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Linear Regression Models and Least Squares

The linear regression model
f(X) = E(Y|X) = Bo+ B1X1 + -+ BoXp
For the training data 7 = {(xi1, Xi2, ..., Xjp, ¥i) : i = 1,2,..., N}
Yi = Bo+ B1Xit + -+ -+ BpXip + €

for uncorrelated ¢;’s, of variance o2.

In matrix form
y=XB+e

where X' is a N x (p + 1) matrix with ones in the first column.
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Linear Regression Models and Least Squares

Each input X; (for j = 1,..., p) could be one of several types:
1. quantitative variable, ex: age, sales, mileage.

2. transformation of a quantitative variable, ex: log(age),
V/sales, mileage?

3. as basis expansions, ex: in a polynomial

Bo + B1 Xy + BaX? + B3 X?



Linear Regression Models and Least Squares

4. dummy variable (factor), ex: if G takes one of the levels 0,
1, 0r 2, thentake X; = /(G = j) for j= 1,2 and so

By if G=0,
Bo + B1 X1+ BaXo =4 Bo+B1 if G=1,
Bo + B2 if G=2.



Linear Regression Models and Least Squares

4. dummy variable (factor), ex: if G takes one of the levels 0,
1, 0r 2, thentake X; = /(G = j) for j= 1,2 and so

By if G=0,
Bo + B1 X1+ BaXo =4 Bo+B1 if G=1,
Bo + B2 if G=2.

5. interaction between variables, ex: age x mileage



Linear Regression Models and Least Squares

The method of least squares finds 3’s that minimizes residual
sums of squares

N
RSS(B) = Z[}’i — (Bo + Bixit + -+ + BoXip)?

Y




Linear Regression Models and Least Squares

minimizes RSS(8) = (y — XB)" (v — XB)

. ORSS(p)

S —2XT(y—XB) =0 = X'XB=XTy.



Linear Regression Models and Least Squares

minimizes RSS(8) = (y — XB)" (v — XB)

> 8Rgg(ﬁ)Z—sz(y—Xﬁ)ZO = XTXB=XTy.
» ASS(H) _oyry

oposT



Linear Regression Models and Least Squares

minimizes RSS(B) = (y — XB)"(y — Xp)
ORSS(B)

= 5 = -2XT(y-XB)=0 = X'Xp=X"y.
0?RSS(B) _ 41
> W_ZX X

» If X is full column rank (columns are linearly independent),
then X7 X is positive definite and so non-singular, then

B=X"X)"XTy



Linear Regression Models and Least Squares

minimizes RSS(B) = (y — XB)"(y — Xp)
ORSS(B)

= 5 = -2XT(y-XB)=0 = X'Xp=X"y.
0?RSS(B) _ 41
> W_ZX X

» If X is full column rank (columns are linearly independent),
then X7 X is positive definite and so non-singular, then

B=X"X)"XTy

» Predictions A
J=XB=XX"X)""XTy
N———
H

H is called the hat matrix or the (orthogonal) projection
matrix.
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» |f y/'s are uncorrelated and have variance o2, then
Var(3) = (XTX)" 102

if x;'s are fixed.



Linear Regression Models and Least Squares

» |f y/'s are uncorrelated and have variance o2, then
Var(3) = (XTX)" 102

if x;'s are fixed.
» An unbiased estimator of o2 is

A

3 RSS(5)
- N-p-1
vy = XB)(y - XB)
N—-—p—-1
_y-N"y-9
N—-—p-1
1 N
_ . {72
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That is, what if they are perfectly correlated
X = constant x X;

for some j and j.

Then, 3 is not uniquely defined.
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Linear Regression Models and Least Squares

What if columns are not linearly independent?

That is, what if they are perfectly correlated
X = constant x X;

for some i and j.
Then, 3 is not uniquely defined.

Solutions:
» Re-code redundant qualitative inputs

» If pis much larger than N, then the number of inputs p is
reduced by filtering.



Statlstlcal Inference for
Linear Regression



Statistical Inference for Linear Regression

If ¢; are iidrv such that ¢; ~ N(0, ¢?), then

B ~ N(/Bv (XTX)_1U2)a

p
=3 6 ~ N8, cT(XTX) " co?),

j=0
for a non-zero vector ¢, and

—

0'2 2
(N-p— 1); ~ XN—p—1-

Moreover, 3 and o2 are statistically independent. Thus, ...



