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Probability Space

@ Random experiment

@ Sample space (S or Q)

@ AneventA B,...C S

@ o—algebra B

@ Probability measure P

@ Probability Space (S, B, P)

@ Partitioning events

{AicS:i=12,... kU A =8Sand AinA =¢foralli#j}
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Introduction to Probability and Statistics Basics of Probability

Independence and Conditional Probability

@ Two events A and B are said to be mutually exclusive if and only if
ANnB=¢andthen PIANB) =0

@ Two events A and B are said to be independent if and only if
P(AN B) = P(A)P(B)

@ The conditional probability of event A given event B is given by

P(ANB)

PAIB) = 5,

@ Thus, two events A and B are said to be independent if and only if
P(A|B) = P(A)
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Introduction to Probability and Statistics Basics of Probability

Bayes’ Theorem

@ Law of Total Probability: for a partition {A;}__,, and any event B

P(B) = _ P(B|A)P(A)
i—

@ Bayes’ Theorem: foranyj(j=1,2,...,n)

P(BJA})P(A))
>y P(BIA)P(A)

P(Aj|B) =
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Introduction to Probability and Statistics Basics of Probability

Single Random Variables
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Introduction to Probability and Statistics Basics of Probability

Random Variables

@ Consider a probability Space (S, B, P)
@ A random variable (orr.v.) X : S — R is a measurable function

@ If range of a random variable X (Ry) is finitely* or infinitely**
countable then X is called discrete random variable otherwise (if
uncountable) then it is called continuous

*Has the same cardinality’ as a set {1,2,...,n} forsomen € N.
**Has the same cardinality as N.

"Two sets A and B have the same cardinality if there exists a bijective (injective+surjective) function f : A — B.
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Introduction to Probability and Statistics Basics of Probability

Single Random Variables

A discrete probability mass function (pmf) is f such that
0<f(x)<1

> f(x) =1

XeSx

where Sy = {x € Rx : f(x) > 0} is called support of X
A continuous probability density function (pdf) is f s.t.

0 < f(x)

/Rf(x)dx =1
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Single Random Variables

The expected value of any function g(X) is
If X is discrete r.v. then

= > 9(0f(x)

XESx

= / g(x)f(x)dx
R

If g(x) = I(x € A) is the indicator function then

If X is continuous r.v. then

E(g(X)) = P(x € A)
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Single Random Variables

The r" moment is E(X") and the first moment is called the mean 1(X)

or ux := E(X) (if exists)
The variance is
V(X) or Vx := E((X — jx)?) = E(X?) — %
The standard deviation is
ox = v/V(X)
The moment generating function
My (t) := E(exp(tX))

for all t where E(exp(tX)) exits
It generates moments

d"Mx(t)
E(X") = 2% |
forr=1,2,...
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Single Random Variables

The cumulative distribution function (cdf) is
F(x):=P(X <x)=P({w e S: X(w) < x})
If X is discrete r.v. then
F(x)= Y_ f(t)forallxeR
teSx:t<x
and so
f(x)=F(x)— F(x7)
where x~ is such that x~ < x and x~ € Sy
If X is continuous r.v. then

X
F(x) = / f(t)dt, for all x € R
and so oF ()
X
fx) = ax
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Introduction to Probability and Statistics Basics of Probability

Single Random Variables

The cdf F(x) is non-decreasing (F(xq) < F(x2) whenever xy < x»),
right continuous (lim.jo F(x + €) = F(x)), and limy_,_., F(x) = 0 and
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables
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Multiple Random Variables

The joint pmf or pdf of two random variables X and Y is defined to be
fx.y(x,y) such that fx y(x,y) > 0 and

Z Z fX,Y(va) =1

XeSx yeSy

if X and Y are discrete r.v's and

/ / f.v(X, y)axdy = 1
RJR

if X and Y are continuous r.v.s
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

A joint cdf is defined as
Fxy(x,y)=PX<x, Y <y)
which is given by
Fxy(x,y) = > fx,v(t,s)

(t,8)€Sx,y:t<x and s<y
for all (x,y) € R2, if X and Y are discrete r.v.s and so
fX,Y(va) = FX,Y(Xay) - FX,Y(X_,.y) - FX,Y(X7.y_) + FX,Y(X_ay_)
and
y X
Fertxy) = [ [ el s)atds
for all (x,y) € R2, if X and Y are continuous r.v.s and so

9?Fx y(x,
fxy(x,y) = gxg(y 2
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

