Statistical Learning– MATH 6333 Set 2 (Overview of Supervised Learning)

Tamer Oraby UTRGV tamer.oraby@utrgv.edu

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

* Last updated August 31, 2021

Training data: $T = \{(x_{i1}, x_{i2}, ..., x_{ip}, y_i) : i = 1, 2, ..., n\}$

Model: $y_i = f(x_{i1}, x_{i2}, ..., x_{ip}) + \epsilon_i$ for i = 1, 2, ..., n, and the errors ϵ_i are iidrv with mean 0 and are independent of the *X*'s. The function *f*, in its wide sense, could be parametric or non-parametric.

Goal of Sup.L.: To estimate f by \hat{f} using a Loss function L. May involve validation step.

Testing: To compare the predictions $\hat{y}_j = \hat{f}(x_{j1}, x_{j2}, \dots, x_{jp})$ of testing data $\{(x_{j1}, x_{j2}, \dots, x_{jp}, y_j) : j = 1, 2, \dots, m\}$ to y_j 's.

Training data: $T = \{(x_{i1}, x_{i2}, ..., x_{ip}, y_i) : i = 1, 2, ..., n\}$

Model: $y_i = f(x_{i1}, x_{i2}, ..., x_{ip}) + \epsilon_i$ for i = 1, 2, ..., n, and the errors ϵ_i are iddrv with mean 0 and are independent of the *X*'s.

The function *f*, in its wide sense, could be parametric or non-parametric.

Goal of Sup.L.: To estimate f by \hat{f} using a Loss function L. May involve validation step.

Testing: To compare the predictions $\hat{y}_j = \hat{f}(x_{j1}, x_{j2}, \dots, x_{jp})$ of testing data $\{(x_{j1}, x_{j2}, \dots, x_{jp}, y_j) : j = 1, 2, \dots, m\}$ to y_j 's.

Training data: $T = \{(x_{i1}, x_{i2}, ..., x_{ip}, y_i) : i = 1, 2, ..., n\}$

Model: $y_i = f(x_{i1}, x_{i2}, ..., x_{ip}) + \epsilon_i$ for i = 1, 2, ..., n, and the errors ϵ_i are iidrv with mean 0 and are independent of the *X*'s. The function *f*, in its wide sense, could be parametric or

non-parametric.

Goal of Sup.L.: To estimate f by \hat{f} using a Loss function L. May involve validation step.

Testing: To compare the predictions $\hat{y}_j = \hat{f}(x_{j1}, x_{j2}, \dots, x_{jp})$ of testing data $\{(x_{j1}, x_{j2}, \dots, x_{jp}, y_j) : j = 1, 2, \dots, m\}$ to y_j 's.

Training data: $T = \{(x_{i1}, x_{i2}, ..., x_{ip}, y_i) : i = 1, 2, ..., n\}$

Model: $y_i = f(x_{i1}, x_{i2}, ..., x_{ip}) + \epsilon_i$ for i = 1, 2, ..., n, and the errors ϵ_i are iddrv with mean 0 and are independent of the *X*'s. The function *f*, in its wide sense, could be parametric or non-parametric.

Goal of Sup.L.: To estimate f by \hat{f} using a Loss function L. May involve validation step.

Testing: To compare the predictions $\hat{y}_j = \hat{f}(x_{j1}, x_{j2}, \dots, x_{jp})$ of testing data $\{(x_{j1}, x_{j2}, \dots, x_{jp}, y_j) : j = 1, 2, \dots, m\}$ to y_j 's.

Training data: $T = \{(x_{i1}, x_{i2}, ..., x_{ip}, y_i) : i = 1, 2, ..., n\}$

Model: $y_i = f(x_{i1}, x_{i2}, ..., x_{ip}) + \epsilon_i$ for i = 1, 2, ..., n, and the errors ϵ_i are iddrv with mean 0 and are independent of the *X*'s. The function *f*, in its wide sense, could be parametric or non-parametric.

Goal of Sup.L.: To estimate f by \hat{f} using a Loss function L. May involve validation step.

Testing: To compare the predictions $\hat{y}_j = \hat{f}(x_{j1}, x_{j2}, \dots, x_{jp})$ of testing data $\{(x_{j1}, x_{j2}, \dots, x_{jp}, y_j) : j = 1, 2, \dots, m\}$ to y_j 's.

Ultimate Goal (Generalization): To make predictions $\hat{f}(x_*)$ for new inputs $x_* = (x_{*1}, x_{*2}, \dots, x_{*p})$.

(日)(1)<

Training data: $T = \{(x_{i1}, x_{i2}, ..., x_{ip}, y_i) : i = 1, 2, ..., n\}$

Model: $y_i = f(x_{i1}, x_{i2}, ..., x_{ip}) + \epsilon_i$ for i = 1, 2, ..., n, and the errors ϵ_i are iddrv with mean 0 and are independent of the *X*'s. The function *f*, in its wide sense, could be parametric or non-parametric.

Goal of Sup.L.: To estimate f by \hat{f} using a Loss function L. May involve validation step.

Testing: To compare the predictions $\hat{y}_j = \hat{f}(x_{j1}, x_{j2}, \dots, x_{jp})$ of testing data $\{(x_{j1}, x_{j2}, \dots, x_{jp}, y_j) : j = 1, 2, \dots, m\}$ to y_j 's.

