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Introduction to Probability and Statistics Basics of Probability

Probability Space

Random experiment
Sample space (S or Ω)
An event A,B, . . . ⊂ S
σ−algebra B
Probability measure P
Probability Space (S,B,P)

Partitioning events
{Ai ⊂ S : i = 1,2, . . . , k ;∪k

i=1Ai = S and Ai ∩ Aj = φ for all i 6= j}
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Introduction to Probability and Statistics Basics of Probability

Independence and Conditional Probability

Two events A and B are said to be mutually exclusive if and only if
A ∩ B = φ and then P(A ∩ B) = 0
Two events A and B are said to be independent if and only if
P(A ∩ B) = P(A)P(B)

The conditional probability of event A given event B is given by

P(A|B) =
P(A ∩ B)

P(B)

Thus, two events A and B are said to be independent if and only if
P(A|B) = P(A)
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Introduction to Probability and Statistics Basics of Probability

Bayes’ Theorem

Law of Total Probability: for a partition {Ai}ni=1, and any event B

P(B) =
n∑

i=1

P(B|Ai)P(Ai)

Bayes’ Theorem: for any j (j = 1,2, . . . ,n)

P(Aj |B) =
P(B|Aj)P(Aj)∑n
i=1 P(B|Ai)P(Ai)
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Introduction to Probability and Statistics Basics of Probability

Single Random Variables
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Introduction to Probability and Statistics Basics of Probability

Random Variables

Consider a probability Space (S,B,P)

A random variable (or r.v.) X : S → R is a measurable function
If range of a random variable X (RX ) is finitely∗ or infinitely∗∗

countable then X is called discrete random variable otherwise (if
uncountable) then it is called continuous

∗Has the same cardinality1 as a set {1, 2, . . . , n} for some n ∈ N.
∗∗Has the same cardinality as N.

1Two sets A and B have the same cardinality if there exists a bijective (injective+surjective) function f : A→ B.
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Introduction to Probability and Statistics Basics of Probability

Single Random Variables

A discrete probability mass function (pmf) is f such that

0 ≤ f (x) ≤ 1

∑
x∈SX

f (x) = 1

where SX = {x ∈ RX : f (x) > 0} is called support of X
A continuous probability density function (pdf) is f s.t.

0 ≤ f (x)

∫
R

f (x)dx = 1
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Introduction to Probability and Statistics Basics of Probability

Single Random Variables

The expected value of any function g(X ) is
If X is discrete r.v. then

E(g(X )) :=
∑

x∈SX

g(x)f (x)

If X is continuous r.v. then

E(g(X )) :=

∫
R

g(x)f (x)dx

If g(x) = I(x ∈ A) is the indicator function then

E(g(X )) = P(x ∈ A)

Tamer Oraby (University of Texas RGV) SC MATH 6382 Fall 2016 8 / 91



Introduction to Probability and Statistics Basics of Probability

Single Random Variables

The r th moment is E(X r ) and the first moment is called the mean µ(X )
or µX := E(X ) (if exists)
The variance is

V(X ) or VX := E((X − µX )2) = E(X 2)− µ2
X

The standard deviation is

σX =
√

V(X )

The moment generating function

MX (t) := E(exp(tX ))

for all t where E(exp(tX )) exits
It generates moments

E(X r ) =
d r MX (t)

dt r |t=0

for r = 1,2, . . .
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Introduction to Probability and Statistics Basics of Probability

Single Random Variables

The cumulative distribution function (cdf) is

F (x) := P(X ≤ x) = P({ω ∈ S : X (ω) ≤ x})
If X is discrete r.v. then

F (x) =
∑

t∈SX :t≤x

f (t), for all x ∈ R

and so
f (x) = F (x)− F (x−)

where x− is such that x− < x and x− ∈ SX
If X is continuous r.v. then

F (x) =

∫ x

−∞
f (t)dt , for all x ∈ R

and so
f (x) =

dF (x)

dx
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Introduction to Probability and Statistics Basics of Probability

Single Random Variables

The cdf F (x) is non-decreasing (F (x1) ≤ F (x2) whenever x1 < x2),
right continuous (limε↓0 F (x + ε) = F (x)), and limx→−∞ F (x) = 0 and
limx→∞ F (x) = 1.
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

The joint pmf or pdf of two random variables X and Y is defined to be
fX ,Y (x , y) such that fX ,Y (x , y) ≥ 0 and∑

x∈SX

∑
y∈SY

fX ,Y (x , y) = 1

if X and Y are discrete r.v.’s and∫
R

∫
R

fX ,Y (x , y)dxdy = 1

if X and Y are continuous r.v.’s
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

A joint cdf is defined as

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)

which is given by

FX ,Y (x , y) =
∑

(t ,s)∈SX ,Y :t≤x and s≤y

fX ,Y (t , s)

for all (x , y) ∈ R2, if X and Y are discrete r.v.’s and so

fX ,Y (x , y) = FX ,Y (x , y)− FX ,Y (x−, y)− FX ,Y (x , y−) + FX ,Y (x−, y−)

and

FX ,Y (x , y) =

∫ y

−∞

∫ x

−∞
fX ,Y (t , s)dtds

for all (x , y) ∈ R2, if X and Y are continuous r.v.’s and so

fX ,Y (x , y) =
∂2FX ,Y (x , y)