Statistical Inference for Linear Regression

c’B-cTp
N — ~ Tprf1
5/cT(XTX) Tc

Example
If c = ej:(O,...,O,J/,...,O)T,then c’B = pjand
jth
cT(X™X)Te=((XTX)) =y

the j diagonal element of (X7 X)~'. Therefore,

B/ B
5/

~ 7-N—p—1



Statistical Inference for Linear Regression

Example

fe=(0,.,0,1,0,.,0, ~1,....0)7, then &75 = § —
jth jh

and

where v; the jj™ element of (X7 X)~". Therefore,

(Bi — B) — (B — B)

~ —p—1
(TV/VW4—VW-— Vij — Vji




Statistical Inference for Linear Regression
Now, since A
c’'B-c'p

~ Thop-
6V/cT(XTX) ¢ P

then



Statistical Inference for Linear Regression

Now, since )
c’p—c’p
- ~ TN—p—1
ay/cT(XTX) ¢
then

> A (1 — a)100% confidence interval for ¢’ 3 is given by

c"B Lt on_p16\/cT(XTX)Tc



Statistical Inference for Linear Regression

Now, since A
c’p—c’p
~ — ~ Tn_p1
5/ cT(XTX) e
then

> A (1 — a)100% confidence interval for ¢’ 3 is given by

c"B Lt on_p16\/cT(XTX)Tc
> To test
Ho:c'B=dyvsHa:c"B+#dy,cTB<dy, orc’ 8> ap
use a test statistic
c’B—dy
61/cT(XTX)"Tc

and p-value calculated using Ty_p_1 distribution.




Statistical Inference for Linear Regression

Example
To test
Ho:,BjZOVSHAZﬂj#O

use a test statistic

A

Bj
o\/Vj

and p-value calculated using Ty_p_1 distribution.

t=



Statistical Inference for Linear Regression

Example
To test

Ho : Bi = Bj vs Ha : Bi # B;
use a test statistic
Bi — B

G\/Vii + Vij = Vij = Vj

t

and p-value calculated using Ty_p_1 distribution.
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then

> A point estimate is j = x/ 5.
» A (1 —«a)100% confidence interval for the mean response
E(y|x.) = x/ 3 is given by
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Inference for mean response and prediction

To make a prediction for a new input vector x, = (Xu1, ..., Xp) ',
then

> A point estimate is j = x/ 5.
» A (1 —«a)100% confidence interval for the mean response
E(y|x.) = x/ 3 is given by

XIB + ta/2,N—p—1 o \/ X*T(XTX)ile*

» A (1 —a)100% confidence interval for predicted response
y at x, is given by

X/ Bt on p 1 6\/1 + xT(XTX)~1x,
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To test
Ho : Bj, = Bj, = --- = Bj, = 0 (restricted model My) vs
Hp: Atleastone 3, #0; fori=1,2,... k
use a test statistic

(RSS(Brestricted) - RSS(BfuII))/k
RSS(Bun)/(N—p—1)

and p — value = P(F > f) using the F-distribution with degrees
of freedom dfy = kand dfb =N —p —1.




Model evaluation

To test
Ho : Bj, = Bj, = --- = Bj, = 0 (restricted model My) vs
Hp: Atleastone 3, #0; fori=1,2,... k
use a test statistic

(RSS(Brestricted) - RSS(BfuII))/k
RSS(Bun)/(N—p—1)

and p — value = P(F > f) using the F-distribution with degrees
of freedom dfy = kand dfb =N —p —1.

Note: RSS(Brestricted) is the residuals sum of squares of the
(nested) model restricted to g, = 3, =--- = 3j, =0
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1. The coefficient of determination
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2 _ 4 _ S _ =Y
A= SST  SST
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Model diagnostics
1. The coefficient of determination
SSE  SSR
- SST ~ SST

where the sums of squares of error is

R% =1

N
SSE = RSS(3) = Y (vi — ¥i)?

i=1

and the total sums of squares in
N
SST =Y (vi—7)>.
i=1
The regression sums of squares

N
SSR=S8ST —SSE=> (§i—y)?

i=1



Model diagnostics

2. The adjusted coefficient of determination

N —1 MSE
R§dj:1—(1—Fi'2)m:1—M—ST



Model diagnostics

2. The adjusted coefficient of determination

N —1 MSE
ng:1_(1_R2)m:1_W

where the mean sums of squares of error is

~ SSE @ =
MSE—m—U



Model diagnostics

2. The adjusted coefficient of determination

N —1 MSE
ng:1—(1—R2)m:1—M—ST

where the mean sums of squares of error is

~ SSE S
MSE—N_p_1 =0

and the mean total sums of squares in

SST
MST -_— ﬁ-



Model diagnostics

2. The adjusted coefficient of determination

N—1 MSE
ng:1—(1—R2)m:1—M—ST

where the mean sums of squares of error is

~ SSE S
MSE = N—p_1 =0

and the mean total sums of squares in

SST
MST -_— ﬁ-

The closer R? and R%;

fitis. (Note: A%, < R?.)

are to one (or 100%), the better the



Model diagnostics

3. Residual analyses to make sure of the homogeneity (to
see no pattern in scatter plots of residuals vs fitted values)
and normality of the residuals using Normal Q-Q plot and
Shapiro-Wilk test.



Model diagnostics

3. Residual analyses to make sure of the homogeneity (to
see no pattern in scatter plots of residuals vs fitted values)
and normality of the residuals using Normal Q-Q plot and
Shapiro-Wilk test.

