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Linear Regression Models and Least Squares

The linear regression model

f (X ) = E(Y |X ) = β0 + β1x1 + · · ·+ βpxp

For the training data T = {(xi1, xi2, . . . , xip, yi) : i = 1,2, . . . ,N}

yi = β0 + β1xi1 + · · ·+ βpxi,p + εi

for uncorrelated εi ’s, of variance σ2.

In matrix form
y = Xβ + ε,

where X is a N × (p + 1) matrix with ones in the first column.



Linear Regression Models and Least Squares

Each input Xj (for j = 1, . . . ,p) could be one of several types:
1. quantitative variable, ex: age, sales, mileage.

2. transformation of a quantitative variable, ex: log(age),√
sales, mileage2

3. as basis expansions, ex: in a polynomial

β0 + β1X1 + β2X 2
1 + β3X 3

1
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Linear Regression Models and Least Squares

4. dummy variable (factor), ex: if G takes one of the levels 0,
1, or 2, then take Xj = I(G = j) for j = 1,2 and so

β0 + β1X1 + β2X2 =


β0 if G=0,
β0 + β1 if G=1,
β0 + β2 if G=2.

5. interaction between variables, ex: age x mileage
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Linear Regression Models and Least Squares
The method of least squares finds β’s that minimizes residual
sums of squares

RSS(β) =
N∑

i=1

[yi − (β0 + β1xi1 + · · ·+ βpxi,p)]2

=
N∑

i=1

(yi − xT
i β)2

= (y − Xβ)T (y − Xβ)



Linear Regression Models and Least Squares

minimizeβRSS(β) = (y − Xβ)T (y − Xβ)

I
∂RSS(β)

∂β
= −2X T (y − Xβ) = 0 =⇒ X T Xβ = X T y .

I
∂2RSS(β)

∂β∂βT = 2X T X

I If X is full column rank (columns are linearly independent),
then X T X is positive definite and so non-singular, then

β̂ = (X T X )−1X T y

I Predictions
ŷ = X β̂ = X (X T X )−1X T︸ ︷︷ ︸

H

y

H is called the hat matrix or the (orthogonal) projection
matrix.
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Linear Regression Models and Least Squares
I If yi ’s are uncorrelated and have variance σ2, then

Var(β̂) = (X T X )−1σ2

if xi ’s are fixed.
I An unbiased estimator of σ2 is

σ̂2 =
RSS(β̂)

N − p − 1

=
(y − X β̂)T (y − X β̂)

N − p − 1

=
(y − ŷ)T (y − ŷ)

N − p − 1

=
1

N − p − 1

N∑
i=1

(yi − ŷi)
2
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Linear Regression Models and Least Squares

What if columns are not linearly independent?

That is, what if they are perfectly correlated

Xi = constant × Xj

for some i and j .

Then, β̂ is not uniquely defined.

Solutions:
I Re-code redundant qualitative inputs
I If p is much larger than N, then the number of inputs p is

reduced by filtering.
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Statistical Inference for Linear Regression

If εi are iidrv such that εi ∼ N(0, σ2), then

β̂ ∼ N(β, (X T X )−1σ2),

cT β̂ =

p∑
j=0

cj β̂j ∼ N(cTβ, cT (X T X )−1c σ2),

for a non-zero vector c, and

(N − p − 1)
σ̂2

σ2 ∼ χ
2
N−p−1.

Moreover, β̂ and σ̂2 are statistically independent. Thus, ...