Marginal pmf or pdf of X are

fx(X) = Z fxvy(X, S)

seSy
and

() = [ fev(x 9)ds
R
Marginal pmf or pdf of Y are
fr(y) =D fr(ty)
teSx
and
) = [ Bt pet
X and Y are said to be independent if and only if
fx,v(x,y) = Kx(x)fv(y)
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Multiple Random Variables

The conditional probability function of X given that Y = y is defined by

fxy=y(X) = fx’fi(();)y)

and the conditional probability function of Y given that X = x is defined
by
fX Y(X7 .y)
fuiy_ = Y '77
yix=x(¥) (%)

P(XecAlY =y)= /Afxy_y(x)dx
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Multiple Random Variables

X and Y are said to be independent if and only if

fxy=y(X) = fx(x)

for all x and y
Or if and only if

fyix=x(¥) = fv(y)
for all x and y
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Multiple Random Variables

The expected value of g(X, Y) is

E(9(X,Y) = > > g y)ky(x.y)

XeSx yeSy
if X and Y are discrete r.v.s and

E(g(X, Y)) = /R /R 9.y (x. y)dxdy

if X and Y are continuous r.v.s
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables
The (r, p)!" moment is
pirp = E(X"YP)

and px = pq10 and py = pg 1 (if exist)
The variances are

V(X) := poo — 1k
and

V(Y) = pop — 115

The standard deviations are

and
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

Two random variables X and Y are said to be identically distributed if
X and Y have the same cumulative probability distribution, Fx = Fy.
Thus, Ux = |y and ox = oy.
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Multiple Random Variables

The co-variance of X and Y is

Cov(X, Y) = E[(X—px)(Y—py)] = E(XY)~E(X)E(Y) = p11.1—p11,0 Ho.1
The correlation between X and Y is
Cov(X,Y)

oxOoy

By Cauchy-Schwarz inequality |p(X, Y)| < 1
Conditional moments

p(X,Y) =

E(g(X)|Y = y) = /R 900 fxy—y (X)0lx
and

E(9(Y)|X = x) = /R 900 fyx—x ()0l
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Multiple Random Variables

The joint moment generating function

My y(t,s) := E(exp(tX + sY))

for all t, s where E(exp(tX + sY)) exits
It generates moments

E(xrye) - LM ()
otrosp 16s=0
forr,p=1,2,...
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

If X and Y are said to be independent then
E(91(X)g2(Y)) = E(91(X))E(g2(Y))
If X and Y are independent then
E(XY) = E(X)E(Y)

and so
Cov(X,Y)=0

(and also p(X,Y) = 0)
If X and Y are independent then

My v(t) = E(exp(t(X + Y))) = Mx(£)My(?)
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

Let X and Y be two r.v/s and a, b and c are real-valued constants
° E(aX+ b) = aE(X)+b
V(aX + b) = & V(X)
E(aX+ bY +c)=aE(X)+bE(Y)+c
V(aX + bY +¢) = @ V(X) + b V(Y) +2ab Cov(X, Y)
E(X) = E(E(X]Y))
V(X) = E(V(X]Y)) + V(E(X]Y))
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Law of Total Probability and Bayes’ Theorem

@ Law of total probability:
For discrete r.v’s

fr(y) = frix=(¥)fx(t)
t
For continuous r.v.s

WMZAMXMW@W

@ Bayes’ Theorem:
For discrete r.v.’s

f (x) = fyix=x(¥)fx(x)
XY= S e ) ()
For continuous r.v.s

C Byx=x (V) x(x)
S frx=e (V) fx ()t
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

It could be extended to several random variables Xi, X, ..., X, for
n > 1 with the joint pdf

fX1 ,X27-~,Xn(x1 y X2, ... aXn) >0

//"'/fX1,X2,...,Xn(X1aX27"')Xﬂ):1
R JR R

If a1, a0, ..., ap are real-valued constants

and

E(ai1 Xi +aXo+ -+ anXn) = a1 E(X]) + @ E(X2) + -+ anE(X»)

Tamer Oraby (University of Texas RGV) SC MATH 6382 Fall 2016 26 /91



Multiple Random Variables

The r.v/s Xi, X, ..., X, are independent if and only if
% X X (X15 X25 .. s Xn) = Fx, (X1)Fx,(X2) - - - Fx,(Xn)
If X1, X>, ..., X, are independent r.v’s then
V(ai Xy + apXo + -4 anXn) = @ V(Xq) + @B V(Xa) + - - + @ V(Xp)
and
Ma, X, +apX+-+anXa (1) = Mx, (@1 t) - My, (a2 t) - - - My, (ant)