4. Tests of outliers (points standing far away from the bulk of
the data) and influential points (which if removed, result in
significant change to the model).
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Example: Prostate Cancer
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Example: Prostate Cancer

N =67 and p = 8.

lcavol 1lweight age 1bph svi lcp gleason

lweight 0.300

age 0.286 0.317

lbph  0.063 0.437 0.287

svi  0.593 0.181  0.129 —0.139

lep  0.692 0.157 0.173 —-0.089 0.671
gleason  (0.420 0.024  0.366 0.033  0.307  0.476

pggad  0.483 0.074 0.276 —0.030 0.431 0.663 0.757




Example: Prostate Cancer

Term  Coefficient  Std. Error  Z Score
Intercept 2.46 0.09 27.60
lcavol 0.68 0.13 5.37
lweight 0.26 0.10 2.5
age —-0.14 0.10 —1.40

1bph 0.21 0.10 2.06

svi 0.31 0.12 2.47

lcp —0.29 0.15 —1.87
gleason —0.02 0.15 —0.15
pEE4s 0.27 0.15 1.74




Example: Prostate Cancer

Dropping the least significant inputs: age, Icp, gleason, and
pgg45, leads to F test statistics

(_ (32.81-20.43)/4
T 29.43/(67—-8-1)

with p — value = P(F4 58 > 1.67) = .17 which is not significant.
Thus, it is concluded to remove those inputs.

=1.67




Is LS the best method for
prediction?



The Gauss-Markov Theorem

Recall: ¢4 = cT(XTX)"'XTy =: ¢/ y is unbiased (linear)
estimator of ¢’ 5 and Var(c”3) = cT(X7X) 'co?.
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The Gauss-Markov Theorem
Recall: ¢4 = cT(XTX)"'XTy =: ¢/ y is unbiased (linear)
estimator of ¢’ 5 and Var(c”3) = cT(X7X) 'co?.

Theorem (The Gauss-Markov Theorem)
Let c1T y be another unbiased (linear) estimator of ¢’ 3,then

Var(c™B) < Var(cly)

In general, the mean squared error
MSE(6) = E(§ — 6)?
= Var(0) + [E(0) — 612
D

Bias(6)



The Gauss-Markov Theorem

How is it related to the expected prediction error (EPE) for
Y, = f(X.) + €,.?
EPE = E(Y, — f(x,))?
= E(f(x) — f(x.))? + o2
= MSE(f(x.)) + o
= MSE(x] 3) + o2
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The Gauss-Markov Theorem

How is it related to the expected prediction error (EPE) for
Y, = f(X.) + €,.?
EPE = E(Y, — f(x,))?
= E(f(x) — f(x.))? + o2
= MSE(f(x.)) + o
= MSE(x] 3) + o2

Thus, a small MSE(x] B) is better for prediction, even when
Bias(x] 3) > 0.

So, smaller number of predictors (shrinking) might be advised
over a more detailed model. Also, a method other than OLS
with smaller MSE, is more advisable for prediction.
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Subset (Variable) Selection
» Part of model selection.
» Objective: select one of the 2P possible subsets of

variables/models (including the null regression).
» Methods:
1. Best Subset method: search for the smallest RSS among
all of the 2P models. Note: RSS(B1u) < RSS(Bsubset)-

Example (Prostate Cancer)
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Subset (Variable) Selection

2. Leaps and bounds (good for p < 40, minimizes RSS).
Also, Branch and Bounds.



Subset (Variable) Selection

2. Leaps and bounds (good for p < 40, minimizes RSS).
Also, Branch and Bounds.

TECHNOMETRICS®, VOL. 16, NO. 4, NOVEMBER 1974

Regressions by Leaps and Bounds

George M. Furnival and Robert W. Wilson, Jr.
School of Forestry, Yale University USDA Forest Service
New Haven, Connecticut Northeastern Forest Experiment
Station

This paper describes several algorithms for computing the residual sums of squares
for all possible regressions with what appears to be a minimum of arithmetic (less than
six floating-point operations per regression) and shows how two of these algorithms
can be combined to form a simple leap and bound technique for finding the best subsets
without examining all possible subsets. The result is a reduction of several orders of
magnitude in the number of operations required to find the besi subsets.



Subset (Variable) Selection

2. Leaps and bounds (good for p < 40, minimizes RSS).
Also, Branch and Bounds.

Ficure 1—The regression tree



Subset (Variable) Selection

2. Leaps and bounds (good for p < 40, minimizes RSS).
Also, Branch and Bounds.
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Figure 2—The bound tree

TECHNOMETRICS®, VOL. 16, NO. 4, NOVEMBER 1974
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3. Stepwise (Forward or Backward) Selection (when p > 40).
» Forward-stepwise selection (is a greedy algorithm): start
with a null model (just the intercept 3 = y) and then
sequentially adds predictors that improves the fit. Models
on the steps forward are nested. Good at all cases.



