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Supervised Learning

Training data: T = {(xi1, xi2, . . . , xip, yi) : i = 1,2, . . . ,n}

Model: yi = f (xi1, xi2, . . . , xip) + εi for i = 1,2, . . . ,n, and the
errors εi are iidrv with mean 0 and are independent of the X ’s.
The function f , in its wide sense, could be parametric or
non-parametric.

Goal of Sup.L.: To estimate f by f̂ using a Loss function L. May
involve validation step.

Testing: To compare the predictions ŷj = f̂ (xj1, xj2, . . . , xjp) of
testing data {(xj1, xj2, . . . , xjp, yj) : j = 1,2, . . . ,m} to yj ’s.

Ultimate Goal (Generalization): To make predictions f̂ (x∗) for
new inputs x∗ = (x∗1, x∗2, . . . , x∗p).
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testing data {(xj1, xj2, . . . , xjp, yj) : j = 1,2, . . . ,m} to yj ’s.

Ultimate Goal (Generalization): To make predictions f̂ (x∗) for
new inputs x∗ = (x∗1, x∗2, . . . , x∗p).



Supervised Learning

Training data: T = {(xi1, xi2, . . . , xip, yi) : i = 1,2, . . . ,n}

Model: yi = f (xi1, xi2, . . . , xip) + εi for i = 1,2, . . . ,n, and the
errors εi are iidrv with mean 0 and are independent of the X ’s.
The function f , in its wide sense, could be parametric or
non-parametric.

Goal of Sup.L.: To estimate f by f̂ using a Loss function L. May
involve validation step.

Testing: To compare the predictions ŷj = f̂ (xj1, xj2, . . . , xjp) of
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testing data {(xj1, xj2, . . . , xjp, yj) : j = 1,2, . . . ,m} to yj ’s.

Ultimate Goal (Generalization): To make predictions f̂ (x∗) for
new inputs x∗ = (x∗1, x∗2, . . . , x∗p).



Supervised Learning

Training data: T = {(xi1, xi2, . . . , xip, yi) : i = 1,2, . . . ,n}

Model: yi = f (xi1, xi2, . . . , xip) + εi for i = 1,2, . . . ,n, and the
errors εi are iidrv with mean 0 and are independent of the X ’s.
The function f , in its wide sense, could be parametric or
non-parametric.

Goal of Sup.L.: To estimate f by f̂ using a Loss function L. May
involve validation step.

Testing: To compare the predictions ŷj = f̂ (xj1, xj2, . . . , xjp) of
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Parametric vs
Non-Parametric



Models
Parametric: f has a functional form and a fixed number of
parameters.
⇑ Easy to interpret. ⇓ But more complex models can lead to
overfitting. ⇓ f̂ may be very different than true f .
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parameters.
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overfitting. ⇓ f̂ may be very different than true f .

Example (Multiple linear regression)

f (X ) = β0 + β1X1 + β2X2 + · · ·+ βpXp

where the parameters β0, β1, β2 . . . , βp are estimated using the
method of ordinary least squares to give

Ŷ = β̂0 + β̂1X1 + β̂2X2 + · · ·+ β̂pXp

e.g.,

income = β̂0 + β̂1years of education + β̂2seniority
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Parametric: f has a functional form and a fixed number of
parameters.
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Example (Non-linear regression)

f (X ) = c/(1 + exp(−β0 − β1X1 − β2X2 − · · · − βpXp))

where the parameters c, β0, β1, β2 . . . , βp are estimated using
the method of least squares to give

Ŷ = ĉ/(1 + exp(−β̂0 − β̂1X1 − β̂2X2 − · · · − β̂pXp))

e.g., income =

ĉ
1 + exp(−β̂0 − β̂1years of education− β̂2seniority)



Models
Parametric: f has a functional form and a fixed number of
parameters.
⇑ Easy to interpret. ⇓ But more complex models can lead to
overfitting. ⇓ f̂ may be very different than true f .

Example (Logistic regression (classification))

Y |X ∼ Bernoulli(1/(1 + exp(−β0 − β1X1 − β2X2 − · · · − βpXp)))

where the parameters β0, β1, β2 . . . , βp are estimated using the
method of maximum likelihood to give

P(Ŷ = 1|X ) = 1/(1 + exp(−β̂0 − β̂1X1 − β̂2X2 − · · · − β̂pXp))

P(pass|SAT ) =
1

1 + exp(−β̂0 − β̂1SAT)



Linear regression and method of ordinary least
squares

I Let the N × p matrix X be given by

X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
. . .

