . ,n, and k = 1,2, . . . ,K ; such that∑K
k=1 pk = 1 and

∑K
k=1 yk = n.

I The mean of Yk is E(Yk ) = npk ,
the variance is Var(Yk ) = npk (1− pk ),
and the covariance is COV (Yk ,Y`) = −npkp` for k 6= `.

I If n = 1, then all of the (indicators) yk ’s are equal to zero
except one and only one of them that must be equal to 1.
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I Recall: (Y1,Y2, . . . ,YK ) ∼multinomial(n,p1,p2, . . . ,pK ) has
a probability function given by

P(Y1 = y1,Y2 = y2, . . . ,YK = yK ) =
n!

y1! y2! · · · yK !
py1

1 py2
2 · · · p

yK
K

for yk = 0,1, . . . ,n, and k = 1,2, . . . ,K ; such that∑K
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k=1 yk = n.
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The model of the (softmax) logistic regression:

log

(
P(Gi = `|X = xi)

P(Gi = K |X = xi)

)
= xT

i β`

for ` = 1,2, . . . ,K − 1 and i = 1,2, . . . ,N. Thus,

pi,` := P(Gi = `|X = xi) =
exT

i β`

1 +
∑K−1

k=1 exT
i βk

for ` = 1,2, . . . ,K − 1 and

pi,K := P(Gi = K |X = xi) =
1

1 +
∑K−1

k=1 exT
i βk

for i = 1,2, . . . ,N.
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Thus, the
[Y1, . . . ,YK |X = xi ] ∼multinomial(1,pi,1,pi,2, . . . ,pi,K )’s
likelihood function of the training data is

L(β) =
N∏

i=1

1
yi,1! yi,2! · · · yi,K !

pyi,1
i,1 pyi,2

i,2 · · · p
yi,K
i,K

=
N∏

i=1

K−1∏
`=1

(
exT

i β`

1 +
∑K−1

k=1 exT
i βk

)yi,`
(

1

1 +
∑K−1

k=1 exT
i βK

)1−
∑K−1

`=1 yi,`

=
N∏

i=1

exT
i
∑K−1

`=1 yi,` β`

1 +
∑K−1

k=1 exT
i βK

which is maximized at the maximum likelihood estimator (MLE)
β̂ which also is the maximum of the log-likelihood function
`(β) = log(L(β)).
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The log-likelihood function

`(β) =
N∑

i=1

[
xT

i (
K−1∑
`=1

yi,` β`)− log(1 +
K−1∑
k=1

exT
i βK )

]

For brevity, let K = 2 and β = (β0, β1, . . . , βp)T . The
log-likelihood function

`(β) =
N∑

i=1

[
yi xT

i β − log(1 + exT
i β)
]
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Thus, the score function

∂`(β)

∂β
=

N∑
i=1

(yi − pi)xT
i

= X T (y − p)

when set equal to zero it gives a system of p + 1 nonlinear
equations in β0, β1, . . . , βp, the first of which is∑N

i=1 yi =
∑N

i=1 pi .
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In addition, the Hessian matrix

∂2`(β)

∂β∂βT = −
N∑

i=1

pi(1− pi)xixT
i = −X T WX

where W is a diagonal matrix whose i th diagonal entry is
pi(1− pi). The information matrix is

− ∂
2`(β)

∂β∂βT

∣∣∣∣
β̂

= X T ŴX

where Ŵ is the matrix W calculated at β̂.

Based on asymptotic theorem β̂ ∼ MNp+1(β,
1
N

(X T ŴX )−1)
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where Ŵ is the matrix W calculated at β̂.