If {Xi}]_, is a family of independent identically distributed random
variables (i.i.d.r.v.) then

n
) X, X0 (X1, X2, ..o, Xn) = H fx(X;)
i—1

and
My, o0 (1) = [Mx(D)]"
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Introduction to Probability and Statistics Some Discrete Random Variables

Some Discrete Random
Variables
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Some Discrete Random Variables
Discrete Uniform Random Variable

X assumes one of the values x4, Xo, . . . , X, with pmf
1

f(xi) =
fori=1,2,...,n
It has mean

1 n
Hx = E ' Xi =X
i=1

and variance
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Introduction to Probability and Statistics Some Discrete Random Variables

Bernoulli Random Variable

X ~ Bernoulli(p) marks failure by 0 (off) and success by 1 (like off and
on OR miss or hit) with pmf

f)=p

(and of course f(0) = 1 — p) It can be written as

f(x) = p*(1 —p)'~*

forx =0,1
It has mean
pux =P
and variance
Vx =p(1-p)
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Binomial Random Variable

X ~ binom(n, p) is the number of successes in n independent trials
with probability of success on each trial is p = P(S). It has pmf

f(x) = Cep*(1 — p)"*
forx=0,1,2,....,n
It has mean
px = np
and variance
Vx = np(1—-p)
Bernoulli(p) is binom(1, p)

If {Xi}]_, is a family of independent identically distributed random
variables (i.i.d.r.v.) with Bernoulli(p) then

X=X+ Xo+ -+ Xy ~ Binom(n, p)
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Introduction to Probability and Statistics Some Discrete Random Variables

Multinomial Random Variable

X ~ multinom(n, py, po, . .., px) is the vector (X, Xz, ..., Xk) such that
S°K_, X; = n of numbers of realization of the k partitioning events
({A,-}f.‘:1) in nindependent trials with probabilities of occurrence on
each trial is p; = P(A;) fori=1,2,..., kand ¥ , p; = 1. It has joint
pmf

_rn X1 X2 Xk
f(X17X27"'7Xk) - CX1,X2,...,ka1 .p2 pk

forx,-:0,1,2,...,n;i:1,2,...,nandzf‘:1x;:n. It has mean

KX, = Np;
and variance
Vx, = npi(1 - pj)
and co-variance
Cov(X;, X;) = —npip;
fori#j
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Introduction to Probability and Statistics Some Discrete Random Variables

Multinomial Random Variable

Example: If a single student has probabilities to receive letter grades
A ....,Fare P(A)=.1,P(B)=.25P(C) = .3,P(D) = .25 P(F) = 1.
A realization of the experiment of observing letter grades of randomly
selected n = 6 students is for instance three students received A, one
student received B and two students received F, so x = (3,1,0,0,2).
The probability of that instance to occur is

6!

_ ' 3 1 10 042
f(3,1,0,0,2) = m.1 251,30 250 1
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Some Discrete Random Variables
Geometric Random Variable

X ~ geom(p) is the number of independent trials till the 15! success
occurs, given that probability of success on a single trial is p = P(S).
Sayin F,F,S, x = 3. It has pmf

f(x) = p(1 — p)*"

forx=1,2,....
It has mean 1
ux = —
p
and variance 1
—p
Vy = 7

The cdfis F(x) = P(X < x)=1— (1 - p)*! forall x > 0 and zero
otherwise.
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Introduction to Probability and Statistics Some Discrete Random Variables

Geometric Random Variable

Memoryless Property

P(X>t+s|X>s) = P(X > t+sand X > s)

P(X > s)
_ P(X>t+5s)
 P(X>s)
1 —F(t+5s)
11— F(s)
(1 —p)t+s
 (1-p)s

_ (1 _ p) U+SJ_LSJ
= (1-p)tiftisaninteger
= P(X >t)if tis an integer
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Some Discrete Random Variables
Geometric Random Variable

Another point of view:
Y ~ geom(p) is the number of independent failures till the 15t

success occurs, given that probability of success on a single trial is
p=P(S). Sayin F,F,S, y = 2. It has pmf

f(y) = p(1 — p)’

fory=0,1,2,.... Thus, Y = X — 1.
It has mean ] ]
- p
= - 1=-1=—-
By = px b 5
and variance 1
- p
Vy =Vy— — &
1% X 2
The cdfis F(y) =P(Y <y)=1—(1—p)Y*! forall y > 0 and zero
otherwise.
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Some Discrete Random Variables
Negative Binomial Random Variable

X ~ nbinom(r, p) is the number of independent trials till the rth

success occurs, given that probability of success on a single trial is

p = P(S). Say, withr=38,in F,F,S,F,S,F,F,F, S, x=9
It has pmf

f(x)=C/p'(1—p)’
forx=rr+1,r+2,...