Subset (Variable) Selection

3. Stepwise (Forward or Backward) Selection (when p > 40).

» Forward-stepwise selection (is a greedy algorithm): start
with a null model (just the intercept 3 = y) and then
sequentially adds predictors that improves the fit. Models
on the steps forward are nested. Good at all cases.

» Backward-stepwise selection: start with a full model (all the
predictors) and then sequentially removes predictors that
do not alter the fit (smallest t- or z- score). Use only when
N > p.
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Stage 0: Start with fpo =y and 50 =0forj=1,2,...,p.

Stage k: Find the most correlated variable, say X;, with the residuals
of the model in Stage k — 1 and find the slope (b;) of the
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Subset (Variable) Selection

4. Forward-Stagewise Regression:

Stage 0: Start with fpo =y and 50 =0forj=1,2,...,p.

Stage k: Find the most correlated variable, say X;, with the residuals
of the model in Stage k — 1 and find the slope (b;) of the
simple linear regression between the residuals and that
variable X;.

Bj,k = Bj,k—1 + by
Until: there is no correlation between the residuals and any
variable.
|l Slow and might need more than p stages till converge.
1+ Good for high dimensional problems.



Subset (Variable) Selection
In a simulation study, with N = 300 and p = 31.
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Subset (Variable) Selection

Measures of selection

1. Largest R? or Rgdj.
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Measures of selection
1. Largest R® or Rgdj.
2. Smallest RSS.

3. Smallest CV or GCV.



Subset (Variable) Selection

Measures of selection
1. Largest R® or Rgdj.
2. Smallest RSS.
3. Smallest CV or GCV.
4. Smallest Mallow’s Cp:

R SSsubset of k

» " RSN -p-1)
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Subset (Variable) Selection

More measures of selection: (For general classes of models.)
Let L be the likelihood function. By « is the maximum
likelihood estimator of size k.

1. Smallest
deviance = —2log L(BuLE k)

2. Smallest Akaike’s Information Criterion
AlC, = -2 log L(BMLE,k) + 2k
3. Smallest Bayes’ Information Criterion

BICk = —2log L(BmLe k) + 2k log(N)



Subset (Variable) Selection

Example (Prostate Cancer)
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Shrinkage (regulariza-
tion,constraints)
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» |t includes subset selection. But, it is continuous selection
rather than discrete.

» Obijective: To include all of the p inputs but shrinking their
coefficients towards zero. If some of them become zero,
then it results in a subset. (Note: Intercept is not included
in that objective.)



Shrinkage

» |t includes subset selection. But, it is continuous selection
rather than discrete.

» Obijective: To include all of the p inputs but shrinking their
coefficients towards zero. If some of them become zero,
then it results in a subset. (Note: Intercept is not included
in that objective.)

> It reduces variance of the estimates.



Shrinkage

To find Ashrunk that
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subject to Z G(5;) < t (size constraint)
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Shrinkage

To find Ashrunk that

N
minimize; RSS(B) = Z[y; — (Bo + B1Xit + -+ + BpXip)]?
i=1

p
subject to G(5;j) < t (size constraint)
j
j=1

OR Bshrunk —
N p
argming Z[}/i — (Bo + Bixit + -+ + BpXip)? + A Z G(5))
i=1 J=1

for some positive function G. The term A ZI’-’:1 G(;) is called
shrinkage penalty.
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Shrinkage

> Som

e methods:

. Ridge regression,G(x) = x2. (An L, shrinkage method.)

. Least absolute shrinkage and selection operator (lasso),

G(x) = |x|. (An L; shrinkage method.)

. Bridge shrinkage,

_ e if g >0,
G(X)—{ I(x£0) ifg=0.

(An Lg shrinkage method.) It includes both ridge and lasso.



Shrinkage

Example (Prostate Cancer)
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Ridge Regression
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Shrinkage

Example (Prostate Cancer)
Estimated coefficients are

Term LS Best Subset Ridge Lasso
Intercept 2.465 2477 2,452  2.468
lcavol 0.680 0.740 0.420 0.533
lweight 0.263 0.316 0.238 0.169
age —0.141 —0.046
1bph 0.210 0.162  0.002
svi 0.305 0.227  0.094
lep —0.288 0.000
gleason —0.021 0.040
pge4b 0.267 0.133
Test Error 0.521 0.492 0.492 0479
Std Error 0.179 0.143 0.165 0.164




Ridge Regression



Ridge Regression
To find 3"99e that

N
minimizeg RSS(8) = _[yi — (Bo + B1Xi1 + -+ + BpXip) P
p

p
subject to Z /5}2 < t (size constraint)
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Ridge Regression
To find 3"99e that

N
minimizeg RSS(8) = _[yi — (Bo + B1Xi1 + -+ + BpXip) P
p

p
subject to Z /5}2 < t (size constraint)
j=1

OR in the Lagrangian form

N P
B"9e — argming | > [y — (Bo + Bixin + -+ + Boxip)P + A BF
j=1

i=1



Ridge Regression

» The decay/tuning parameter A > 0 is determined first
through CV then the parameters are estimated.