Statistical Inference for Linear Regression

...
cT β̂ − cTβ

σ̂
√

cT (X T X )−1c
∼ TN−p−1

Example
If c = ej = (0, . . . ,0, 1︸︷︷︸

j th

, . . . ,0)T , then cTβ = βj and

cT (X T X )−1c = ((X T X )−1)jj =: vjj

the j th diagonal element of (X T X )−1. Therefore,

β̂j − βj

σ̂
√vjj

∼ TN−p−1



Statistical Inference for Linear Regression

Example
If c = (0, . . . ,0, 1︸︷︷︸

i th

,0, . . . ,0, −1︸︷︷︸
j th

, . . . ,0)T , then cTβ = βi − βj

and
cT (X T X )−1c = vii + vjj − vij − vji

where vij the ij th element of (X T X )−1. Therefore,

(β̂i − β̂j)− (βi − βj)

σ̂
√

vii + vjj − vij − vji
∼ TN−p−1



Statistical Inference for Linear Regression
Now, since

cT β̂ − cTβ

σ̂
√

cT (X T X )−1c
∼ TN−p−1

then
I A (1− α)100% confidence interval for cTβ is given by

cT β̂ ± tα/2,N−p−1 σ̂
√

cT (X T X )−1c

I To test

H0 : cTβ = d0 vs HA : cTβ 6= d0, cTβ < d0, or cTβ > d0

use a test statistic

t =
cT β̂ − d0

σ̂
√

cT (X T X )−1c

and p-value calculated using TN−p−1 distribution.
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Statistical Inference for Linear Regression

Example
To test

H0 : βi = βj vs HA : βi 6= βj

use a test statistic

t =
β̂i − β̂j

σ̂
√

vii + vjj − vij − vji

and p-value calculated using TN−p−1 distribution.



Inference for mean
response and prediction



Inference for mean response and prediction

To make a prediction for a new input vector x∗ = (x∗1, . . . , x∗p)T ,
then
I A point estimate is ŷ = xT

∗ β̂.
I A (1− α)100% confidence interval for the mean response

E(y |x∗) = xT
∗ β is given by

xT
∗ β̂ ± tα/2,N−p−1 σ̂

√
xT
∗ (X T X )−1x∗

I A (1− α)100% confidence interval for predicted response
y at x∗ is given by

xT
∗ β̂ ± tα/2,N−p−1 σ̂

√
1 + xT

∗ (X T X )−1x∗
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Model evaluation

To test

H0 : βj1 = βj2 = · · · = βjk = 0 (restricted model M0) vs

HA : At least one βji 6= 0; for i = 1,2, . . . , k

use a test statistic

f =
(RSS(β̂restricted)− RSS(β̂full))/k

RSS(β̂full)/(N − p − 1)

and p − value = P(F > f ) using the F-distribution with degrees
of freedom df1 = k and df2 = N − p − 1.

Note: RSS(β̂restricted) is the residuals sum of squares of the
(nested) model restricted to βj1 = βj2 = · · · = βjk = 0
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Model diagnostics
1. The coefficient of determination

R2 = 1− SSE
SST

=
SSR
SST

where the sums of squares of error is

SSE = RSS(β̂) =
N∑

i=1

(yi − ŷi)
2

and the total sums of squares in

SST =
N∑

i=1

(yi − ȳ)2.

The regression sums of squares

SSR = SST − SSE =
N∑

i=1

(ŷi − ȳ)2

.
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Model diagnostics

2. The adjusted coefficient of determination

R2
adj = 1− (1− R2)

N − 1
N − p − 1

= 1− MSE
MST

where the mean sums of squares of error is

MSE =
SSE

N − p − 1
= σ̂2

and the mean total sums of squares in

MST =
SST
N − 1

.

The closer R2 and R2
adj are to one (or 100%), the better the

fit is. (Note: R2
adj ≤ R2.)
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Model diagnostics

3. Residual analyses to make sure of the homogeneity (to
see no pattern in scatter plots of residuals vs fitted values)
and normality of the residuals using Normal Q-Q plot and
Shapiro-Wilk test.

4. Tests of outliers (points standing far away from the bulk of
the data) and influential points (which if removed, result in
significant change to the model).
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Example: Prostate Cancer



Example: Prostate Cancer

N = 67 and p = 8.
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Example: Prostate Cancer

Dropping the least significant inputs: age, lcp, gleason, and
pgg45, leads to F test statistics

f =
(32.81− 29.43)/4
29.43/(67− 8− 1)

= 1.67

with p − value = P(F4,58 > 1.67) = .17 which is not significant.
Thus, it is concluded to remove those inputs.