It has mean 1
= —
px )
and variance ’
Vx=r p2p

geom(p) is nbinom(1, p)
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Some Discrete Random Variables
Negative Binomial Random Variable

Another point of view:
Y ~ nbinom(r, p) is the number of independent failures till the rth
success occurs, given that probability of success on a single trial is
p = P(S). Say,withr=3,in F,F,S,F,S,F,F.F,S, y =6. That s,
Y=X-r.
It has pmf

fly) = C/ o’ (1 - py
fory=0,1,2,...
It has mean

and variance
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Introduction to Probability and Statistics Some Discrete Random Variables

Negative Binomial Random Variable

If {Xi}]_, is a family of independent identically distributed random
variables (i.i.d.r.v.) with geom(p) then

X=Xy +Xo+---+ Xy ~ nbinom(r, p)
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Introduction to Probability and Statistics Some Discrete Random Variables

Hypergeometric Random Variable

X ~ hyper(n, M, N) is the number of items of a certain type found in a
random sample of size n selected without replacement from a
population of size N that contains a total of M items of that type.

N

Without replacement

n
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Introduction to Probability and Statistics Some Discrete Random Variables

Hypergeometric Random Variable

It has pmf
CMcNfM
fX — X n—x
for x = max(0,n+ M — N),..., min(n, M)
It has mean
M
px =Ny
and variance
Ve — nM N—MN-—-n
XZUNTN N_-1

Tamer Oraby (University of Texas RGV) SC MATH 6382 Fall 2016 41/91



Some Discrete Random Variables
Hypergeometric Random Variable

Binomial Approximation to Hypergeometric

If % — p as N — oo while n is fixed then the pmf of hyper(n, M, N)
approaches the pmf of binom(n, p) as N — oc.
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Poisson Random Variable

X ~ pois()) is the number of occurrences of a certain event that is
known to happen at a rate of A per unit space or time.

It has pmf
e\
f(x) = i
forx=0,1,2,...
It has mean equal to its variance
px =Vx = A

Tamer Oraby (University of Texas RGV) SC MATH 6382 Fall 2016 43 /91



Poisson Random Variable

Poisson Approximation to Binomial

If no — X as n — oo then the pmf of binom(n, p) approaches the pmf
of pois(\) as n — .
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Introduction to Probability and Statistics Some Continuous Random Variables

Some Continuous Random
Variables
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Introduction to Probability and Statistics Some Continuous Random Variables

Continuous Uniform Random Variable

X ~ unif(a,b) soasto P(X € (x,x+ h)) = P(X € (y,y + h)) for all

x,y,hsuchthat (x,x + h) and (y,y + h) C (a, b)
It has a pdf given by

1

f f

(x) b4 ora<x<b
where a < b, and mean

_a+b
ux = >
variance 5
_(b-a)
Vx=""13
and cdf
0 if x < a,
X—a
F(x) = if a<
(x) b 2 ifa<x<b,
1 if x> b.
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Introduction to Probability and Statistics Some Continuous Random Variables

Continuous Uniform Random Variable

If U~ unif(0,1),then X =a+ (b— a) « U ~ unif(a, b).
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Some Continuous Random Variables
Exponential Random Variable

X ~ exp(\) is the simplest way to stochastically model time till success
(an event) takes place, e.g., time between transitions made by a
Markov process or time between arrivals of customers to an ATM

It has a pdf given by

f(x) = xe ™ forx >0

where the rate A > 0 and mean

_1

mx = \

variance 1
and cdf

0 if x <0,
F(X):{ 1—e ™ jfx>0.
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Introduction to Probability and Statistics Some Continuous Random Variables

Exponential Random Variable

The survival functionis S(x) := P(X > x) =1 — F(x) = eV
. f
whenever x > 0 and a constant hazard function h(x) := S(())(()) =
Memoryless Property
P(X >t+sand X > s)
P(X > s)
P(X > t+s)
P(X > s)
S(t+s)
S(s)
e—A(H—s)

PX>t+sX>s) =

e—>\S
= eM=P(X>1t
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Introduction to Probability and Statistics Some Continuous Random Variables

Exponential Random Variable

Recall that geom and exp distributions have also memoryless property.
Also, geom distribution models discrete time till success whereas exp
distribution models continuous time till success.