» What does happen when X increase?



Ridge Regression

Better, start with standardized data:

N
ZXU Zx =1
i=1

which results in removing j, from the optimization problem as
its value would be y. We are now left with a p x p matrix X.
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subjectto B73 < t
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The problem is now equivalent to find 3199 that
minimizeg RSS(8) = (y — XB) (y — XB)

subjectto B73 < t

OR
3998 — argming |(y — XB)"(y — XB) + A8 8



Ridge Regression

The problem is now equivalent to find 3199 that
minimizeg RSS(8) = (y — XB) (y — XB)

subjectto 378 < t
OR N
[pridge — argming |(y — Xﬁ)T(y —XB)+ BT

Call:
RSS\(B) == (y — XB)T(y — XB) + A\378
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Ridge Regression
L ORSS,\(B)

_ Ty _ _
o =Xy - XB)+ 225 =0 =

(XTX + )3 =XTy

where I, is the p x p identity matrix.
> 02RSS,\(B)
opopT
» Even when X is not a full column rank, X7 X + Mpis
positive definite for A > 0 and so non-singular, then

= 2XTX + 2\,

B;\idge _ (XTX+ )\lp)—‘ley



Ridge Regression

> (W:—ZXT(y—X/B)JrZ)\B:O =

(XTX + )3 =XTy

where I, is the p x p identity matrix.
> 02RSS,\(B)
opopT
» Even when X is not a full column rank, X7 X + Mpis
positive definite for A > 0 and so non-singular, then

= 2XTX + 2\,

ﬁndge (XTX+)\/ ) 1xTy
» Predictions

Xﬁndge X(XTX + )\/p)_1XTy

the A-hat matrix H,




Ridge Regression

Again, the solution is
rldge (XTX+)\I) 1xTy

» What does happen when \ decreases to zero?
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Again, the solution is
rldge (XTX+)\I) 1xTy

» What does happen when \ decreases to zero?
» If columns of X are orthonormal (X7 X = /), then

ndge Aols
A 14+ /\B

> In general, Br'dge is a biased estimator of 5. (Good problem

to prove it, hint: E(Az) = AE(z).)



Ridge Regression

Again, the solution is
rldge (XTX+)\I) 1xTy

» What does happen when \ decreases to zero?
» If columns of X are orthonormal (X7 X = /), then

ndge Aols
A 14+ /\B

> In general, Br'dge is a biased estimator of 5. (Good problem

to prove it, hint: E(Az) = AE(z).)

> Yet, it has smaller variance than that of the OLS’s.
(Another good problem, hint: Var(Az) = A Var(z) AT.)



Ridge Regression

It handles very well the case of collinearity, as

» Originally, When a coefficient of a variable becomes large,
coefficient of any correlated variables balance up with a
very small and negative value. But placing a bound
resolves that issue.



Ridge Regression

It handles very well the case of collinearity, as

» Originally, When a coefficient of a variable becomes large,
coefficient of any correlated variables balance up with a
very small and negative value. But placing a bound
resolves that issue.

> |t fixes the problem that X is not column full-rank.



Ridge Regression

Using singular values decomposition (SVD):

X = UpvT

Where U and V are two orthogonal matrices, U U = I, and
VTV = I,. The columns u; and v; of the N x p matrix U and the
p x p matrix V are spanning the columns and rows of X,
respectively. D is a p x p diagonal matrix of singular values

di > ... > dp > 0 (some might be possible 0).



Ridge Regression

Using singular values decomposition (SVD):

X = UpvT

Where U and V are two orthogonal matrices, U U = I, and
VTV = I,. The columns u; and v; of the N x p matrix U and the
p x p matrix V are spanning the columns and rows of X,
respectively. D is a p x p diagonal matrix of singular values

di > ... > dp > 0 (some might be possible 0). Then ...
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Ridge Regression

Then ...

rldge (XTX+/\IP)—1XTy
= ((UDVTYT(UDVT) + )" (UDVT) Ty
= (VD2VT +AvvT)~'vDUTy
= VAUTy

where A is a diagonal matrix with elements d,-/(dj2 + ), for
j=1,...,p.
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Thus, the prediction is

= Xﬁfdge = Hy\y

= X(XTX+ M) ' XTy

= (UDVT)VALUTy

= UDA\UTy
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=D U —uly
Jj=1 d/ tA



Ridge Regression

Thus, the prediction is

= XP9° = Hyy

= X(XTX+ M) ' XTy

= (UDVT)VALUTy

= UDA\UTy

p a2

J T
=D Uy
Jj=1 d/ tA

Note that, jo = UUTy = 37, ujuy is the OLS prediction.
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Consider centered data x; = 0 for all j