Parametric vs Non-Parametric

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Parametric: *f* has a functional form and a fixed number of parameters.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

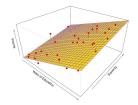
Parametric: *f* has a functional form and a fixed number of parameters.

Example (Multiple linear regression)

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

where the parameters $\beta_0, \beta_1, \beta_2, \dots, \beta_p$ are estimated using the method of ordinary least squares to give

$$\hat{\boldsymbol{Y}} = \hat{\beta}_0 + \hat{\beta}_1 \boldsymbol{X}_1 + \hat{\beta}_2 \boldsymbol{X}_2 + \dots + \hat{\beta}_p \boldsymbol{X}_p$$



e.g.,

income = $\hat{\beta}_0 + \hat{\beta}_1$ years of education + $\hat{\beta}_2$ seniority

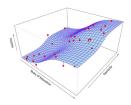
Parametric: *f* has a functional form and a fixed number of parameters.

Example (Non-linear regression)

$$f(X) = c/(1 + \exp(-\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \cdots - \beta_p X_p))$$

where the parameters $c, \beta_0, \beta_1, \beta_2, ..., \beta_p$ are estimated using the method of least squares to give

$$\hat{Y} = \hat{c}/(1 + \exp(-\hat{\beta}_0 - \hat{\beta}_1 X_1 - \hat{\beta}_2 X_2 - \dots - \hat{\beta}_p X_p))$$



e.g., income =

 $\frac{\hat{c}}{1 + \exp(-\hat{\beta}_0 - \hat{\beta}_1 \text{years of education} - \hat{\beta}_2 \text{seniority})}$

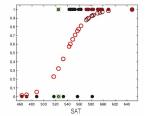
(日) (日) (日) (日) (日) (日) (日)

Parametric: *f* has a functional form and a fixed number of parameters.

Example (Logistic regression (classification))

 $Y|X \sim \text{Bernoulli}(1/(1 + \exp(-\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \cdots - \beta_p X_p)))$ where the parameters $\beta_0, \beta_1, \beta_2, \ldots, \beta_p$ are estimated using the method of maximum likelihood to give

$$P(\hat{Y} = 1|X) = 1/(1 + \exp(-\hat{\beta}_0 - \hat{\beta}_1 X_1 - \hat{\beta}_2 X_2 - \dots - \hat{\beta}_p X_p))$$



$$P(pass|SAT) = rac{1}{1 + \exp(-\hat{eta}_0 - \hat{eta}_1 SAT)}$$

(日) (日) (日) (日) (日) (日) (日)

• Let the $N \times p$ matrix X be given by

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Np} \end{pmatrix} = \begin{pmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_N^T \end{pmatrix}$$

where

$$x_{i} = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix}$$

for i = 1, 2, ..., N.

► In a vector form: $f(x_i) = x_i^T \beta$ and the steepest uphill direction is $f'(x) = \beta$

• Let the $N \times p$ matrix X be given by

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Np} \end{pmatrix} = \begin{pmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_N^T \end{pmatrix}$$

where

$$x_{i} = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix}$$

for *i* = 1, 2, ..., *N*.

In a vector form: f(x_i) = x_i^Tβ and the steepest uphill direction is f'(x) = β

In the methods of least squares we find β the minimizes the Residual Sum of Squares

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - x_i^T \beta)^2$$
$$= (y - X\beta)^T (y - X\beta)^T$$

By differentiation and setting equal to zero

$$X^T(y - X\beta) = 0$$

▶ If $X^T X$ is non-singular, then

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In the methods of least squares we find β the minimizes the Residual Sum of Squares

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - x_i^T \beta)^2$$
$$= (y - X\beta)^T (y - X\beta)^T$$

By differentiation and setting equal to zero

$$X^T(y-X\beta)=0$$

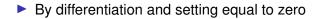
▶ If $X^T X$ is non-singular, then

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

(日) (日) (日) (日) (日) (日) (日)

In the methods of least squares we find β the minimizes the Residual Sum of Squares

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - x_i^T \beta)^2$$
$$= (y - X\beta)^T (y - X\beta)^T$$



$$X^{T}(y - X\beta) = 0$$

• If $X^T X$ is non-singular, then

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

(日) (日) (日) (日) (日) (日) (日)

Example

• Class $G \in \mathcal{G} = \{0, 1\}$

After fitting that training data of $\{(x_{i1}, x_{i2}, Y_i = G_i) : i = 1, ..., 100\}$ to a linear regression model, we find $\hat{Y} = X^T \hat{\beta}$

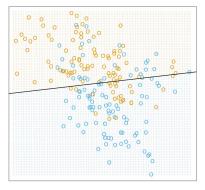
Decision rule:

$$\hat{G} = \left\{ egin{array}{cc} \textit{Orange} & \mbox{if} \ \hat{Y} > 0.5, \\ \textit{Blue} & \mbox{if} \ \hat{Y} \leq 0.5. \end{array}
ight.$$

The solid line is called the decision boundary {x : x^Tβ̂ = 0.5}

Blue =0 and Orange =1

Linear Regression of 0/1 Response



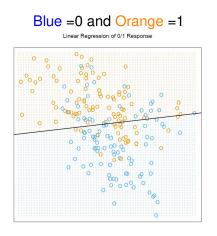
・ コット (雪) (小田) (コット 日)