In addition, ...

If X ~ geom(p), let p=A/nand X = Y /nthen as n — co the
probability distribution of Y approaches the probability distribution of
exp(A)
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Introduction to Probability and Statistics Some Continuous Random Variables

Double Exponential (Laplace) Random Variable

X ~ doublex(u, \) requires the library "smoothmest" in R. It is two

exponential distributions glued back-to-back at a location .
It has a pdf given by

f(x) = %e‘”’(‘“‘ for —oo < x < o0

where the rate A > 0 and mean

HX =
variance

Ve — 2

X7 e

If X ~ doublex(p, \) then | X — pu| ~ exp())
If X, Y ~ exp(\) are independent r.vs then X — Y ~ doublex(0, \)
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Gamma Random Variable

X ~ gamma(r, \) to the exponential distribution in continuous r.v.'s is
like the negative binomial distribution to the geometric distribution in
discrete r.v’s. It models time as well.

It has a pdf given by

)\I’
f — r—1 ,—Ax f >
(x) —r(r)x e orx >0
where r, A > 0 and the special function I'(r) := [;* x"~Te *dx is the
gamma function
It has a mean

r
mx = b\
variance r
Vx =3z

exp(A) is gamma(1, \)
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Introduction to Probability and Statistics Some Continuous Random Variables

Gamma Random Variable

Let r be an integer. If {X;}7_, is a family of independent identically
distributed random variables (i.i.d.r.v.) with exp(\) then

X=Xy +Xo+ -+ X, ~gamma(r, \)
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Introduction to Probability and Statistics Some Continuous Random Variables

Gamma Random Variable

Remarks about the special function gamma function

r(r):= [;°x"e Xdx

r(r+1)=rr(r)forre R-40,-1,-2,...
andif ris anintegerthen F'(r+1) =rtwith'(1) =0! =1

r(3)= V7
M) = oV
&3
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Some Continuous Random Variables
Chi-square Random Variable

X ~ chisq(v) is gamma(g, %) where the degrees of freedom
v=12...
It has a pdf given by

v_

f(x) = ,,1 xz e /2 for x >0

> v
22 (3)
It has a mean
px =v
variance
Vy =2v
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Introduction to Probability and Statistics Some Continuous Random Variables

Chi-square Random Variable

If {X;}7_, is a family of independent random variables with

X; ~ chisq(v;) then
n n
Z X; ~ chisq Z vj
i=1 i=1
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Some Continuous Random Variables
Weibull Random Variable

X ~ weibull(k, \) is another way to stochastically model time till
success (an event) takes place.
It has a pdf given by
f(x) = kN x" e )" for x > 0
where the rate x, A > 0 and mean

r(1+-)
A

al=

[x =

Vy = ; (r(1 - %) — (r(1 + ;)>2)

0 if x <0,
Fi) = { 1— e MW" ifx > 0.
Note: weibull(1,\) is exp()\)
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Beta Random Variable

X ~ beta(a, B) is a famous model of a fraction and probability of
events, e.g., success.

It has a pdf given by

_ 1 a—1 o B—1
f(x)= B(a,ﬂ)x (1—x)"""for0<x <1

where a, 8 > 0 and the special function

B(a, B) := fo1 x* 11 = x)P~1dx = m is the beta function
It has a mean

[0
mx = a+tp
variance
Vy = of
(+BP2(a+B+1)
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Beta Random Variable

@ unif(0,1) is beta(1,1)
e If X ~ gamma(a,1) and Y ~ gamma(3, 1) are two independent
r.v.s, then

X
Xty "~ beta(a, 5)
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Introduction to Probability and Statistics Some Continuous Random Variables

Normal Random Variable

X ~ norm(u, o) is used to model many phenomena and
measurements.
It has a pdf given by

1 _(x=p)?
V2ro

e 202 for —oo < X< o0
where —co < p<occando >0
It has a mean px = p and variance Vy = o2
Z= % ~ norm(0, 1) the standard normal distribution
The cdf of the standard normal is denoted by

t 2
(1) ;:/ \/%Ue—zdx

f(x) =
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Normal Random Variable
@ If X ~ norm(u, o), and a, b are constant, then
aX + b~ norm(au + b,|al o)

o If {X;}7, is a family of independent random variables with
Xi ~ norm(pu;, o;) then

n n
X =Y "aXi~norm | aju,
p p

o If {X;}/_, is a family of independent random variables with
Xi ~ norm(u;, o) then