Based on asymptotic theorem β̂ ∼ MNp+1(β,
1
N

(X T ŴX )−1)
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The MLE β̂ is found iteratively using Newton’s algorithm

βnew = βold −

(
∂2`(β)

∂β∂βT

∣∣∣∣
βold

)−1

· ∂`(β)

∂β

∣∣∣∣
βold

= βold + (X T WX )−1X T (y − p)
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The MLE β̂ is found iteratively using Newton’s algorithm

βnew = βold −

(
∂2`(β)

∂β∂βT

∣∣∣∣
βold

)−1

· ∂`(β)

∂β

∣∣∣∣
βold

= βold + (X T WX )−1X T (y − p)

= (X T WX )−1(X T WX )βold + (X T WX )−1X T WW−1(y − p)

= (X T WX )−1X T W (Xβold + W−1(y − p))︸ ︷︷ ︸
z is called adjusted response

= (X T WX )−1X T Wz

which is referred to iterative re-weighted least squares (IRLS).
Each iteration is nothing but the solution of weighted least
squares

βnew = argminβ(z − Xβ)T W (z − Xβ).
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Example (SA Heart Disease)
DIY in R

1. make a scatter plot of the data for one or two inputs.
2. Use glm to fit a multiple linear regression (MLR) to the

data.
3. Plot the best fit of the MLR to the data against those one or

two, probably significant, inputs; e.g, age and tobacco.
What do you see?

4. Check out the assumptions by performing residual
analyses. What do you see?

5. Use glm and/or glmnet to fit a logistic regression (Log-R) to
the data.

6. Plot the best fit of the Log-R to the data against those one
or two, probably significant, inputs. What do you see?
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Since by asymptotic theorem

β̂ ∼ MNp+1(β, V̂ )

where V̂ =
1
N

(X T ŴX )−1 then

cT β̂ ∼ N(cTβ, cT V̂ c)

Thus a (1− α)100% CI for the log odds-ratio
logit(P(Y = 1|X = x)) is

xT β̂ ± zα/2

√
xT V̂ x

and a (1− α)100% CI for the probability P(Y = 1|X = x) is exp(xT β̂ − zα/2

√
xT V̂ x)

1 + exp(xT β̂ − zα/2

√
xT V̂ x)

,
exp(xT β̂ + zα/2

√
xT V̂ x)

1 + exp(xT β̂ + zα/2

√
xT V̂ x)
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I Wald’s test:
H0 : Aβ = b versus HA : Aβ 6= b

where A is q × (p + 1) matrix of rank q ≤ p + 1, and b is an
q × 1 column vector.

Using Wald’s test statistics

W0 = (Aβ̂ − b)T (A(X T ŴX )−1AT )−1(Aβ̂ − b) ∼ χ2
q
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I Likelihood-ratio test: (More powerful)
H0 : Dβ = 0 versus HA : Dβ 6= 0

where D is (p + 1)× (p + 1) diagonal matrix of ones and zeros
to select the parameters to test being equal to zero.

Using likelihood-ratio test statistics

LR0 = −2`(β̂restricted) + 2`(β̂full) ∼ χ2
tr(D)
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Example (SA Heart Disease)
DIY in R

1. Carry out the following test of hypotheses

H0 : β1 and β3 = 0 versus HA : either β1 or β3 6= 0

2. Carry out the following test of hypotheses

H0 : β1 and β3 = 0 and β2 + β4 = 2β5

versus

HA : either β1 6= 0 or β3 6= 0 or β2 + β4 6= 2β5
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For prediction at x∗, the probability

δ1(x∗) = P(Ŷ = 1|X = x∗) =
exp(xT

∗ β̂)

1 + exp(xT
∗ β̂)

with a (1− α)100% CI for the probability P(Y = 1|X = x∗) is exp(xT
∗ β̂ − zα/2

√
xT
∗ V̂ x∗)

1 + exp(xT
∗ β̂ − zα/2

√
xT
∗ V̂ x∗)

,
exp(xT

∗ β̂ + zα/2

√
xT
∗ V̂ x∗)

1 + exp(xT
∗ β̂ + zα/2

√
xT
∗ V̂ x∗)
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How to choose the decision boundary?
I If δ1(x∗) ≥ .5, then Ĝ(x∗) = 1, otherwise Ĝ(x∗) = 2.

OR
I Use a cut-off point other than .5, that minimizes the

mis-classification error in cross-validation or in the whole
training data.
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1. Make some predictions using a cutoff at .5.
2. Try to find a better cutoff point.
3. Use that better cutoff point for predictions.
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L1-Regularized Logistic Regression

The idea is to shrink and select the inputs using standardized
training data and so

β̂L1 = argmaxβ
N∑

i=1

[
yi xT

i β − log(1 + exT
i β)
]
− λ

p∑
j=1

|βj |
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1. Carry out a L1-Regularized Logistic Regression using
glmnet.