» The sample covariance matrix
S=X"X/N=VD*V'/N

(eigen decomposition with
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Consider centered data x; = 0 for all j

» The sample covariance matrix

S=XT"X/N=VD*VT/N - :
e.g. principal components in

(eigen decomposition with 2D input data

VTSV = DZ/N) ) Largest Principal o
Component
; 2 2 2 coa s
> With a2/N > a2/N > --- > d2/N o o
14 By,
e &30 of 50
. \ P %25053:1}
0 g %% e
e o0 N
« 2.9,
/,{;3 ° Smallest Principal
/ ‘Component




Ridge Regression
Consider centered data x; = 0 for all j

» The sample covariance matrix

_xT _ vp2yT
S=X'X/N=VDV'/N e.g. principal components in

(eigen decomposition with 2D input data

VTSV == DZ/N) Lavgesw:r;f‘wpal o
> With d2/N > dZ/N > --- > d3/N =
» The eigen-vectors v;'s are called the

principal components
(Karhunen-Loeve) directions of X. .




Ridge Regression
Consider centered data x; = 0 for all j

» The sample covariance matrix

S=XT"X/N=VD*VT/N - :
e.g. principal components in

(eigen decomposition with 2D input data

VTSV = D2/N) ) Largest Principal o

Component

> With d2/N > dZ/N > --- > d3/N =

» The eigen-vectors v;'s are called the
principal components
(Karhunen-Loeve) directions of X.

» Xvy is the (first) largest principal
component since v{ X™Xv; = d?/N
is the largest sample variance -
among all normalized linear
combinations of the columns of X.




Ridge Regression

Thus, with

q 7

pridge
A9 = vaUTy = Z\/jd2+)\/

Jj=1

y

the prediction

d2
oo T T
= UDAUTy ;U’der)\fy
is made onto the those components and shrinks the

coefficients of the low variance components more than those
with high variance.



Ridge Regression

Define, the effective degrees of freedom to be

df()\) = tr(H)\ tl’(DA)\ =

T M‘c
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| N



Ridge Regression

Define, the effective degrees of freedom to be

df(\) = tr(Hy) = tr(DAy) =

T M‘c

with df(\) = pat A =0.

2

| N



Ridge Regression
Example (Prostate Cancer)

Estimated coefficients for different values of df(\) with optimal
df =5 using CV.
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Ridge Regression

Example (Prostate Cancer)
Estimated coefficients are

Term LS Best Subset Ridge Lasso
Intercept 2.465 2477 2,452  2.468
lcavol 0.680 0.740 0.420 0.533
lweight 0.263 0.316 0.238 0.169
age —0.141 —0.046
1bph 0.210 0.162  0.002
svi 0.305 0.227  0.094
lep —0.288 0.000
gleason —0.021 0.040
pge4b 0.267 0.133
Test Error 0.521 0.492 0.492 0479
Std Error 0.179 0.143 0.165 0.164




L east absolute shrinkage
and selection operator
(lasso) or basis pursuit



Lasso
To find 3550 that

N
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p
subjectto » || < t (size constraint)
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Lasso

To find 3550 that

N
minimizez RSS(B) = Z[y,- —(Bo + Pixit + -+ 5pXi,p)]2
i—1

p
subjectto » || < t (size constraint)
=
OR

N

p
(3250 = argming | > [y — (Bo + B1Xit + -+ + BpXip) P + A D _ 1B
i—1 J=1

with no closed form.
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Again, the solution is found using quadratic programming
algorithms for each fixed A or using the Least Angel Regression
(LARS) (with computational costs comparable to the OLS).

» Standard errors are found computationally using bootstrap
methods.
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o = 3374 187
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Lasso

Again, the solution is found using quadratic programming
algorithms for each fixed A or using the Least Angel Regression
(LARS) (with computational costs comparable to the OLS).

» Standard errors are found computationally using bootstrap
methods.

> What does happen when t increases beyond
o = 3374 187

Then élasso — Bols_

» Thus, we use a normalized shrinkage factor s = t/fy. It can
be determined using CV.



Lasso

Lasso tends to select more parameters, but it works very well
when p > N. It outperforms subset selection and ridge
regression in its predictive error.



Lasso

» If columns of X are orthonormal (X7 X = /), then
BES° = sign(3°°) (13 — A/2)+

It is called soft thresholding.



Lasso

Example (Prostate Cancer)

Estimated coefficients for different values of shrinkage factor s
with optimal s = .36 using 10-fold CV.

Coefficients

Shrinkage Factor s



Lasso

Example (Prostate Cancer)
Estimated coefficients are

Term LS Best Subset Ridge Lasso
Intercept 2.465 2477 2,452  2.468
lcavol 0.680 0.740 0.420 0.533
lweight 0.263 0.316 0.238 0.169
age —0.141 —0.046
1bph 0.210 0.162  0.002
svi 0.305 0.227  0.094
lep —0.288 0.000
gleason —0.021 0.040
pge4b 0.267 0.133
Test Error 0.521 0.492 0.492 0479
Std Error 0.179 0.143 0.165 0.164




Lasso

Contours are for the error function around /5 = 3/

B,

B.