Is LS the best method for
prediction?



The Gauss-Markov Theorem

Recall: cT β̂ = cT (X T X )−1X T y =: cT
0 y is unbiased (linear)

estimator of cTβ and Var(cT β̂) = cT (X T X )−1c σ2.

Theorem (The Gauss-Markov Theorem)
Let cT

1 y be another unbiased (linear) estimator of cTβ,then

Var(cT β̂) ≤ Var(cT
1 y)

�

In general, the mean squared error

MSE(θ̂) = E(θ̂ − θ)2

= Var(θ̂) + [E(θ̂)− θ︸ ︷︷ ︸
Bias(θ̂)

]2
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The Gauss-Markov Theorem

How is it related to the expected prediction error (EPE) for
Y∗ = f (x∗) + ε∗?

EPE = E(Y∗ − f̂ (x∗))2

= E(f̂ (x∗)− f (x∗))2 + σ2

= MSE(f̂ (x∗)) + σ2

= MSE(xT
∗ β̂) + σ2

Thus, a small MSE(xT
∗ β̂) is better for prediction, even when

Bias(xT
∗ β̂) > 0.

So, smaller number of predictors (shrinking) might be advised
over a more detailed model. Also, a method other than OLS
with smaller MSE, is more advisable for prediction.
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Subset (Variable)
Selection



Subset (Variable) Selection
I Part of model selection.
I Objective: select one of the 2p possible subsets of

variables/models (including the null regression).
I Methods:

1. Best Subset method: search for the smallest RSS among
all of the 2p models. Note: RSS(β̂full ) < RSS(β̂subset ).

Example (Prostate Cancer)
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Subset (Variable) Selection

3. Stepwise (Forward or Backward) Selection (when p > 40).
I Forward-stepwise selection (is a greedy algorithm): start

with a null model (just the intercept β̂0 = ȳ ) and then
sequentially adds predictors that improves the fit. Models
on the steps forward are nested. Good at all cases.

I Backward-stepwise selection: start with a full model (all the
predictors) and then sequentially removes predictors that
do not alter the fit (smallest t- or z- score). Use only when
N > p.
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sequentially adds predictors that improves the fit. Models
on the steps forward are nested. Good at all cases.

I Backward-stepwise selection: start with a full model (all the
predictors) and then sequentially removes predictors that
do not alter the fit (smallest t- or z- score). Use only when
N > p.



Subset (Variable) Selection

4. Forward-Stagewise Regression:
Stage 0: Start with β̂0,0 = ȳ and β̂j,0 = 0 for j = 1,2, . . . ,p.
Stage k : Find the most correlated variable, say Xj , with the residuals

of the model in Stage k − 1 and find the slope (bj ) of the
simple linear regression between the residuals and that
variable Xj .

β̂j,k = β̂j,k−1 + bj

Until: there is no correlation between the residuals and any
variable.

⇓ Slow and might need more than p stages till converge.
⇑ Good for high dimensional problems.
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Stage 0: Start with β̂0,0 = ȳ and β̂j,0 = 0 for j = 1,2, . . . ,p.
Stage k : Find the most correlated variable, say Xj , with the residuals

of the model in Stage k − 1 and find the slope (bj ) of the
simple linear regression between the residuals and that
variable Xj .

β̂j,k = β̂j,k−1 + bj

Until: there is no correlation between the residuals and any
variable.

⇓ Slow and might need more than p stages till converge.
⇑ Good for high dimensional problems.



Subset (Variable) Selection

4. Forward-Stagewise Regression:
Stage 0: Start with β̂0,0 = ȳ and β̂j,0 = 0 for j = 1,2, . . . ,p.
Stage k : Find the most correlated variable, say Xj , with the residuals

of the model in Stage k − 1 and find the slope (bj ) of the
simple linear regression between the residuals and that
variable Xj .

β̂j,k = β̂j,k−1 + bj

Until: there is no correlation between the residuals and any
variable.