2. Carry out the elastic-net Logistic regression using glmnet.
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L1-Regularized Logistic Regression

Example (SA Heart Disease)
DIY in R

1. Carry out a L1-Regularized Logistic Regression using
glmnet.

2. Carry out the elastic-net Logistic regression using glmnet.

Please study the different feature of the glmnet from https:
//glmnet.stanford.edu/articles/glmnet.html

https://glmnet.stanford.edu/articles/glmnet.html
https://glmnet.stanford.edu/articles/glmnet.html


Bayes-based
Classification Methods
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By Bayes theorem,

P(G = k |X = x) =
P(X = x |G = k)P(G = k)

P(X = x)

=
P(X = x |G = k)P(G = k)∑K
`=1 P(X = x |G = `)P(G = `)

=
fk (x)πk∑K
`=1 f`(x)π`
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P(X = x |G = k)P(G = k)

P(X = x)

=
P(X = x |G = k)P(G = k)∑K
`=1 P(X = x |G = `)P(G = `)

(even for continuous r.v. X ) =
fk (x)πk∑K
`=1 f`(x)π`

for x ∈ Rp

where πk = P(G = k) are the prior probabilities such that∑K
k=1 πk = 1 and fk (x) is the density of X in class k .

We use the discriminant function

δk (x) = log(fk (x)πk )

after removing constants, and

G(x) = argmaxkδk (x) = argmaxk [log(fk (x)) + log(πk )]
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Therefore,

P(G = k |X = x)

P(G = `|X = x)
=

fk (x)πk

f`(x)π`

for any k and `, and so

log

(
P(G = k |X = x)

P(G = `|X = x)

)
= log(

πk

π`
) + log(

fk (x)

f`(x)
)
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The density fk determines the method.
I Linear and quadratic discriminant analysis use

normal/Gaussian distribution fk
I Mixed discriminant analyses use a mixture of Gaussian

distributions for fk
I Naïve Bayes uses a product of probability distributions for

fk
I fk could be any general non-parametric density
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I Naïve Bayes uses a product of probability distributions for

fk
I fk could be any general non-parametric density



Linear & Quadratic
Discriminant Analyses



Bayes-based Classification Methods - Partitioning
Methods
Linear and quadratic discriminant analyses

The density fk is assumed to be a multivariate normal
(Gaussian) MNp(µk ,Σk ), for k = 1,2, . . . ,K . That is,

fk (x) =
1

(2π)p/2|Σk |1/2 e−
1
2 (x−µk )T Σ−1

k (x−µk )

for x ∈ Rp.
1. If Σk = Σ for all k , then it is linear discriminant analysis.
2. If Σk depends on k , then it is quadratic discriminant

analysis.
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For any k and `,

fk (x)

f`(x)
=

1
(2π)p/2|Σk |1/2 e−

1
2 (x−µk )T Σ−1

k (x−µk )

1
(2π)p/2|Σ`|1/2 e−

1
2 (x−µ`)T Σ−1

` (x−µ`)

=
|Σ`|1/2

|Σk |1/2 e−
1
2 (x−µk )T Σ−1

k (x−µk )+ 1
2 (x−µ`)T Σ−1

` (x−µ`)

and

exponent = −1
2

(x − µk )T Σ−1
k (x − µk ) +

1
2

(x − µ`)T Σ−1
` (x − µ`)
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exponent = −1
2

(x − µk )T Σ−1
k (x − µk )

+
1
2

(x−µk + µk − µ`)T Σ−1
` (x−µk + µk − µ`)
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exponent = −1
2

(x − µk )T Σ−1
k (x − µk )

+
1
2

(x−µk + µk − µ`)T Σ−1
` (x−µk + µk − µ`)

=
1
2

(x − µk )T (Σ−1
` − Σ−1

k )(x − µk )

− 1
2

(µk + µ`)
T Σ−1

` (µk − µ`)

+ xT Σ−1
` (µk − µ`)
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exponent = −1
2

(x − µk )T Σ−1
k (x − µk )

+
1
2

(x−µk + µk − µ`)T Σ−1
` (x−µk + µk − µ`)