Example

- Class $G \in \mathcal{G} = \{0, 1\}$
- ► After fitting that training data of { $(x_{i1}, x_{i2}, Y_i = G_i)$: i = 1, ..., 100} to a linear regression model, we find $\hat{Y} = X^T \hat{\beta}$
- Decision rule:

$$\hat{G} = \left\{ egin{array}{cc} \textit{Orange} & \mbox{if} \ \hat{Y} > 0.5, \ \textit{Blue} & \mbox{if} \ \hat{Y} \leq 0.5. \end{array}
ight.$$

The solid line is called the decision boundary {x : x^Tβ̂ = 0.5}



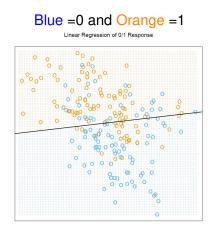
・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Example

- Class $G \in \mathcal{G} = \{0, 1\}$
- After fitting that training data of $\{(x_{i1}, x_{i2}, Y_i = G_i) :$ $i = 1, ..., 100\}$ to a linear regression model, we find $\hat{Y} = X^T \hat{\beta}$
- Decision rule:

$$\hat{G} = \left\{ egin{array}{cc} \textit{Orange} & \mbox{if} \ \hat{Y} > 0.5, \\ \textit{Blue} & \mbox{if} \ \hat{Y} \leq 0.5. \end{array}
ight.$$

The solid line is called the decision boundary {x : x^Tβ̂ = 0.5}

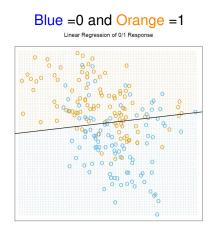


Example

- Class $G \in \mathcal{G} = \{0, 1\}$
- After fitting that training data of $\{(x_{i1}, x_{i2}, Y_i = G_i) :$ $i = 1, ..., 100\}$ to a linear regression model, we find $\hat{Y} = X^T \hat{\beta}$
- Decision rule:

$$\hat{G} = \left\{ egin{array}{cc} \textit{Orange} & \mbox{if} \ \hat{Y} > 0.5, \ \textit{Blue} & \mbox{if} \ \hat{Y} \leq 0.5. \end{array}
ight.$$

The solid line is called the decision boundary {x : x^Tβ̂ = 0.5}



・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Non-parametric: *f* has no functional form and the number of parameters increases with *n*.

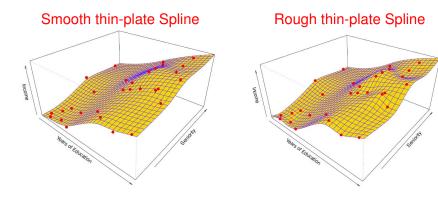
 \Uparrow Very flexible since they don't follow a certain form. \Downarrow It has so many parameters that require Big Data. \Downarrow It can also suffer from overfitting.

(ロ) (同) (三) (三) (三) (○) (○)

Non-parametric: *f* has no functional form and the number of parameters increases with *n*.

 \Uparrow Very flexible since they don't follow a certain form. \Downarrow It has so many parameters that require Big Data. \Downarrow It can also suffer from overfitting.

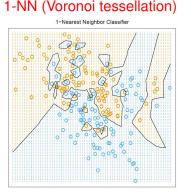
Example (Splines)

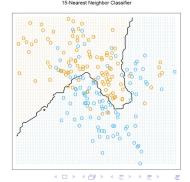


Non-parametric: *f* has no functional form and the number of parameters increases with *n*.

 \Uparrow Very flexible since they don't follow a certain form. \Downarrow It has so many parameters that require Big Data. \Downarrow It can also suffer from overfitting.

Example (K-nearest neighbor (K-NN))





K-NN

k-Nearest Neighbor (KNN)

Let $N_k(x)$ be the set of closest k inputs x_i to the input x

Closest ... using a metric, e.g., Euclidean distance

► Then,

 $\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$

k-Nearest Neighbor (KNN)

Then.

- Let $N_k(x)$ be the set of closest k inputs x_i to the input x
- Closest ... using a metric, e.g., Euclidean distance

 $\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$

k-Nearest Neighbor (KNN)

- Let $N_k(x)$ be the set of closest k inputs x_i to the input x
- Closest ... using a metric, e.g., Euclidean distance
- ► Then,

$$\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

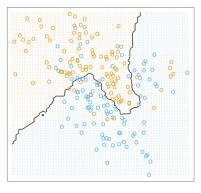
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- ▶ Class $G \in \mathcal{G} = \{0, 1\}$
- At k = 15, using {(x_{i1}, x_{i2}, Y_i = G_i) : i = 1,..., 100} to find the average Ŷ of the 15 closest 0's and 1's
- Decision rule:

$$\hat{G} = \left\{ egin{array}{cc} \textit{Orange} & \mbox{if} \ \hat{Y} > 0.5, \ \textit{Blue} & \mbox{if} \ \hat{Y} \leq 0.5. \end{array}
ight.$$

The solid curve is the decision boundary found using the decision rule for a fine mesh of inputs in the plane.