> &t

i=1

o 1L 1~ 1
X:n;XimJnorm n;u,,n

n

2
E :Ji
i=1
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Normal Random Variable

o If {X;}, is a family of independent identically distributed random
variables (i.i.d.r.v.) with X; ~ norm(p, o) then

i)
vn
@ Chi-square Random Variable (revisited) If {Z;}7 , is a family of

independent identically distributed random variables (i.i.d.r.v.) with
Z; ~ norm(0, 1) then

_ 1
X = EZ:XIN norm(yu,

n
>~ ZF ~ chisq(n)

i=1

° Appllcatlon (n— 1)82/0 ~ chisq(n — 1) where
S$2 =150 L (X; — X)? is the sample variance.
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Log-Normal Random Variable

If X ~ norm(u, o) then €X ~ Inorm(y, o). The log-normal r.v. is
sometimes used to model time till success or any specific event takes
place.
It has a pdf given by

2

1 (log x—p)
f(xX)=——=—€e 22 forx>0

where y,0 >0
2 . 2 2
It has a mean px = €7 /2 and variance Vy = €217 (7" — 1)
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Some Continuous Random Variables
Student T Random Variable

Z
X ~ t(v) is a result of X = ——— where Z ~ norm(0, 1) and
VxE/v

x? ~ chisq(v) are two independent r.v.s
It has a pdf given by

r(t) 1 1
f(x) = —2 for — oo < X <
(x) M(s) Vvm 2 v
(1 + 7)
wherev =1,2,...
It has a mean ux = 0 whenever v > 1 and variance Vy = ” i 5
whenever v > 2
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Some Continuous Random Variables
Student T Random Variable

Application: If {X;}7_, is a family of independent identically distributed
random variables (i.i.d.r.v.) with X; ~ norm(u, o) then

X ~ norm(u, =)

vn
and so, on one hand,
Z= ():/T/g ~ norm(0, 1)
and on the other hand
_ 2
X2 = % ~ chisq(n—1)
g

X and S? are independent r.v.s (proof is out of the scope of the
course) then

Z _)_(—,u
X2/(n—1) S§/vn
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Cauchy Random Variable

X ~ cauchy(u, o) is a heavy tail distribution («-stable law with oo = 1)
It has a pdf given by

f(X):L%for—oo<X<oo

2
Yixea _
1+<X “)
ag
with o > 0

The mean, variance and all the moments do not exist. But the cdf is
given by

F(x) = % + arctan

The Standard Cauchy cauchy(0,1) is t(1)

X_
( M)for—oo<x<oo
o

Tamer Oraby (University of Texas RGV) SC MATH 6382 Fall 2016 66 /91



F Random Variable

2
X ~ f(vy, 1) is a result of X = X;/W where x? ~ chisq(v4) and
Xo/V2
X3 ~ chisq(v») are independent

It has a pdf given by

where vy, 1o =1,2, ...
It has a mean ux =

whenever v, > 2 and variance

Vo — 2
202 (v 4+ v — 2
Vy = 5 5 ) whenever v, > 4
vi(v2 — 2)%(v2 — 4)
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F Random Variable

Application: If {X;}]_; and {Y;}{", are two independent families of
independent identically distributed random variables (i.i.d.r.v.) with
Xi ~ norm(px,ox) and Y; ~ norm(py,oy) then

, (n—1)82

Xj = 5% ~chisq(n—1)
ox
and 2
1
X3 = w ~ chisq(m — 1)
9y

are independent and thus

5% /0%
S5 /0%

F= ~f(n—1,m-1)
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Some Continuous Random Variables
Discrete mixture of probability distributions

Let X1, Xo, ..., Xk be r.v. with X; ~ Fx.(:6;)
A discrete-mixture distribution of X is

Fx(-10) = p1Fx, (-161) + P2Fx,(-162) + - - - + pr Fx, (-0k)

where p; >0andpy +p2+---+px =1
Example: Flip a coin, if it lands up head use norm(0, 1) otherwise use
norm(0, 2), then the resulting r.v. X has a cdf

Fx(x) = 30(x) + 3o(3)
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Continuous mixture of probability distributions

Let Y be r.v. with Y ~ Fy (-], A1) and © ~ Fg(0|\2)
A continuous-mixture distribution of X is

Fx(-1A) = /R Fy(10. M) fo (6] 22) 0

where fo(6]A2) > 0 and [y, fo(6])2) d6 = 1
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Continuous mixture of probability distributions

Example: (Gamma-Poisson mixture)

Let Y ~ pois(\) and A ~ gamma(r, 3). It is known analytically that the
Gamma-Poisson mixture follows nbiom(r, %), since for each
x=0,1,...

fx(X’I’,B) = /I;fy(X’A) f/\()\]r,ﬂ) ai

= [Thet ey
0

x! r(r)
_ B /OO A1 g (14 gy
X'F(r) 0
F(x+r) B

XIT(r) (1+5)X+rf )
- r)(()!(rJ(rr)r)(1fﬁ> <1J1rﬁ>
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Continuous mixture of probability distributions

Example: (Gamma-Poisson mixture)
If r is an integer, then for each x = 0,1, ...