⇓ Slow and might need more than p stages till converge.
⇑ Good for high dimensional problems.



Subset (Variable) Selection

4. Forward-Stagewise Regression:
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Subset (Variable) Selection
In a simulation study, with N = 300 and p = 31.



Subset (Variable) Selection

Measures of selection
1. Largest R2 or R2

adj .
2. Smallest RSS.
3. Smallest CV or GCV .
4. Smallest Mallow’s Cp:

Cp =
RSSsubset of k

RSS(β̂full)/(N − p − 1)
− (N − 2k)
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Subset (Variable) Selection

More measures of selection: (For general classes of models.)
Let L be the likelihood function. β̂MLE ,k is the maximum
likelihood estimator of size k .

1. Smallest
deviance = −2 log L(β̂MLE ,k )

2. Smallest Akaike’s Information Criterion

AICk = −2 log L(β̂MLE ,k ) + 2k

3. Smallest Bayes’ Information Criterion

BICk = −2 log L(β̂MLE ,k ) + 2k log(N)
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Shrinkage

I It includes subset selection. But, it is continuous selection
rather than discrete.

I Objective: To include all of the p inputs but shrinking their
coefficients towards zero. If some of them become zero,
then it results in a subset. (Note: Intercept is not included
in that objective.)

I It reduces variance of the estimates.
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Shrinkage

To find β̂shrunk that

minimizeβ RSS(β) =
N∑

i=1

[yi − (β0 + β1xi1 + · · ·+ βpxi,p)]2

subject to
p∑

j=1

G(βj) ≤ t (size constraint)

OR β̂shrunk =

argminβ

 N∑
i=1

[yi − (β0 + β1xi1 + · · ·+ βpxi,p)]2 + λ

p∑
j=1

G(βj)


for some positive function G. The term λ

∑p
j=1 G(βj) is called

shrinkage penalty.
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Shrinkage

I Some methods:

1. Ridge regression,G(x) = x2. (An L2 shrinkage method.)

2. Least absolute shrinkage and selection operator (lasso),
G(x) = |x |. (An L1 shrinkage method.)

3. Bridge shrinkage,

G(x) =

{
|x |q if q > 0,
I(x 6= 0) if q = 0.

(An Lq shrinkage method.) It includes both ridge and lasso.
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Ridge Regression

I The decay/tuning parameter λ ≥ 0 is determined first
through CV then the parameters are estimated.

I What does happen when λ increase?



Ridge Regression

Better, start with standardized data:

N∑
i=1

xij = 0,
N∑

i=1

x2
ij = 1

which results in removing β̂0 from the optimization problem as
its value would be ȳ . We are now left with a p × p matrix X .



Ridge Regression

The problem is now equivalent to find β̂ridge that

minimizeβ RSS(β) = (y − Xβ)T (y − Xβ)

subject to βTβ ≤ t

OR
β̂ridge = argminβ

[
(y − Xβ)T (y − Xβ) + λβTβ

]
Call:

RSSλ(β) := (y − Xβ)T (y − Xβ) + λβTβ
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Ridge Regression
I

∂RSSλ(β)

∂β
= −2X T (y − Xβ) + 2λβ = 0 =⇒

(X T X + λIp)β = X T y

where Ip is the p × p identity matrix.

I
∂2RSSλ(β)

∂β∂βT = 2X T X + 2λIp

I Even when X is not a full column rank, X T X + λIp is
positive definite for λ > 0 and so non-singular, then

β̂
ridge
λ = (X T X + λIp)−1X T y

I Predictions

ŷλ = X β̂ridge
λ = X (X T X + λIp)−1X T︸ ︷︷ ︸

the λ-hat matrix Hλ

y



Ridge Regression
I

∂RSSλ(β)

∂β
= −2X T (y − Xβ) + 2λβ = 0 =⇒

(X T X + λIp)β = X T y

where Ip is the p × p identity matrix.