15-Nearest Neighbor Classifier



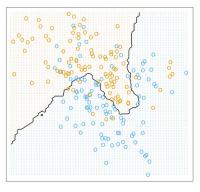
・ロット (雪) (日) (日) (日)

- ▶ Class $G \in \mathcal{G} = \{0, 1\}$
- At k = 15, using $\{(x_{i1}, x_{i2}, Y_i = G_i) : i = 1, \dots, 100\}$ to find the average \hat{Y} of the 15 closest 0's and 1's
- Decision rule:

 $\hat{G} = \left\{ egin{array}{cc} \textit{Orange} & \mbox{if} \ \hat{Y} > 0.5, \\ \textit{Blue} & \mbox{if} \ \hat{Y} \leq 0.5. \end{array}
ight.$

The solid curve is the decision boundary found using the decision rule for a fine mesh of inputs in the plane.

15-Nearest Neighbor Classifier

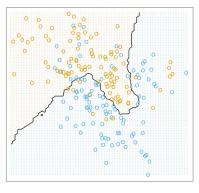


- ▶ Class $G \in \mathcal{G} = \{0, 1\}$
- ► At k = 15, using {(x_{i1}, x_{i2}, Y_i = G_i) : i = 1,..., 100} to find the average Ŷ of the 15 closest 0's and 1's
- Decision rule:

$$\hat{G} = \left\{ egin{array}{cc} \textit{Orange} & \mbox{if} \ \hat{Y} > 0.5, \ \textit{Blue} & \mbox{if} \ \hat{Y} \leq 0.5. \end{array}
ight.$$

The solid curve is the decision boundary found using the decision rule for a fine mesh of inputs in the plane.

15-Nearest Neighbor Classifier



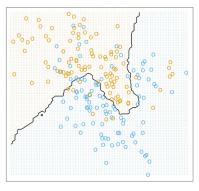
・ コット (雪) (小田) (コット 日)

- ▶ Class $G \in \mathcal{G} = \{0, 1\}$
- ► At k = 15, using {(x_{i1}, x_{i2}, Y_i = G_i) : i = 1,..., 100} to find the average Ŷ of the 15 closest 0's and 1's
- Decision rule:

$$\hat{G} = \left\{ egin{array}{cc} \textit{Orange} & \mbox{if} \ \hat{Y} > 0.5, \ \textit{Blue} & \mbox{if} \ \hat{Y} \leq 0.5. \end{array}
ight.$$

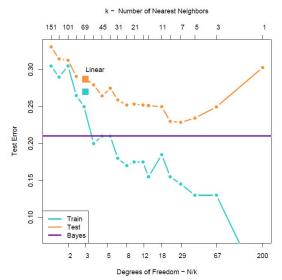
The solid curve is the decision boundary found using the decision rule for a fine mesh of inputs in the plane.

15-Nearest Neighbor Classifier



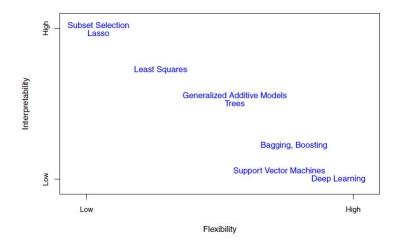
・ コット (雪) (小田) (コット 日)

Misclassifications



Training set of 200 points and test set of size 10,000. Effective number of parameters is N/k > p.

Flexibility vs Interpretability



▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 釣A@

Loss Functions

Loss Functions

It measures how far is the predict value f(X) from the actual value Y, on the population level.

Squared Error Loss (SEL) (when Y is continuous)

$$L(Y, f(X)) = (Y - f(X))^2$$

Absolute Error Loss (AEL) (when Y is continuous)

$$L_1(Y, f(X)) = |Y - f(X)|$$

0-1 Loss (0-1L) (when Y is categorical)

 $L(Y, f(X)) = l(Y \neq f(X))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Loss Functions

It measures how far is the predict value f(X) from the actual value Y, on the population level.

Squared Error Loss (SEL) (when Y is continuous)

$$L(Y, f(X)) = (Y - f(X))^2$$

Absolute Error Loss (AEL) (when Y is continuous)

 $L_1(Y, f(X)) = |Y - f(X)|$

0-1 Loss (0-1L) (when Y is categorical)

 $L(Y, f(X)) = l(Y \neq f(X))$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Loss Functions

It measures how far is the predict value f(X) from the actual value Y, on the population level.

Squared Error Loss (SEL) (when Y is continuous)

$$L(Y, f(X)) = (Y - f(X))^2$$

Absolute Error Loss (AEL) (when Y is continuous)

$$L_1(Y, f(X)) = |Y - f(X)|$$

0-1 Loss (0-1L) (when Y is categorical)

$$L(Y, f(X)) = I(Y \neq f(X))$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Find *f* that minimizes the expected prediction error EPE(f). If *Y* is continuous:

$$\begin{aligned} \mathsf{EPE}(f) &= \mathsf{E}[\mathsf{L}(Y, f(X))] \\ &= \int_{\mathbb{R}^{p+1}} \mathsf{L}(y, f(x)) \mathsf{P}(x, y) dx dy \\ &= \int_{\mathbb{R}^{p+1}} \mathsf{L}(y, f(x)) \mathsf{P}(y|X = x) \mathsf{P}(x) dx dy \\ &= \int_{\mathbb{R}^{p}} \underbrace{\left[\int_{\mathbb{R}} \mathsf{L}(y, f(x)) \mathsf{P}(y|X = x) dy \right]}_{\mathsf{E}_{Y|X}(\mathsf{L}(Y, f(X))|X = x)} \mathsf{P}(x) dx \end{aligned}$$

If *Y* is categorical: the inner integral is a sum over all possible categories. Thus, generally

..., generally

.

$$f(x) = \operatorname{argmin}_{c} E_{Y|X}(L(Y, c)|X = x)$$

If Y is continuous and we use SEL then f is given by

$$f(x) = \operatorname{argmin}_{c \in \mathbb{R}} E_{Y|X}((Y-c)^2 | X = x) = E(Y|X = x)$$

which is a regression function.