...
xN1 xN2 · · · xNp

 =


xT

1
xT

2
...

xT
N


where

xi =


xi1
xi2
...

xip


for i = 1,2, . . . ,N.

I In a vector form: f (xi) = xT
i β and the steepest uphill

direction is f ′(x) = β
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Linear regression and method of ordinary least
squares

I In the methods of least squares we find β the minimizes
the Residual Sum of Squares

RSS(β) =
N∑

i=1

(yi − xT
i β)

2

= (y − Xβ)T (y − Xβ)

I By differentiation and setting equal to zero

X T (y − Xβ) = 0

I If X T X is non-singular, then

β̂ = (X T X )−1X T y
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A classification problem using linear regression

Example
I Class G ∈ G = {0,1}
I After fitting that training

data of {(xi1, xi2,Yi = Gi) :
i = 1, . . . ,100} to a linear
regression model, we find
Ŷ = X T β̂

I Decision rule:

Ĝ =

{
Orange if Ŷ > 0.5,
Blue if Ŷ ≤ 0.5.

I The solid line is called the
decision boundary
{x : xT β̂ = 0.5}

Blue =0 and Orange =1
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Models
Non-parametric: f has no functional form and the number of
parameters increases with n.
⇑ Very flexible since they don’t follow a certain form. ⇓ It has so
many parameters that require Big Data. ⇓ It can also suffer
from overfitting.
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parameters increases with n.
⇑ Very flexible since they don’t follow a certain form. ⇓ It has so
many parameters that require Big Data. ⇓ It can also suffer
from overfitting.
Example (Splines)

Smooth thin-plate Spline Rough thin-plate Spline



Models
Non-parametric: f has no functional form and the number of
parameters increases with n.
⇑ Very flexible since they don’t follow a certain form. ⇓ It has so
many parameters that require Big Data. ⇓ It can also suffer
from overfitting.
Example (K-nearest neighbor (K-NN))

1-NN (Voronoi tessellation) K-NN



k-Nearest Neighbor (KNN)

I Let Nk (x) be the set of closest k inputs xi to the input x

I Closest ... using a metric, e.g., Euclidean distance

I Then,

Ŷ (x) =
1
k

∑
xi∈Nk (x)

yi
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A classification problem using K-NN
Example
I Class G ∈ G = {0,1}
I At k = 15, using
{(xi1, xi2,Yi = Gi) : i =
1, . . . ,100} to find the
average Ŷ of the 15
closest 0’s and 1’s

I Decision rule:

Ĝ =

{
Orange if Ŷ > 0.5,
Blue if Ŷ ≤ 0.5.

I The solid curve is the
decision boundary found
using the decision rule for
a fine mesh of inputs in the
plane.

Blue =0 and Orange =1
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Misclassifications

Training set of 200 points and test set of size 10,000. Effective
number of parameters is N/k > p.



Flexibility vs Interpretability



Loss Functions



Loss Functions

It measures how far is the predict value f (X ) from the actual
value Y , on the population level.
I Squared Error Loss (SEL) (when Y is continuous)

L(Y , f (X )) = (Y − f (X ))2

I Absolute Error Loss (AEL) (when Y is continuous)

L1(Y , f (X )) = |Y − f (X )|

I 0-1 Loss (0-1L) (when Y is categorical)

L(Y , f (X )) = I(Y 6= f (X ))



Loss Functions

It measures how far is the predict value f (X ) from the actual
value Y , on the population level.
I Squared Error Loss (SEL) (when Y is continuous)

L(Y , f (X )) = (Y − f (X ))2

I Absolute Error Loss (AEL) (when Y is continuous)

L1(Y , f (X )) = |Y − f (X )|

I 0-1 Loss (0-1L) (when Y is categorical)

L(Y , f (X )) = I(Y 6= f (X ))



Loss Functions

It measures how far is the predict value f (X ) from the actual
value Y , on the population level.
I Squared Error Loss (SEL) (when Y is continuous)

L(Y , f (X )) = (Y − f (X ))2

I Absolute Error Loss (AEL) (when Y is continuous)

L1(Y , f (X )) = |Y − f (X )|

I 0-1 Loss (0-1L) (when Y is categorical)

L(Y , f (X )) = I(Y 6= f (X ))



Statistical Decision
Theory



Statistical Decision Theory
Find f that minimizes the expected prediction error EPE(f ). If Y
is continuous:

EPE(f ) = E [L(Y , f (X ))]

=

∫
Rp+1

L(y , f (x))P(x , y)dxdy

=

∫
Rp+1

L(y , f (x))P(y |X = x)P(x)dxdy

=

∫
Rp

[∫
R

L(y , f (x))P(y |X = x)dy
]

︸ ︷︷ ︸
EY |X (L(Y ,f (X))|X=x)

P(x)dx

If Y is categorical: the inner integral is a sum over all possible
categories.
Thus, generally

f (x) = argmincEY |X (L(Y , c)|X = x)

.