I
∂2RSSλ(β)

∂β∂βT = 2X T X + 2λIp

I Even when X is not a full column rank, X T X + λIp is
positive definite for λ > 0 and so non-singular, then

β̂
ridge
λ = (X T X + λIp)−1X T y

I Predictions

ŷλ = X β̂ridge
λ = X (X T X + λIp)−1X T︸ ︷︷ ︸

the λ-hat matrix Hλ

y



Ridge Regression
I

∂RSSλ(β)

∂β
= −2X T (y − Xβ) + 2λβ = 0 =⇒

(X T X + λIp)β = X T y

where Ip is the p × p identity matrix.

I
∂2RSSλ(β)

∂β∂βT = 2X T X + 2λIp

I Even when X is not a full column rank, X T X + λIp is
positive definite for λ > 0 and so non-singular, then

β̂
ridge
λ = (X T X + λIp)−1X T y

I Predictions
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Ridge Regression

Again, the solution is

β̂
ridge
λ = (X T X + λIp)−1X T y

I What does happen when λ decreases to zero?
I If columns of X are orthonormal (X T X = I), then

β̂
ridge
λ =

1
1 + λ

β̂ols

I In general, β̂ridge
λ is a biased estimator of β. (Good problem

to prove it, hint: E(Az) = A E(z).)
I Yet, it has smaller variance than that of the OLS’s.

(Another good problem, hint: Var(Az) = A Var(z) AT .)
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Ridge Regression

It handles very well the case of collinearity, as

I Originally, When a coefficient of a variable becomes large,
coefficient of any correlated variables balance up with a
very small and negative value. But placing a bound
resolves that issue.

I It fixes the problem that X is not column full-rank.
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Ridge Regression

Using singular values decomposition (SVD):

X = UDV T

Where U and V are two orthogonal matrices, UT U = Ip and
V T V = Ip. The columns uj and vj of the N × p matrix U and the
p × p matrix V are spanning the columns and rows of X ,
respectively. D is a p × p diagonal matrix of singular values
d1 ≥ . . . ≥ dp ≥ 0 (some might be possible 0). Then ...
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Ridge Regression

Then ...

β̂
ridge
λ = (X T X + λIp)−1X T y

= ((UDV T )T (UDV T ) + λIp)−1(UDV T )T y

= (VD2V T + λVV T )−1VDUT y

= V ∆λUT y

where ∆λ is a diagonal matrix with elements dj/(d2
j + λ), for

j = 1, . . . ,p.
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Ridge Regression

Thus, the prediction is

ŷλ = X β̂ridge
λ = Hλy

= X (X T X + λIp)−1X T y

= (UDV T )V ∆λUT y

= UD∆λUT y

=

p∑
j=1

uj
d2

j

d2
j + λ

uT
j y

Note that, ŷ0 = UUT y =
∑p

j=1 ujuT
j y is the OLS prediction.
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Ridge Regression
Consider centered data x̄j = 0 for all j

I The sample covariance matrix

S = X T X/N = VD2V T/N

(eigen decomposition with
V T SV = D2/N)

I With d2
1/N ≥ d2

2/N ≥ · · · ≥ d2
p/N

I The eigen-vectors vj ’s are called the
principal components
(Karhunen-Loeve) directions of X .

I Xv1 is the (first) largest principal
component since vT

1 X T Xv1 = d2
1/N

is the largest sample variance
among all normalized linear
combinations of the columns of X.

e.g. principal components in
2D input data
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Ridge Regression

Thus, with

β̂
ridge
λ = V ∆λUT y =

p∑
j=1

vj
dj

d2
j + λ

uT
j y

the prediction

ŷλ = UD∆λUT y =

p∑
j=1

uj
d2

j

d2
j + λ

uT
j y

is made onto the those components and shrinks the
coefficients of the low variance components more than those
with high variance.



Ridge Regression

Define, the effective degrees of freedom to be

df (λ) = tr(Hλ) = tr(D∆λ) =

p∑
j=1

d2
j

d2
j + λ

≤ p

with df (λ) = p at λ = 0.
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df (λ) = tr(Hλ) = tr(D∆λ) =

p∑
j=1

d2
j

d2
j + λ

≤ p

with df (λ) = p at λ = 0.