If Y is continuous and we use AEL then f is given by

$$f(x) = \operatorname{argmin}_{c \in \mathbb{R}} E_{Y|X}(|Y - c||X = x) = \operatorname{Median}(Y|X = x).$$

If Y is categorical and we use 0-1L then f is given by

$$f(x) = \operatorname{argmin}_{c \in \mathcal{G}} E_{Y|X}(I(Y \neq c)|X = x)$$

= $\operatorname{argmin}_{c \in \mathcal{G}} P_{Y|X}(Y \neq c|X = x)$
= $\operatorname{argmin}_{c \in \mathcal{G}} (1 - P_{Y|X}(Y = c|X = x))$
= $\operatorname{argmax}_{c \in \mathcal{G}} P_{Y|X}(Y = c|X = x)$

which is Bayes classifier.

If Y is continuous and we use SEL then f is given by

$$f(x) = \operatorname{argmin}_{c \in \mathbb{R}} E_{Y|X}((Y-c)^2 | X = x) = E(Y|X = x)$$

which is a regression function.

If Y is continuous and we use AEL then f is given by

$$f(x) = \operatorname{argmin}_{c \in \mathbb{R}} E_{Y|X}(|Y - c||X = x) = \operatorname{Median}(Y|X = x).$$

If Y is categorical and we use 0-1L then f is given by

$$f(x) = \operatorname{argmin}_{c \in \mathcal{G}} E_{Y|X}(I(Y \neq c)|X = x)$$

= $\operatorname{argmin}_{c \in \mathcal{G}} P_{Y|X}(Y \neq c|X = x)$
= $\operatorname{argmin}_{c \in \mathcal{G}} (1 - P_{Y|X}(Y = c|X = x))$
= $\operatorname{argmax}_{c \in \mathcal{G}} P_{Y|X}(Y = c|X = x)$

which is Bayes classifier.

If Y is continuous and we use SEL then f is given by

$$f(x) = \operatorname{argmin}_{c \in \mathbb{R}} E_{Y|X}((Y-c)^2 | X = x) = E(Y|X = x)$$

which is a regression function.

If Y is continuous and we use AEL then f is given by

$$f(x) = \operatorname{argmin}_{c \in \mathbb{R}} E_{Y|X}(|Y - c||X = x) = \operatorname{Median}(Y|X = x).$$

If Y is categorical and we use 0-1L then f is given by

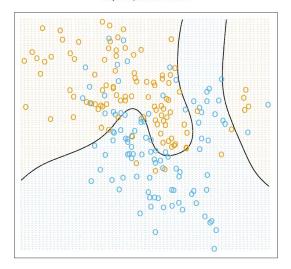
$$f(x) = \operatorname{argmin}_{c \in \mathcal{G}} E_{Y|X}(I(Y \neq c)|X = x)$$

= $\operatorname{argmin}_{c \in \mathcal{G}} P_{Y|X}(Y \neq c|X = x)$
= $\operatorname{argmin}_{c \in \mathcal{G}} (1 - P_{Y|X}(Y = c|X = x))$
= $\operatorname{argmax}_{c \in \mathcal{G}} P_{Y|X}(Y = c|X = x)$

which is Bayes classifier.

A classification problem using Bayes classifier

Bayes Optimal Classifier



So based on SEL where

$$f(x) = E(Y|X = x)$$

In regression, if we approximate f(x) = x^T β then we get through the optimization step β = [E(XX^T)]⁻¹E(XY) and expected values could be replaced by sample averages
 In K-NN, it would be

$$\hat{f}(x) = Average(y_i|x_i \in N_k(x))$$

(日) (日) (日) (日) (日) (日) (日)

and due to SLLN when $k, N \to \infty$ and $k/N \to 0$, then $\hat{f}(x) \to E(Y|X = x)$, a.s.

So based on SEL where

$$f(x) = E(Y|X = x)$$

- In regression, if we approximate f(x) = x^Tβ then we get through the optimization step β = [E(XX^T)]⁻¹E(XY) and expected values could be replaced by sample averages
- In K-NN, it would be

$$\hat{f}(x) = Average(y_i | x_i \in N_k(x))$$

and due to SLLN when $k, N \to \infty$ and $k/N \to 0$, then $\hat{f}(x) \to E(Y|X = x)$, a.s.

・ロト・四ト・モー・ ヨー うへぐ

K-NN as a local method ...

In other words, K-NN (a local method) gives a consistent estimator of f(x) = E(Y|X = x) as

$$\hat{f}(x) = Average(y_i | x_i \in N_k(x)) = rac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

But, nearest neighbor (local) methods suffer from ...

K-NN as a local method ...

In other words, K-NN (a local method) gives a consistent estimator of f(x) = E(Y|X = x) as

$$\hat{f}(x) = Average(y_i | x_i \in N_k(x)) = rac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

But, nearest neighbor (local) methods suffer from ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \circledast *Manifestation 1*: In high input dimension *d*, local methods fail in making accurate predictions.