=
1
2

(x − µk )T (Σ−1
` − Σ−1

k )(x − µk )

− 1
2

(µk + µ`)
T Σ−1

` (µk − µ`)

+ xT Σ−1
` (µk − µ`)

Thus, in LDA

fk (x)

f`(x)
= exT Σ−1(µk−µ`)− 1

2 (µk +µ`)T Σ−1(µk−µ`)
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Linear discriminant analysis (LDA)

In linear discriminant analysis (LDA)...

log

(
P(G = k |X = x)

P(G = `|X = x)

)
= xT Σ−1(µk − µ`)

− 1
2

(µk + µ`)
T Σ−1(µk − µ`) + log(

πk

π`
)

for any k and `. And the linear discriminant function is

δk (x) = xT Σ−1µk −
1
2
µT

k Σ−1µk + log(πk )

and again
G(x) = argmaxkδk (x)
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For ` = K

log

(
P(G = k |X = x)

P(G = K |X = x)

)
= ak +

p∑
i=1

bk ,ixi

for some ak and bk ,i functions in the priors and parameters.

What are the similarities and differences with logistic
regression?
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Whereas in quadratic discriminant analysis (QDA)...

log

(
P(G = k |X = x)

P(G = `|X = x)

)
=

1
2

(x − µk )T (Σ−1
` − Σ−1

k )(x − µk )

+ xT Σ−1
` (µk − µ`)

− 1
2

(µk + µ`)
T Σ−1

` (µk − µ`)

+ log(
πk

π`
) +

1
2

log(
|Σ`|
|Σk |

)

for any k and `. And the quadratic discriminant function is

δk (x) = −1
2

(x − µk )T Σ−1
k (x − µk ) + log(πk )− 1

2
log(|Σk |)

and again
G(x) = argmaxkδk (x)
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Whereas in quadratic discriminant analysis (QDA)...

log

(
P(G = k |X = x)

P(G = `|X = x)

)
=

1
2

(x − µk )T (Σ−1
` − Σ−1

k )(x − µk )

+ xT Σ−1
` (µk − µ`)

− 1
2

(µk + µ`)
T Σ−1

` (µk − µ`)

+ log(
πk

π`
) +

1
2

log(
|Σ`|
|Σk |

)

for any k and `. And the quadratic discriminant function is

δk (x) = −1
2

(x − µk )T Σ−1
k (x − µk ) + log(πk )− 1

2
log(|Σk |)

and again
G(x) = argmaxkδk (x)
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For ` = K

log

(
P(G = k |X = x)

P(G = K |X = x)

)
= ak +

p∑
i=1

bk ,ixi +

p∑
j=1

p∑
i=1

ck ,i,jxixj

for some ak , bk ,i , and ck ,i,j functions in the priors and
parameters.
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Generally speaking, the decision boundary Bk ,` is given
through δk = δ` Thus,
I In LDA,

Bk ,` = {x ∈ Rp : xT Σ−1(µk − µ`)

− 1
2

(µk + µ`)
T Σ−1(µk − µ`) + log(

πk

π`
) = 0}

I In QDA,

Bk ,` = {x ∈ Rp :
1
2

(x − µk )T (Σ−1
` − Σ−1

k )(x − µk )

+ xT Σ−1
` (µk − µ`)−

1
2

(µk + µ`)
T Σ−1

` (µk − µ`)

+ log(
πk

π`
) +

1
2

log(
|Σ`|
|Σk |

) = 0}
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The left panel: simulated data with (X1,X2) ∼ N2(µk ,Σ) for
k = 1,2,3. (Contours are for 95% volume.) (- - pairwise sep.)

The right panel: decision boundaries are due to LDA in X1 and
X2.
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The left panel: decision boundaries are due to LDA in X1 and
X2. (Yet, not Gaussian.)