Ridge Regression
Example (Prostate Cancer)
Estimated coefficients for different values of df (λ) with optimal
df = 5 using CV.



Ridge Regression

Example (Prostate Cancer)
Estimated coefficients are



Least absolute shrinkage
and selection operator
(lasso) or basis pursuit



Lasso

To find β̂ lasso that

minimizeβ RSS(β) =
N∑

i=1

[yi − (β0 + β1xi1 + · · ·+ βpxi,p)]2

subject to
p∑

j=1

|βj | ≤ t (size constraint)

OR

β̂ lasso = argminβ

 N∑
i=1

[yi − (β0 + β1xi1 + · · ·+ βpxi,p)]2 + λ

p∑
j=1

|βj |


with no closed form.
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Lasso

Again, the solution is found using quadratic programming
algorithms for each fixed λ or using the Least Angel Regression
(LARS) (with computational costs comparable to the OLS).

I Standard errors are found computationally using bootstrap
methods.

I What does happen when t increases beyond
t0 =

∑p
j=1 |β̂

ols
j |?

Then β̂ lasso = β̂ols.

I Thus, we use a normalized shrinkage factor s = t/t0. It can
be determined using CV.
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Lasso

Lasso tends to select more parameters, but it works very well
when p > N. It outperforms subset selection and ridge
regression in its predictive error.



Lasso

I If columns of X are orthonormal (X T X = I), then

β̂ lasso
λ = sign(β̂ols)(|β̂ols| − λ/2)+

It is called soft thresholding.



Lasso
Example (Prostate Cancer)
Estimated coefficients for different values of shrinkage factor s
with optimal s = .36 using 10-fold CV.



Lasso

Example (Prostate Cancer)
Estimated coefficients are



Lasso
Contours are for the error function around β̂ = β̂ols

|β1|+ |β2| ≤ t vs β2
1 + β2

2 ≤ t
Shrinkage+selection vs shrinkage



Elastic-net Method



Elastic-net Method

β̂elastic =argminβ

[
N∑

i=1

[yi − (β0 + β1xi1 + · · ·+ βpxi,p)]2

+λ

p∑
j=1

(
α|βj |+ (1− α)|βj |2

)
Elastic-net selects like a lasso, shrinks like a ridge.

Example
For α = .8, the elastic-net penalty

∑2
j=1
(
.8|βj |+ .2|βj |2

)
≤ t
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Bridge Method

To find β̂bridge that

minimizeβ RSS(β) =
N∑

i=1

[yi − (β0 + β1xi1 + · · ·+ βpxi,p)]2

subject to
p∑

j=1

|βj |q ≤ t (size constraint)

OR

β̂bridge = argminβ

 N∑
i=1

[yi − (β0 + β1xi1 + · · ·+ βpxi,p)]2 + λ

p∑
j=1

|βj |q


with no closed form for 0 < q ≤ 1.
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Bridge Method

|β1|q + |β2|q ≤ t for some q values.



Bridge Method

I When q = 0, the penalty term becomes λ
∑p

j=1 I(βj 6= 0)

I If columns of X are orthonormal (X T X = I), then

β̂bridge = β̂olsI(|β̂ols| ≥ |β̂ols
(M)|)

where β̂ols
(M) is the M th largest coefficient. It is called hard

thresholding. It is a subset selection method.
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Bayesian Interpretation
(bridge, lasso, and ridge)



Bayesian Interpretation (bridge, lasso, and ridge)
Define: The generalized Gaussian distribution GGq(µ, τ2) with
pdf

fq(x) =
1

2Γ(1 + 1
q )
√

Γ(1/q)
Γ(3/q) τ

e−( Γ(3/q)
Γ(1/q)

)
q/2 | x−µ

τ
|q
, for x ∈ R

with mean µ and variance τ2.
I When q = 1, then GG1(µ, τ) is the Laplace distribution.