F(x+r r 1\
i) = Sy (rvs) (5753)
(x+r—=D/ 8\ /7 1 "
— xI(r=1) (1 +5> (1 +B>

which is nbiom(r, %). If r > 0 a real-number the it is called
polya(r, i1) with 3 = £ which then has mean 1 and variance 1 + 17#2.
The parameter r (or its reciprocal) is called clustering, aggregation,
heterogeneity, or over-dispersion parameter. As r — oo, polya(r, i)

approaches pois(p).
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Map of Random Variables

Map

Xi

o ep N

Negative binomial(n,p)

— —A=n(1-p) , N — — ~

P=MIN , =k, N-0

Hypergeometric(

Uniform(0,1)

a=0b=1

Uniform(a,b)

Double-Exponential(0,1.A)

Source: https://en.wikipedia.org/wiki/Relationships_among_probability_distributions
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Introduction to Probability and Statistics Multi-variate Normal distribution

Multi-variate Normal
distribution
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Introduction to Probability and Statistics Multi-variate Normal distribution

Multi-variate Normal distribution

X ~ mvnorm(u, X) requires the library "mvtnorm” in R, where
X=(X1,Xs,...,Xy) is a vector of possibly correlated random
variables. The mean vector
n= (,U17,u27"' ,/Ad)
and the variance-covariance matrix
Y= (O’i,j)f{jﬂ
is a symmetric positive definite matrix in which o; ; = Cov(X;, X;). Note

then Ojj = 0'/-2.
The joint pdf is

f(x) =

1 I5v—1 )
exp| —=(x—p)X '(x—
o T ( L= x- )
for x = (X4, Xo, ..., Xq) € RY
Each X; ~ norm(p;, o)
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Introduction to Probability and Statistics Multi-variate Normal distribution

Bi-variate Normal distribution

X ~ mvnorm(u, ¥) where X = (X, Xz) is a vector of possibly
correlated random variables. The mean vector

p= (p1, pr2)

and the variance-covariance matrix
2
Z — < 0-1 p01202 )
pPoO102 2
where p is the correlation coefficient. The joint pdf is

1 Xt — 112
f(x)= exp | —
() 2ro1o0y/1 — p? p( 2(1 - p?) [( 01 )

—2p(X1 0—1#1 )(Xza—2,u2) n (X20—2M2)2]>

for x = (x1, X2) € R?
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Bi-variate Normal distribution

Each X; ~ norm(p;, o;)

Xi| X2 = X2 ~ norm (/M + poy ke of(1 - Pz))

Xo| X1 = x1 ~ norm (Mz + pop Xk a5(1 — PZ))
Xi and X, are independent if and only if p =0

For any two constants a; and ao,
if (X1, X2) ~ mvnorm(u, X) then

ai Xy + a>Xo ~ norm ajuy + as o, \/a$012 + a%a's + 2ay aopo Uz)

If (X1, X2) ~ mvnorm(u,X) then Zy = Xi—m and
o

1 Xo — Xy —
Z = 2—H2 P 1 —

=2 o2 V1 —p2 01

norm(0, 1) random variables

are two independent
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Bi-variate Normal distribution

Xi ~ norm(u;,o;) for i = 1,2 doesn’t imply that the joint distribution is a
bi-variate normal distribution.
Counter example: Let X ~ norm(0,1) and let

y_[X x>0,
“ =X ifX<0

then Y has a norm(0, 1) distribution. But

2X if X >0,

X+Y:{o it X <0

which is not normally distributed in contradiction to the now-a-fact: the
sum of two jointly normal r.v.’s is a normal r.v.
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Limit Theorems

Tamer Oraby (University of Texas RGV) SC MATH 6382 Fall 2016 79/91



Introduction to Probability and Statistics Limit Theorems

Weak and Strong Law of Large Numbers

If X1, Xz, ... arei.id.rv's such that E|Xs| < oo and E(X;) = u, and
@ Weak Law of Large Numbers (WLLN)

for every € > 0, B
lim P(}X,, - M\ <e€)=1
n—oo

Then we state that by saying X, — p in probability.