- A coverage at a fraction f will be achieved via s = f^{1/d} for each input's range. What happens when d is large and f is small?
- For instance, in $[0, 1]^{20}$, f .001 .01 .1 $s = f^{1/d}$.71 .79 .89
- Use But, faraway inputs become less and less relevant in predictions for the central input.

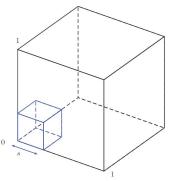
e.g. 3-dimensional space [0, 1]³ with uniformly distributed inputs

・ロン ・四 と ・ ヨ と ・ ヨ と

Manifestation 1: In high input dimension d, local methods fail in making accurate predictions.

- A coverage at a fraction f will be achieved via s = f^{1/d} for each input's range. What happens when d is large and f is small?
- For instance, in $[0, 1]^{20}$, f .001 .01 .1 $s = f^{1/d}$.71 .79 .89
- Use But, faraway inputs become less and less relevant in predictions for the central input.

e.g. 3-dimensional space $[0, 1]^3$ with uniformly distributed inputs



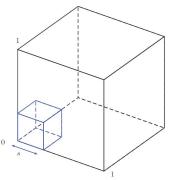
・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Manifestation 1: In high input dimension d, local methods fail in making accurate predictions.

A coverage at a fraction f will be achieved via s = f^{1/d} for each input's range. What happens when d is large and f is small?

For instance, in $[0, 1]^{20}$,			
f	.001	.01	.1
$s = f^{1/d}$.71	.79	.89

 Use But, faraway inputs become less and less relevant in predictions for the central input. e.g. 3-dimensional space $[0, 1]^3$ with uniformly distributed inputs



・ロット (雪) ・ (日) ・ (日)

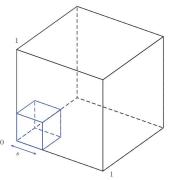
Manifestation 1: In high input dimension d, local methods fail in making accurate predictions.

A coverage at a fraction f will be achieved via s = f^{1/d} for each input's range. What happens when d is large and f is small?

For instance, in $[0, 1]^{20}$,			
f	.001	.01	.1
$s = f^{1/d}$.71	.79	.89

Use the second secon

e.g. 3-dimensional space $[0, 1]^3$ with uniformly distributed inputs



・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

 \circledast *Manifestation 2*: In high input dimension *d*, all *sample* data points are close to the boundary of the sample.

- ► The median distance from 0 to closest point is r = (1 − 0.5^{1/N})^{1/d}. What happens when d is large?
- For instance, for d = 20, N 100 500 $r = (1 - 0.5^{1/N})^{1/d}$.78 .72
- Using training points near the boundary makes predictions very difficult.

.g. 3-dimensional space \mathcal{B}_1 with uniformly dist. *N* data points

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

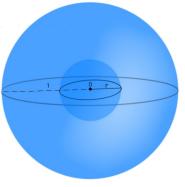
Manifestation 2: In high input dimension *d*, all *sample* data points are close to the boundary of the sample.

► The median distance from 0 to closest point is r = (1 - 0.5^{1/N})^{1/d}. What happens when d is large?

For instance, for d = 20, N 100 500 $r = (1 - 0.5^{1/N})^{1/d}$.78 .72

Use the boundary makes predictions very difficult.

e.g. 3-dimensional space \mathcal{B}_1 with uniformly dist. *N* data points

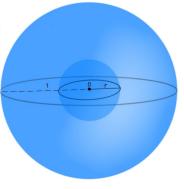


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Manifestation 2: In high input dimension *d*, all *sample* data points are close to the boundary of the sample.

- ► The median distance from 0 to closest point is r = (1 − 0.5^{1/N})^{1/d}. What happens when d is large?
- For instance, for d = 20, $\frac{N}{r = (1 - 0.5^{1/N})^{1/d}}$ $\frac{100 \quad 500}{.78 \quad .72}$
- Use the boundary makes predictions very difficult.

e.g. 3-dimensional space \mathcal{B}_1 with uniformly dist. *N* data points



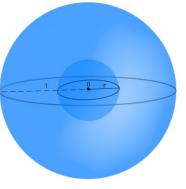
・ロト・日本・日本・日本・日本

Manifestation 2: In high input dimension *d*, all *sample* data points are close to the boundary of the sample.

► The median distance from 0 to closest point is r = (1 − 0.5^{1/N})^{1/d}. What happens when d is large?

For instance, for
$$d = 20$$
,
 N 100 500
 $r = (1 - 0.5^{1/N})^{1/d}$.78 .72

Use But, using training points near the boundary makes predictions very difficult. e.g. 3-dimensional space \mathcal{B}_1 with uniformly dist. *N* data points



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 \circledast *Manifestation 3*: In high input dimension *d*, large number of data points *N* is required to populate the space.

- A sample size N = m^d is required to populate the space so as to acquire a density of m. What happens when d is large?
- ► For instance, to achieve a sampling density of 100, d 1 20

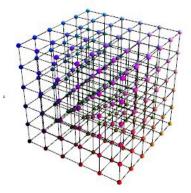
 If feasible training samples sparsely populate the input space. s.g. 3-dimensional space S_3 with $N = 6^3$ data points

イロト 不良 とくほ とくほう 二日

 \circledast *Manifestation 3*: In high input dimension *d*, large number of data points *N* is required to populate the space.