f1(x) =
1√
2τ

e−
√

2| x−µ
τ
|, for x ∈ R

I When q = 2, then GG2(µ, τ) is the normal distribution
N(µ, τ2).

f2(x) =
1√
2πτ

e−
1
2 ( x−µ

τ
)2
, for x ∈ R
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Bayesian Interpretation (bridge, lasso, and ridge)

The generalized Gaussian distribution GGq(µ, τ2) with pdf

fq(x) =
1

2Γ(1 + 1
q )
√

Γ(1/q)
Γ(3/q) τ

e−( Γ(3/q)
Γ(1/q)

)
q/2 | x−µ

τ
|q
, for x ∈ R

with mean µ and variance τ2.
I When q →∞, then GGq(µ, τ) converges point-wise to the

uniform distribution Uniform(µ−
√

3τ, µ+
√

3τ).
I When q → 0+, then GGq(µ, τ) converges to a degenerate

distribution at x = µ.
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Bayesian Analysis of Linear Regression

The linear regression model is

Y = Xβ + ε,

where X is a N × (p + 1), and ε ∼ N(0, σ2IN).
Then,

Y ∼ N(Xβ, σ2IN).

So the likelihood function is

L(β, σ|y) =
N∏

i=1

1√
2πσ

e−
1
2 (

yi−(β0+
∑p

j=1 xi,jβj )

σ
)2
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Bayesian Analysis of Linear Regression

By Bayes’ rule

posterior ∝ Likelihood · prior

Choose GGq(0, τ) to be a prior for each of the coefficients
β1, . . . , βp (with the assumption that they are independent).
Thus,

posterior ∝
N∏

i=1

e−
1
2 (

yi−(β0+
∑p

j=1 xi,jβj )

σ
)2 ·

p∏
j=1

e−( Γ(3/q)
Γ(1/q)

)
q/2 |

βj
τ
|q

= e−
1

2σ2
∑N

i=1(yi−(β0+
∑p

j=1 xi,jβj ))2
· e−( Γ(3/q)

τ2Γ(1/q)
)
q/2 ∑p

j=1 |βj |q

= e−
1

2σ2

[∑N
i=1(yi−(β0+

∑p
j=1 xi,jβj ))2+λ

∑p
j=1 |βj |q

]

where λ = 2σ2( Γ(3/q)
τ2Γ(1/q)

)
q/2
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Bayesian Analysis of Linear Regression

Thus, −log posterior is a linear function in N∑
i=1

(yi − (β0 +

p∑
j=1

xi,jβj))2 + λ

p∑
j=1

|βj |q


and so the posterior mode (the maximum point of the posterior
distribution) is the minimum of the −log posterior and so it is
the bridge estimate. If q = 2, then it is also the mean.



Principal Component
Regression (PCR) - an

unsupervised technique
for dimension reduction



Principal Component Regression (PCR)

Starting with standardized data ...
PCR Idea: rotate the coordinates to reflect the most variability
in the inputs in X , using zi := Xvi . Then perform regression on
the new coordinate system. In that manner,
I We introduce the N ×M matrix WM = XV with an p ×M

orthonormal matrix V (with VV T = Ip) for some
M ∈ {1,2, . . . ,p}

I That is, the i th column of WM is zi = Xvi .
I Then,

Y = Xβ + ε

gives a reduced regression

Y = WMθ + ε

where θ = V Tβ and so β = Vθ.
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Principal Component Regression (PCR)

Thus,
I The PCR estimate is

β̂pcr = V θ̂.

I If M = p, then
β̂pcr = β̂ols.
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Principal Component Regression (PCR)

I PCR starts with principal component analysis (PCA), an
unsupervised learning, from X .

I PCR shares the idea of principal components with ridge
regression ...

I Ridge Regression shrinks in the principal component
directions of the small variance, whereas Principal
Component Regression omit those directions (a number of
p −M smallest eigenvalues).