1B1] + B2 < 't VS
Shrinkage+selection

VS

g2+ 5 <t
shrinkage
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N
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Elastic-net Method

N
pelastic — argminy [Z[y,. —(Bo + B1xit + -+ + ,BpX/-7p)]2

i=1

p
2> (algl+ (1 - a)ﬂ/2)]
j=1

Elastic-net selects like a lasso, shrinks like a ridge.



Elastic-net Method

N
jpelastc —argming [Z[y/ — (Bo + BiXin + -+ + BpXip)I?

i=1
p

2> (algl+ (1 - a)3P)

j=1

Elastic-net selects like a lasso, shrinks like a ridge.

Example
For o = .8, the elastic-net penalty Y7, (.8]3] +.2|[?) < t

Elastic Net
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Bridge Method

To find Abridge that

N
minimizes RSS(8) = > [yi — (Bo + B1Xi1 + - + BoXip)]?
i=1

p
subjectto » |39 < t (size constraint)
=

OR

N p
ﬁbrldge _ argminﬁ Z[y’ — (50 + B1Xjt + -+ /BpX,"p)]z + A Z ’/Bj‘q
i=1 =

with no closed form for 0 < g < 1.



Bridge Method

13119 +|B82/9 < t for some q values.

qg=4 q=2 q
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» When g = 0, the penalty term becomes A Zj; I(8; # 0)



Bridge Method

» When g = 0, the penalty term becomes A Zj; I(8; # 0)

» If columns of X are orthonormal (X7 X = /), then
BAbridge _ BO/SI(’BO/S| > ‘Bflﬁ)‘)

where B(",(j) is the M largest coefficient. It is called hard
thresholding. It is a subset selection method.
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Bayesian Interpretation (bridge, lasso, and ridge)
Define: The generalized Gaussian distribution GGg(y, 72) with
pdf

'1 _(I'(3/q))Q/2‘X7,u|q

= - e ‘ri/q T
r
21+ rarg 7

fq(x) , forx e R

with mean p and variance 72.

» When g = 1, then GG1(u, 7) is the Laplace distribution.
1
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Bayesian Interpretation (bridge, lasso, and ridge)
Define: The generalized Gaussian distribution GGg(y, 72) with
pdf

1 _(r(3/q))Q/2‘X*u|q

= - e ‘ri/q T
r
21+ rarg 7

fq(x) , forx e R

with mean p and variance 72.
» When g = 1, then GG1(u, 7) is the Laplace distribution.

1

fi(x) = —e V2"l forx € R
1( ) \@T
» When g = 2, then GGz (u, 7) is the normal distribution
N(p, 72).
1 _1(x=py2
f(x) = e 207 forxeR



Bayesian Interpretation (bridge, lasso, and ridge)

The generalized Gaussian distribution GGg(u, 72) with pdf

1

- 1
2M(1+ 91/ rarg) 7

re q/2 x—
o (Fr 1

fq(x) , forx e R

with mean p and variance 72.

» When g — oo, then GG4(11, 7) converges point-wise to the
uniform distribution Uniform(iu — /37, i1 + v/37).



Bayesian Interpretation (bridge, lasso, and ridge)

The generalized Gaussian distribution GGg(u, 72) with pdf

1

- 1
2M(1+ 91/ rarg) 7

r(3/9)\9/2 x—
g (rtrza)" 1154

fq(x) , forx e R

with mean . and variance 72.
» When g — oo, then GG4(11, 7) converges point-wise to the
uniform distribution Uniform(u — v/37, u + v/37).
» When q — 07, then GGq4(u, 7) converges to a degenerate
distribution at x = p.
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where X isa N x (p+ 1), and e ~ N(0, 5% Iy).
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Bayesian Analysis of Linear Regression

The linear regression model is
Y = X8 +¢,

where X isa N x (p+ 1), and e ~ N(0, 5% Iy).
Then,
Y ~ N(XB,0%1y).

So the likelihood function is

P . .8,
| AT )

670|y) e 2 7 )
1
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B1, ..., Bp (with the assumption that they are independent).
Thus,
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By Bayes' rule

posterior x Likelihood - prior

Choose GGg(0, ) to be a prior for each of the coefficients
B1, ..., Bp (with the assumption that they are independent).
Thus,
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Bayesian Analysis of Linear Regression
By Bayes' rule

posterior x Likelihood - prior

Choose GGg(0, ) to be a prior for each of the coefficients
B1, ..., Bp (with the assumption that they are independent).
Thus,

. 1 YimB 0+E/ 1"!/5/
posterior o [ [ &2
i1

q/2 ﬁjlq

e

/2
e S - Bot S X)) | g G Sper 18110

_e 20

oo | 0 (B0t S xRN S 1619]

where \ = 202(%)"”.