- A sample size N = m^d is required to populate the space so as to acquire a density of m. What happens when d is large?
- For instance, to achieve a sampling density of 100, d 1 20 $N = m^d$ 100¹ 100²⁰
- U All feasible training samples sparsely populate the input space.

e.g. 3-dimensional space S_3 with $N = 6^3$ data points

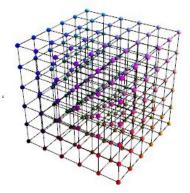


 \circledast *Manifestation 3*: In high input dimension *d*, large number of data points *N* is required to populate the space.

- A sample size N = m^d is required to populate the space so as to acquire a density of m. What happens when d is large?
- For instance, to achieve a sampling density of 100,

d	1	20
$N = m^d$	100 ¹	100 ²⁰

 4 All feasible training samples sparsely populate the input space. e.g. 3-dimensional space S_3 with $N = 6^3$ data points

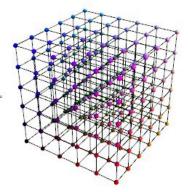


 \circledast *Manifestation 3*: In high input dimension *d*, large number of data points *N* is required to populate the space.

- A sample size N = m^d is required to populate the space so as to acquire a density of m. What happens when d is large?
- For instance, to achieve a sampling density of 100,

· ·		
d	1	20
$N = m^d$	100 ¹	100 ²⁰

 Up All feasible training samples sparsely populate the input space. e.g. 3-dimensional space S_3 with $N = 6^3$ data points



Measuring the Quality of Fit

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quality of Fit

To compare the estimated response $\hat{y}_i = \hat{f}(x_{i1}, x_{i2}, \dots, x_{ip})$ of the **training** data $\{(x_{i1}, x_{i2}, \dots, x_{ip}, y_i) : j = 1, 2, \dots, N\}$ to the true response y_i 's.

In regression, we use the mean squared error

training
$$MSE = rac{1}{N}\sum_{i=1}^{N}(y_i - \hat{y}_i)^2$$

(日) (日) (日) (日) (日) (日) (日)

But truly, quality of prediction of (new) testing data points is more important.

Quality of Fit

In case of absence of such testing data we minimize the training

training
$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

If we know the actual f, then the testing

testing
$$MSE = \frac{1}{m} \sum_{j=1}^{m} (f(x_j) - \hat{y}_j)^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Quality of Fit

In case of absence of such testing data we minimize the training

training
$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

If we know the actual f, then the testing

testing
$$MSE = \frac{1}{m} \sum_{j=1}^{m} (f(x_j) - \hat{y}_j)^2$$

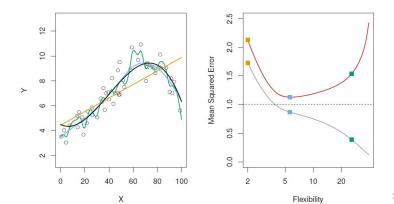
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Training vs Testing MSE

Example (Case of overfitting)

-Left: Black curve is the true function, orange line is a fitted linear regression, and blue and green are two differently smoothed splines.

-Right: Gray curve is training MSE, and red curve is testing MSE. Dashed line is the irreducible error $Var(\epsilon) = 1.0$.



Training vs Testing MSE

Example (Linear regression and splines)

-Left: Black curve is the true function, orange line is a fitted linear regression, and blue and green are two differently smoothed splines.

-Right: Gray curve is training MSE, and red curve is testing MSE. Dashed line is the irreducible error $Var(\epsilon) = 1.0$.

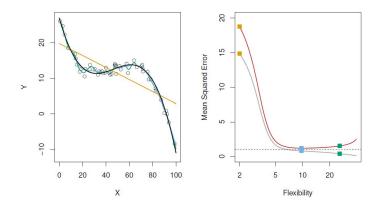


Training vs Testing MSE

Example (Linear regression and splines)

-Left: Black curve is the true function, orange line is a fitted linear regression, and blue and green are two differently smoothed splines.

-Right: Gray curve is training MSE, and red curve is testing MSE. Dashed line is the irreducible error $Var(\epsilon) = 1.0$.



▲□▶▲□▶▲□▶▲□▶ □ のQ@

The expected test MSE for a given input x_0

$$E[(y_0 - \hat{f}(x_0))^2] = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

- Var(f(x₀)) is the variability in f which might change with the training data. It would increase if the method is highly flexible.
- ► $Bias(\hat{f}(x_0))$ is about how far is the fitted to the actual and so it decreases if the method is highly flexible.
- A good learning method requires the less of both and that is the trade-off.

(日) (日) (日) (日) (日) (日) (日)

The expected test MSE for a given input x_0

$$E[(y_0 - \hat{f}(x_0))^2] = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

- Var(f(x₀)) is the variability in f which might change with the training data. It would increase if the method is highly flexible.
- Bias(f(x₀)) is about how far is the fitted to the actual and so it decreases if the method is highly flexible.
- A good learning method requires the less of both and that is the trade-off.

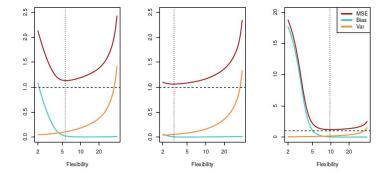
The expected test MSE for a given input x_0

$$E[(y_0 - \hat{f}(x_0))^2] = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

- Var(f(x₀)) is the variability in f which might change with the training data. It would increase if the method is highly flexible.
- Bias(f(x₀)) is about how far is the fitted to the actual and so it decreases if the method is highly flexible.
- A good learning method requires the less of both and that is the trade-off.