I Yet, PCR, like ridge regresion, is not a subset selection
method, since the M components zi ’s are linear
combinations of the p inputs as in zi = Xvi .
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I PCR shares the idea of principal components with ridge
regression ...

I Ridge Regression shrinks in the principal component
directions of the small variance, whereas Principal
Component Regression omit those directions (a number of
p −M smallest eigenvalues).

I Yet, PCR, like ridge regresion, is not a subset selection
method, since the M components zi ’s are linear
combinations of the p inputs as in zi = Xvi .



Principal Component Regression (PCR)

Example (Prostate Cancer)
Shrinkage factor d2/(d2 +λ) versus the index of the component



PCR
Example (Prostate Cancer)
CV error shows optimal less complex at M = 7 using 10-fold
CV.



Principal Component Analysis (PCA)

1. For population data X :
Step 1: Find v1 = argmax

ω:ωTω=1
Var(Xω) = argmax

ω:ωTω=1
ωT Var(X )ω

Step 2: Find v2 = argmax
ω:ωTω=1,

Cov(Xω,Xv1)=0

Var(Xω)

...
Step M: Find vM = argmax

ω:ωTω=1,
Cov(Xω,Xvi )=0;i=1,...,M−1

Var(Xω)

How to determine M? By CV.
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Principal Component Analysis (PCA)

2. For sample data X :
Step 1: Find v1 = argmax

ω:ωTω=1
ωT X T Xω

Step 2: Find v2 = argmax
ω:ωTω=1,
ωT X T Xv1=0

ωT X T Xω

...
Step M: Find vM = argmax

ω:ωTω=1,
ωT X T Xvi =0;i=1,...,M−1

ωT X T Xω

But, no guarantee that the directions with the largest
variance/explanation of the predictor, will also be the best for
prediction. So ...
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Partial Least Squares
(PLS) - a supervised

technique for dimension
reduction



Partial Least Squares (PLS)
Starting with standardized data but this time including Y ...
PLS Idea: rotate the coordinates to reflect the most correlation
between the output Y and the inputs in X , using PLS directions
zi := Xvi . Then perform regression on the new coordinate
system. In that manner,
I We introduce the N ×M matrix WM = XV with an p ×M

orthonormal matrix V (with VV T = Ip) for some
M ∈ {1,2, . . . ,p}

I That is, the i th column of WM is zi = Xvi .
I Then,

Y = Xβ + ε

gives a reduced regression

Y = WMθ + ε

where θ = V Tβ and so β = Vθ.
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Partial Least Squares (PLS)

Thus,
I The PLS estimate is

β̂pls = V θ̂.

I If M = p, then
β̂pls = β̂ols.
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I The PLS estimate is
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I If M = p, then
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PLS Directions zi = Xvi

For population data X :
Step 1: Find

v1 = argmax
ω:ωTω=1

Cov2(Y ,Xω) = argmax
ω:ωTω=1

Corr2(Y ,Xω) Var(Xω)

Step 2: Find v2 = argmax
ω:ωTω=1,

Cov(Xω,Xv1)=0

Cov2(Y ,Xω)

...
Step M: Find vM = argmax

ω:ωTω=1,
Cov(Xω,Xvi )=0;i=1,...,M−1

Cov2(Y ,Xω)

How to determine M? By CV.
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PLS
Example (Prostate Cancer)
CV error shows optimal less complex at M = 2 using 10-fold
CV.
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Example (Prostate Cancer)



K-means Regression



K-means Regression

It is a non-parametric method.
K-means Idea: the simplest is the K-nearest neighbor
regression (K-NN). Thus, K-means regression is a local
method. In that manner,
I The predicted response at x∗ is

f̂ (x∗) = Average(yi |xi ∈ Nk (x∗)) =
1
k

∑
xi∈Nk (x∗)

yi

where Nk (x∗)is a neighborhood of x∗ of size k .
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K-means Regression

K = 1 versus K = 9



K-means Regression

Parametric functions that really represent the data outperform
non-parametric methods. Curse of dimensionality vs overfitting.



End of Set 3