Statistical Decision Theory
I If Y is continuous and we use SEL then f is given by

f (x) = argminc∈REY |X ((Y − c)2|X = x) = E(Y |X = x)

which is a regression function.
I If Y is continuous and we use AEL then f is given by

f (x) = argminc∈REY |X (|Y − c||X = x) = Median(Y |X = x).

I If Y is categorical and we use 0-1L then f is given by

f (x) = argminc∈GEY |X (I(Y 6= c)|X = x)

= argminc∈GPY |X (Y 6= c|X = x)

= argminc∈G
(
1− PY |X (Y = c|X = x)

)
= argmaxc∈GPY |X (Y = c|X = x)

which is Bayes classifier.
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A classification problem using Bayes classifier



Statistical Decision Theory

So based on SEL where

f (x) = E(Y |X = x)

I In regression, if we approximate f (x) = xTβ then we get
through the optimization step β = [E(XX T )]−1E(XY ) and
expected values could be replaced by sample averages

I In K-NN, it would be

f̂ (x) = Average(yi |xi ∈ Nk (x))

and due to SLLN when k ,N →∞ and k/N → 0, then
f̂ (x)→ E(Y |X = x), a.s.
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K-NN as a local method ...

In other words, K-NN (a local method) gives a consistent
estimator of f (x) = E(Y |X = x) as

f̂ (x) = Average(yi |xi ∈ Nk (x)) =
1
k

∑
xi∈Nk (x)

yi

But, nearest neighbor (local) methods suffer from ...
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Curse of Dimensionality



Curse of Dimensionality

~ Manifestation 1: In high input dimension d , local methods fail
in making accurate predictions.

I A coverage at a fraction f will be
achieved via s = f 1/d for each
input’s range. What happens
when d is large and f is small?

I For instance, in [0,1]20,
f .001 .01 .1
s = f 1/d .71 .79 .89

I ⇓ But, faraway inputs become
less and less relevant in
predictions for the central input.

e.g. 3-dimensional space [0,1]3

with uniformly distributed inputs
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Curse of Dimensionality

~ Manifestation 2: In high input dimension d , all sample data
points are close to the boundary of the sample.

I The median distance from 0 to
closest point is
r = (1− 0.51/N)1/d . What
happens when d is large?

I For instance, for d = 20,
N 100 500
r = (1− 0.51/N)1/d .78 .72

I ⇓ But, using training points near
the boundary makes predictions
very difficult.

e.g. 3-dimensional space B1
with uniformly dist. N data

points
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Curse of Dimensionality

~ Manifestation 3: In high input dimension d , large number of
data points N is required to populate the space.

I A sample size N = md is
required to populate the space so
as to acquire a density of m.
What happens when d is large?

I For instance, to achieve a
sampling density of 100,
d 1 20
N = md 1001 10020

I ⇓ All feasible training samples
sparsely populate the input
space.

e.g. 3-dimensional space S3
with N = 63 data points
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Measuring the Quality of
Fit



Quality of Fit

To compare the estimated response ŷi = f̂ (xi1, xi2, . . . , xip) of
the training data {(xi1, xi2, . . . , xip, yi) : j = 1,2, . . . ,N} to the
true response yi ’s.

In regression, we use the mean squared error

training MSE =
1
N

N∑
i=1

(yi − ŷi)
2

But truly, quality of prediction of (new) testing data points is
more important.



Quality of Fit

In case of absence of such testing data we minimize the training

training MSE =
1
N

N∑
i=1

(yi − ŷi)
2

If we know the actual f , then the testing

testing MSE =
1
m

m∑
j=1

(f (xj)− ŷj)
2
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Training vs Testing MSE
Example (Case of overfitting)
-Left: Black curve is the true function, orange line is a fitted
linear regression, and blue and green are two differently
smoothed splines.
-Right: Gray curve is training MSE, and red curve is testing
MSE. Dashed line is the irreducible error Var(ε) = 1.0.
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Bias-Variance Trade-Off

The expected test MSE for a given input x0

E [(y0 − f̂ (x0))
2] = Var(f̂ (x0)) + [Bias(f̂ (x0))]

2 + Var(ε)

I Var(f̂ (x0)) is the variability in f̂ which might change with
the training data. It would increase if the method is highly
flexible.