.

Example (Linear regression and nonlinear regression)



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − 釣�?

Testing Models

Testing Models

To compare the new predictions $\hat{y}_j = \hat{f}(x_{j1}, x_{j2}, ..., x_{jp})$ of **testing** data $\{(x_{j1}, x_{j2}, ..., x_{jp}, y_j) : j = 1, 2, ..., m\}$ to y_j 's. Use the testing error function

$$Err(f) = \frac{1}{m} \sum_{j=1}^{m} L(y_j, \hat{y}_j)$$

(日) (日) (日) (日) (日) (日) (日)

is an estimate of the prediction error $E(L(Y, \hat{f}(X)))$.

Cross-Validation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- K-fold cross-validation
- Monte-Carlo cross-validation
- Generalized cross-validation

(Mostly from section 7.10and more to come later.)

#1: K-fold cross-validation.

- Step 1: Split the data into *K* parts. Call one of those parts, of N/K data points, a validation set V_i while the rest K 1 parts, of N(1 1/K) data points, a training set T_i .
- Step 2: Use T_i to train the model and then use V_i to test it and calculate the prediction error

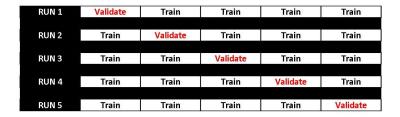
$$\frac{1}{N/K}\sum_{j\in\mathcal{V}_i}L(y_j,\hat{f}^{(-\mathcal{V}_i)}(X_j))$$

Step 3: Repeat step 2 for each *i*, for i = 1, ..., K.

Step 4: Finally, find the average of the resulting K errors

$$CV(\hat{f}) = \frac{1}{K} \sum_{i=1}^{K} \frac{1}{N/K} \sum_{j \in \mathcal{V}_i} L(y_j, \hat{f}^{(-\mathcal{V}_i)}(X_j))$$
$$= \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}^{(-k(i))}(X_i))$$

Example (5-fold cross-validation)



Example (leave-one-out cross-validation (LOOCV)) K = N-fold CV is called leave-one-out cross-validation. In that case, $T_i = \{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_N\}$ and $V_i = \{x_i\}$ for $i = 1, \dots, N$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

#2:
$$\frac{1}{K}$$
100% Monte-Carlo cross-validation.

- Step 1: Randomly select N/K data points from the whole set of N points. Call them a validation set V_i while the rest N(1 1/K) data points are called a training set T_i .
- Step 2: Use T_i to train the model and then use V_i to test it and calculate the prediction error

$$\frac{1}{N/K}\sum_{j\in\mathcal{V}_i}L(y_j,\hat{f}^{(-\mathcal{V}_i)}(X_j))$$

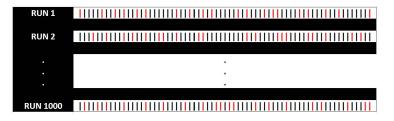
Step 3: Repeat step 2 for a large number of times, say *M*.Step 4: Finally, find the average of the resulting *M* errors.

$$CV(\hat{f}) = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{N/K} \sum_{j \in \mathcal{V}_i} L(y_j, \hat{f}^{(-\mathcal{V}_i)}(X_j))$$

(日) (日) (日) (日) (日) (日) (日)

Example (30% Monte-Carlo cross-validation)

For N = 67 and $\frac{1}{K} 100\% = 30\%$, a number of $.3 \times N \approx 20$ randomly selected data points make a validation set and the rest are for training.



#3: Generalized cross-validation (for LOOCV).

Step 1: Estimate the $N \times N$ matrix S through the linear fitting of

$$\hat{y} = Sy$$

Step 2: Find the effective number of parameters (or the effective degrees of freedom)

$$df(S) := trace(S) = \sum_{i=1}^{N} S_{ii}$$

Step 3: The generalized cross-validation is

$$GCV(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{y_i - \hat{f}(x_i)}{1 - df(S)/N} \right]^2$$

(ロ) (同) (三) (三) (三) (○) (○)

How does it work? With a tuning parameter α of the model *f*, define

$$CV(\hat{f},\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}^{(-k(i))}(X_i;\alpha)).$$

$$GCV(\hat{f},\alpha) = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{y_i - \hat{f}(X_i;\alpha)}{1 - df(S)/N} \right]^2$$

We find

$$\hat{\alpha} = \operatorname{argmin}_{\alpha} CV(\hat{f}, \alpha)$$

or

$$\hat{\alpha} = \operatorname{argmin}_{\alpha} GCV(\hat{f}, \alpha)$$

Finally, re-run the training step for best-tuned model $f(x, \hat{\alpha})$ to fit all of the data.

How does it work? With a tuning parameter α of the model *f*, define

$$CV(\hat{f},\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}^{(-k(i))}(X_i; \alpha)).$$

or

$$GCV(\hat{f},\alpha) = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{y_i - \hat{f}(X_i;\alpha)}{1 - df(S)/N} \right]^2$$

We find

$$\hat{\alpha} = \operatorname{argmin}_{\alpha} CV(\hat{f}, \alpha)$$

or

$$\hat{\alpha} = \operatorname{argmin}_{\alpha} GCV(\hat{f}, \alpha)$$

Finally, re-run the training step for best-tuned model $f(x, \hat{\alpha})$ to fit all of the data.

End of Set 2