Bayesian Analysis of Linear Regression

Thus, —log posterior is a linear function in

N

p p
S i— B+ D xiiB))E+A> 1819
=

i=1 j=1

and so the posterior mode (the maximum point of the posterior
distribution) is the minimum of the —/og posterior and so it is
the bridge estimate. If g = 2, then it is also the mean.



Principal Component
Regression (PCR) - an
unsupervised technique
for dimension reduction
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Principal Component Regression (PCR)

Starting with standardized data ...
PCR Idea: rotate the coordinates to reflect the most variability
in the inputs in X, using z; := Xv;. Then perform regression on
the new coordinate system. In that manner,
» We introduce the N x M matrix Wy, = XV withan p x M
orthonormal matrix V (with VVT = Ip) for some

Me{1,2,...,p}
» That is, the i column of Wy, is z; = Xv;.
> Then,

Y=X3+¢

gives a reduced regression
Y =Wyl +e¢

where # = V73 and so 8 = V.



Principal Component Regression (PCR)

Thus,
» The PCR estimate is

A

geer — v,



Principal Component Regression (PCR)

Thus,
» The PCR estimate is

AP = V.

» If M = p, then
BApcr — Bols'
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Component Regression omit those directions (a number of
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Principal Component Regression (PCR)

» PCR starts with principal component analysis (PCA), an
unsupervised learning, from X.

» PCR shares the idea of principal components with ridge
regression ...

> Ridge Regression shrinks in the principal component
directions of the small variance, whereas Principal
Component Regression omit those directions (a number of
p — M smallest eigenvalues).

> Yet, PCR, like ridge regresion, is not a subset selection

method, since the M components z;’s are linear
combinations of the p inputs as in z; = Xv;.



Principal Component Regression (PCR)

Example (Prostate Cancer)
Shrinkage factor d?/(d? + \) versus the index of the component

— ridge
per

Shrinkage Fact
00 02 04 06 08 1.0

Index



PCR

Example (Prostate Cancer)

CV error shows optimal less complex at M = 7 using 10-fold
CV.

Principal Components Regression
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Principal Component Analysis (PCA)

2. For sample data X:
Step 1: Find vy = argmax w™ X7 Xw

wiwlTw=1

Step 2: Find vo = argmax w’™ X7 Xw
wiwTw=1,
UJTXTXV1:0

Step M: Find vy = argmax W XT Xw
wiwlw=1,
WTXTXV=03i=1,...,M—1

But, no guarantee that the directions with the largest
variance/explanation of the predictor, will also be the best for
prediction. So ...



Partial Least Squares
(PLS) - a supervised
technique for dimension
reduction
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Partial Least Squares (PLS)

Starting with standardized data but this time including Y ...
PLS Idea: rotate the coordinates to reflect the most correlation
between the output Y and the inputs in X, using PLS directions
z; := Xv;. Then perform regression on the new coordinate
system. In that manner,

» We introduce the N x M matrix Wy, = XV withan p x M
orthonormal matrix V (with VW7 = Ip) for some

Me{1,2,....p)
» That is, the i column of Wy is z; = Xv;.
» Then,

Y=X3+¢

gives a reduced regression
Y =Wyb +e

where # = V73 and so g = V.
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Partial Least Squares (PLS)

Thus,
» The PLS estimate is

o = V.

> |f M = p, then
Bpls — Bols.
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PLS

Example (Prostate Cancer)

CV error shows optimal less complex at M = 2 using 10-fold
CV.

Partial Least Squares

1.6

12

CV Error

Number of Directions



PLS

Example (Prostate Cancer)

Term LS Best Subset Ridge Lasso PCR PLS
Intercept 2.465 2.477 2.452  2.468 2.497 2.452
lcavol 0.680 0.740 0.420  0.533 0.543 0.419
lweight 0.263 0.316 0.238  0.169 0.289 0.344
age —0.141 —0.046 —0.152  —0.026

1bph 0.210 0.162  0.002 0.214 0.220

svi 0.305 0.227  0.094 0.315 0.243

lep —0.288 0.000 —0.051 0.079
gleason —0.021 0.040 0.232 0.011
pegis 0.267 0.133 —0.056 0.084
Test Error 0.521 0.492 0.492  0.479 0.449 0.528
Std Error 0.179 0.143 0.165 0.164 0.105 0.152
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K-means Regression

It is a non-parametric method.

K-means Idea: the simplest is the K-nearest neighbor
regression (K-NN). Thus, K-means regression is a local
method. In that manner,

» The predicted response at x,. is

?( x.) = Average(yj|x; € Ni(x.)) = Z Yi

X/ €Nk (xx)

where Ni(x.)is a neighborhood of x, of size k.



K-means Regression

K=1versus K =9




K-means Regression

Parametric functions that really represent the data outperform
non-parametric methods. Curse of dimensionality vs overfitting.




End of Set 3