The right panel: decision boundaries are due to LDA in
X1,X2,X1X2,X 2

1 and X 2
2 .
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How can we specify the priors πk and identify µk and Σk for all
k?
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I One way is to invoke Laplace principle

πk =
1
K

I Or better to empirically estimate them by

π̂k =
Nk

N

where

Nk =
N∑

i=1

I(i ∈ classk )

is the number of class k items in the training data.
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N∑

i=1

I(i ∈ classk )

is the number of class k items in the training data.
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I The centers/means are estimated by

µ̂k =
1

Nk

∑
i∈classk

xi

I The covariance matrices are estimated by

Σ̂k =
1

Nk − 1

∑
i∈ classk

(xi − µ̂k )(xi − µ̂k )T

I In case of LDA, the covariance matrix is the pooled
estimate given by

Σ̂ =
1

N − K

K∑
k=1

(Nk − 1)Σ̂k
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Bayes-based Classification Methods - Partitioning
Methods
Naïve Bayes Classifier

The density fk is assumed to be a the product of density
functions of p independent random variables fk ,i(xi), for
k = 1,2, . . . ,K and i = 1,2, . . . ,p. That is,

fk (x) =

p∏
i=1

fk ,i(xi)

for xi ∈ R. In which case the discriminant function is

δk (x) =

p∑
i=1

log(fk ,i(xi)) + log(πk )

after removing constants.
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Methods
Naïve Bayes Classifier

For NBC ...

log

(
P(G = k |X = x)

P(G = `|X = x)

)
= log(

πk

π`
) +

p∑
i=1

log

(
fk ,i(xi)

f`,i(xi)

)
for any k and `. For ` = K

log

(
P(G = k |X = x)

P(G = K |X = x)

)
= log(

πk

πK
) +

p∑
i=1

log

(
fk ,i(xi)

fK ,i(xi)

)

= ak +

p∑
i=1

gk ,i(xi)

which is a generalized additive model (GAM).
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Naïve Bayes Classifier

The densities fk ,i(xi) could be parametric like
1. N(µk ,i , σ

2
k ,i) or

2. Gamma(αk ,i , βk ,i)

3. Beta(αk ,i , βk ,i) for within class standardized data
in which cases, the parameters need to be estimated
based on the training data (using MLEs for example).

4. fk ,i(xi) could be empirically estimated as non-parametric.
I If Xj is quantitative, then use the relative frequency

histogram or better the kernel density estimator for the xj

within each class k to be f̂k,i .
I If Xj is qualitative, then use the relative frequency discrete

distribution the xj within each class k to be f̂k,i .
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Probability-based Classification Methods - Partitioning
Methods
LDA, QDA, KNN, and naïve Bayes

Example (SA Heart Disease)
DIY in R

1. Carry out LDA and QDA using MASS.
2. Carry out naïve Bayes classification using e1071.
3. Carry out KNN classification using class.
4. To evaluate the performance of the classifiers: produce a

confusion matrix (a table of predicted vs actual classes) for
all of the previous methods. Then calculate sensitivity (%
of true positive identified as positive) and specificity (% of
true negative identified as negative).
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Probability-based Classification Methods - Partitioning
Methods
LDA, QDA, KNN, and naïve Bayes

Example (SA Heart Disease)
DIY in R

1. Carry out LDA and QDA using MASS.
2. Carry out naïve Bayes classification using e1071.
3. Carry out KNN classification using class.
4. To evaluate the performance of the classifiers: produce a

confusion matrix (a table of predicted vs actual classes) for
all of the previous methods. Then calculate sensitivity (%
of true positive identified as positive) and specificity (% of
true negative identified as negative).

Please study the different methods in the ISL book. See also
Poisson regression using R in the ISL.



Separating Hyperplanes



Separating Hyperplanes

Example (Simulated data in R2)

The orange line is based on least squares which is also
equivalent to LDA in that situation of two classes. It is not
perfect.
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I Rosenblatt’s Perceptron Learning Algorithm.

For y = ±1,

perceptron =sign(β0 + xTβ)

I Optimal Separating Hyperplanes (a step towards support
vector machines).
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Separating Hyperplanes
From linear algebra ...

I β∗ = β
‖β‖ is orthonormal to the

separating hyperplane

L = {x : β0 + xTβ = 0}

if
(x1 − x0)Tβ∗ = 0

for any x0, x1 ∈ L.

I For x /∈ L, the signed distance of x to L
is

(x − x0)Tβ∗ =
β0 + xTβ

‖β‖
∝ β0 + xTβ

I Note that, signed distance of x1 ∈ L is
zero.
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Separating Hyperplanes
Rosenblatt’s Perceptron Learning Algorithm.