@ Strong Law of Large Numbers (SLLN)
for every € > 0,

P(nIme{w €8S | Xn(w) —p| <e}) =1

Then we state that by saying X, — 1 almost surely (with
probability one).
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Introduction to Probability and Statistics Limit Theorems

Central Limit Theorem

If Xy, X, ... are i.i.d.r.v’s such that E(Xq) = pand V(X;) = 02 < oo,

Xn — 1
o/

Zn — Z in distribution

then

and X, = 137 . X;and Z, =

where Z ~ norm(0, 1)
That is,

t 1 2
lim Fz,(t) = (1) ::/ e zdx

n—oo — 00 27‘(‘0‘
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Basics of Statistics
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Point Estimation

If you model X ~ dist(61, 65, ...,0k). To fully determine the model you
sample (record) nindependent instances of X so as to use them to
estimate the parameters 61, 65, . . ., §x which we denote 81, 0s, ..., b.
You then use one of the following

@ Method of moments

@ Maximum likelihood method

@ Expectation/Maximization method
@ Bayesian method
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Method of moments

If you model X ~ dist(01, 0o, ...,0k) and selected a simple random
sample xq, Xo, ..., Xn
Set

n
E(X’):%Zx{forr:LZ,...,k
=1

and solve those k equations for 81, 05, . . . , bx.
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Maximum likelihood method

@ The likelihood (probability) L(x|6) or L(6) of observing that simple
random sample xq, Xo, . .., X, of i.i.d. measurements is

n
L(6) := L(X1, X2, ..., Xnl61,02, ..., 0k) = [ ] F(xil61,062, ..., 6k)
i=1
by independence

@ The maximum likelihood principle (due to Fisher) finds the MLE
01,05, ..., 60, that maximize the likelihood L(6) of observing those
observations xi, X, ..., Xp.

@ Some times we prefer to maximize
0(0) :=log(L(#)) = >_7_4 log(f(x;|60)) or minimize —£(6)
@ Invariance property: If d is an MLE of  then g(f) is an MLE of g(0)
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Bayesian method

The parameter 6 (while has a specific but unknown value) is modeled
as a random variable © due to the uncertainty about its value.* One
can use a prior belief about it 6 to assign wights fg(6) to its possible
values which might be just the uniform probability distribution if their is
no specific belief about it values and so all the values are dealt with as
being equally likely.

f 0 - L(OX1, . .., xn)fs(0)
OIX4 .- Xn f@ L(G‘X1 yooee 7Xn)f9(0)d9

or simply
posterior « likelihood x prior
and so

E(h(0)) = /e h(O) ..., (0)I6

Note: we don’t need to know the constant that makes L a joint pdf as it

will cancel with itself from the denominator
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Example
German Tank Problem

A number of Panther tanks were hunted down during WWII and their
serial numbers were recorded, say, 86,43,19,183,128,252.

The task is to know the size of the German tank production.

For more info. visit

https://en.wikipedia.org/wiki/German_tank_problem
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Basics of Statistics

Example

German Tank Problem

The following is an excerpt from
https://en.wikipedia.org/wiki/German_tank_problem

Specific data |[edit]

According to conventional Allied intelligence estimates, the Germans were producing around 1,400 tanks a month between June 1940 and September 1942. Applying the formula
below to the serial numbers of captured tanks, the number was calculated to be 256 a month. After the war, captured German production figures from the ministry of Albert Speer
showed the actual number to be 255 F1

Estimates for some specific months are given as:[7)

Month Statistical estimate Intelligence estimate German records

June 1940 169 1,000 122
June 1941 244 1,550 271
August 1942 327 1,550 342
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Introduction to Probability and Statistics Basics of Statistics

Example

German Tank Problem

Let serial numbers, generally, be x4, Xo, . . ., Xx were randomly sampled
from the population of production. They can be ordered to
X(1)s X(2)» - - - » X(k) @and let the total size of production be N which is a
parameter. Thus,
Ciy
K

form=k,....N

with

k
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Example

German Tank Problem

By the method of moments, set E(X(x)) = xx) where the average of
the observed maximum values is Xy itself since it is observed once,
which gives

< k+1
N'=Xw0—

which is equal to 252 x § — 1 = 293 tanks in the example.

—1
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End of Set 2
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