I Bias(f̂ (x0)) is about how far is the fitted to the actual and
so it decreases if the method is highly flexible.

I A good learning method requires the less of both and that
is the trade-off.
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Bias-Variance Trade-Off

Example (Linear regression and nonlinear regression)
.



Testing Models



Testing Models

To compare the new predictions ŷj = f̂ (xj1, xj2, . . . , xjp) of
testing data {(xj1, xj2, . . . , xjp, yj) : j = 1,2, . . . ,m} to yj ’s. Use
the testing error function

Err(f ) =
1
m

m∑
j=1

L(yj , ŷj)

is an estimate of the prediction error E(L(Y , f̂ (X ))).



Cross-Validation



Cross-Validation Algorithms

⊗
Cross-validation methods are used when there is no access

to external testing data other than the training data. And there
is a need to select between different models. There are many
of CV methods but the most common are:

I K-fold cross-validation

I Monte-Carlo cross-validation

I Generalized cross-validation
(Mostly from section 7.10and more to come later.)



Cross-Validation Algorithms
#1: K-fold cross-validation.

Step 1: Split the data into K parts. Call one of those parts, of N/K
data points, a validation set Vi while the rest K − 1 parts, of
N(1− 1/K ) data points, a training set Ti .

Step 2: Use Ti to train the model and then use Vi to test it and
calculate the prediction error

1
N/K

∑
j∈Vi

L(yj , f̂ (−Vi )(Xj))

Step 3: Repeat step 2 for each i , for i = 1, . . . ,K .

Step 4: Finally, find the average of the resulting K errors

CV (f̂ ) =
1
K

K∑
i=1

1
N/K

∑
j∈Vi

L(yj , f̂ (−Vi )(Xj))

=
1
N

N∑
i=1

L(yi , f̂ (−k(i))(Xi))



Cross-Validation Algorithms

Example (5-fold cross-validation)

Example (leave-one-out cross-validation (LOOCV))
K = N-fold CV is called leave-one-out cross-validation. In that
case, Ti = {x1, . . . , xi−1, xi+1, . . . , xN} and Vi = {xi} for
i = 1, . . . ,N.



Cross-Validation Algorithms
#2:

1
K

100% Monte-Carlo cross-validation.

Step 1: Randomly select N/K data points from the whole set of N
points. Call them a validation set Vi while the rest
N(1− 1/K ) data points are called a training set Ti .

Step 2: Use Ti to train the model and then use Vi to test it and
calculate the prediction error

1
N/K

∑
j∈Vi

L(yj , f̂ (−Vi )(Xj))

Step 3: Repeat step 2 for a large number of times, say M.

Step 4: Finally, find the average of the resulting M errors.

CV (f̂ ) =
1
M

M∑
i=1

1
N/K

∑
j∈Vi

L(yj , f̂ (−Vi )(Xj))



Cross-Validation Algorithms

Example (30% Monte-Carlo cross-validation)
For N = 67 and

1
K

100% = 30%, a number of .3× N ≈ 20
randomly selected data points make a validation set and the
rest are for training.



Cross-Validation Algorithms

#3: Generalized cross-validation (for LOOCV).

Step 1: Estimate the N × N matrix S through the linear fitting of

ŷ = Sy

Step 2: Find the effective number of parameters (or the effective
degrees of freedom)

df (S) := trace(S) =
N∑

i=1

Sii

Step 3: The generalized cross-validation is

GCV (f̂ ) =
1
N

N∑
i=1

[
yi − f̂ (xi)

1− df (S)/N

]2



Cross-Validation Algorithms
How does it work? With a tuning parameter α of the model f ,
define

CV (f̂ , α) =
1
N

N∑
i=1

L(yi , f̂ (−k(i))(Xi ;α)).

or

GCV (f̂ , α) =
1
N

N∑
i=1

[
yi − f̂ (Xi ;α)

1− df (S)/N

]2

We find
α̂ = argminαCV (f̂ , α)

or
α̂ = argminαGCV (f̂ , α)

Finally, re-run the training step for best-tuned model f (x , α̂) to fit
all of the data.
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