RPLA looks only at those misclassified points, put in a setM,
and minimizes the signed distances to the decision boundary

I Minimize
D(β0, β) = −

∑
i∈M yi(β0 + xT

i β) ≥ 0

I The gradient is

∂D
∂β0

= −
∑
i∈M

yi

and
∂D
∂β

= −
∑
i∈M

yixi



Separating Hyperplanes
Rosenblatt’s Perceptron Learning Algorithm.

But instead of using steepest decent in which(
β0
β1

)
new

=

(
β0
β1

)
old

+ η

( ∑
i∈M yi∑

i∈M yixi

)
with learning rate η > 0.

RPLA proceeds using stochastic gradient descent algorithm
and sequentially visits each point inM(

β0
β1

)
new

=

(
β0
β1

)
old

+ η

(
yi

yixi

)
It revolve with i and update the vector after each visit to each
point xi ∈M.
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Rosenblatt’s Perceptron Learning Algorithm.

Example (Simulated data in R2)

The two blue lines are two RPLA solutions for two different
initial vectors.To be rectified using constraints.
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Separating Hyperplanes
Rosenblatt’s Perceptron Learning Algorithm.

I If classes are linearly separable, RPLA converges in a
finite number of steps, possibly large.

I The smaller the gaps between the points inM and L, the
larger the number of steps is.

I That makes a problem that might be mitigated by basis
transformation with the chance of overfitting.

I If they are not separable, it goes into an infinite cycle.
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Separating Hyperplanes
Optimal Separating Hyperplanes.

OSH maximizes the margins (signed distances M) of the slab

I Solve
max
β0,β

M

subject to

1
‖β‖

yi(β0 + xT
i β) ≥ M

for i = 1,2, . . . ,N.

I Set ‖β‖ = 1
M
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Separating Hyperplanes
Optimal Separating Hyperplanes.

I Then the problem becomes equivalent
to the convex optimization problem

min
β0,β

1
2
‖β‖2

subject to

yi(β0 + xT
i β) ≥ 1

for i = 1,2, . . . ,N.



Separating Hyperplanes
Optimal Separating Hyperplanes.

I Step 1: is the Lagrange problem to

min
β0,β

Lp

where

Lp =
1
2
‖β‖2 −

N∑
i=1

αi(yi(β0 + xT
i β)− 1)

I Setting derivatives equal to zero leads to

N∑
i=1

αiyi = 0 and
N∑

i=1

αiyixi = β
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Separating Hyperplanes
Optimal Separating Hyperplanes.

I Substituting with those into Lp we get

Lp =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj



Separating Hyperplanes
Optimal Separating Hyperplanes.

I Step 2: Using Wolfe dual optimization, the problem
becomes

max
αi

LD

where

LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj

subject to (the Karush-Kuhn-Tucker conditions)

N∑
i=1

αiyi = 0 and
N∑

i=1

αiyixi = β

αi ≥ 0

and
αi(yi(β0 + xT

i β)− 1) = 0

for i = 1,2, . . . ,N.



Separating Hyperplanes
Optimal Separating Hyperplanes.

I Here, β depend of α through the KKT conditions.
I If yi(β0 + xT

i β)− 1 > 0 then the point is not on the line and
αi = 0.

I If yi(β0 + xT
i β)− 1 = 0 then the point is on the line and

αi > 0 which will contribute to the values of β that will
make up the decision boundary based on this support
points on the slab’s boundaries.

I Separation will occur according to Ĝ(x) = sign(β̂0 + xT β̂1).



Separating Hyperplanes
Optimal Separating Hyperplanes.

I Here, β depend of α through the KKT conditions.
I If yi(β0 + xT

i β)− 1 > 0 then the point is not on the line and
αi = 0.

I If yi(β0 + xT
i β)− 1 = 0 then the point is on the line and

αi > 0 which will contribute to the values of β that will
make up the decision boundary based on this support
points on the slab’s boundaries.

I Separation will occur according to Ĝ(x) = sign(β̂0 + xT β̂1).
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Separating Hyperplanes
Optimal Separating Hyperplanes.

Example (Simulated data in R2)

The blue line is the OHS and the red line is due to logistic
regression.



End of Set 4