∂x∂y
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

Marginal pmf or pdf of X are

fX (x) =
∑

s∈SY

fX ,Y (x , s)

and
fX (x) =

∫
R

fX ,Y (x , s)ds

Marginal pmf or pdf of Y are

fY (y) =
∑
t∈SX

fX ,Y (t , y)

and
fY (y) =

∫
R

fX ,Y (t , y)dt

X and Y are said to be independent if and only if

fX ,Y (x , y) = fX (x)fY (y)
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

The conditional probability function of X given that Y = y is defined by

fX |Y =y (x) =
fX ,Y (x , y)

fY (y)

and the conditional probability function of Y given that X = x is defined
by

fY |X=x (y) =
fX ,Y (x , y)

fX (x)

P(X ∈ A|Y = y) =

∫
A

fX |Y =y (x)dx
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

X and Y are said to be independent if and only if

fX |Y =y (x) = fX (x)

for all x and y
Or if and only if

fY |X=x (y) = fY (y)

for all x and y
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

The expected value of g(X ,Y ) is

E(g(X ,Y )) =
∑

x∈SX

∑
y∈SY

g(x , y)fX ,Y (x , y)

if X and Y are discrete r.v.’s and

E(g(X ,Y )) =

∫
R

∫
R

g(x , y)fX ,Y (x , y)dxdy

if X and Y are continuous r.v.’s
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

The (r ,p)th moment is
µr ,p := E(X r Y p)

and µX := µ1,0 and µY := µ0,1 (if exist)
The variances are

V(X ) := µ2,0 − µ2
X

and
V(Y ) := µ0,2 − µ2

Y

The standard deviations are

σX =
√

V(X )

and
σY =

√
V(Y )
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

Two random variables X and Y are said to be identically distributed if
X and Y have the same cumulative probability distribution, FX ≡ FY .
Thus, µX = µY and σX = σY .
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

The co-variance of X and Y is

Cov(X ,Y ) = E[(X−µX )(Y−µY )] = E(XY )−E(X )E(Y ) = µ1,1−µ1,0 µ0,1

The correlation between X and Y is

ρ(X ,Y ) =
Cov(X ,Y )

σX σY

By Cauchy-Schwarz inequality |ρ(X ,Y )| ≤ 1
Conditional moments

E(g(X )|Y = y) =

∫
R

g(x)fX |Y =y (x)dx

and
E(g(Y )|X = x) =

∫
R

g(y)fY |X=x (y)dy
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

The joint moment generating function

MX ,Y (t , s) := E(exp(tX + sY ))

for all t , s where E(exp(tX + sY )) exits
It generates moments

E(X r Y p) =
∂r+pMX ,Y (t , s)

∂t r∂sp |t ,s=0

for r ,p = 1,2, . . .
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

If X and Y are said to be independent then

E(g1(X )g2(Y )) = E(g1(X ))E(g2(Y ))

If X and Y are independent then

E(XY ) = E(X )E(Y )

and so
Cov(X ,Y ) = 0

(and also ρ(X ,Y ) = 0)
If X and Y are independent then

MX+Y (t) = E(exp(t(X + Y ))) = MX (t)MY (t)
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

Let X and Y be two r.v.’s and a, b and c are real-valued constants
E(aX + b) = a E(X ) + b
V(aX + b) = a2 V(X )

E(aX + bY + c) = a E(X ) + b E(Y ) + c
V(aX + bY + c) = a2 V(X ) + b2 V(Y ) + 2a b Cov(X ,Y )

E(X ) = E(E(X |Y ))

V(X ) = E(V(X |Y )) + V(E(X |Y ))
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Introduction to Probability and Statistics Basics of Probability

Law of Total Probability and Bayes’ Theorem

Law of total probability:
For discrete r.v.’s

fY (y) =
∑

t

fY |X=t (y)fX (t)

For continuous r.v.’s

fY (y) =

∫
R

fY |X=t (y)fX (t)dt

Bayes’ Theorem:
For discrete r.v.’s

fX |Y =y (x) =
fY |X=x (y)fX (x)∑

t fY |X=t (y)fX (t)

For continuous r.v.’s

fX |Y =y (x) =
fY |X=x (y)fX (x)∫

R fY |X=t (y)fX (t)dt
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

It could be extended to several random variables X1,X2, . . . ,Xn for
n ≥ 1 with the joint pdf

fX1,X2,...,Xn (x1, x2, . . . , xn) ≥ 0

and ∫
R

∫
R
· · ·
∫
R

fX1,X2,...,Xn (x1, x2, . . . , xn) = 1

If a1,a2, . . . ,an are real-valued constants

E(a1X1 + a2X2 + · · ·+ anXn) = a1 E(X1) + a2 E(X2) + · · ·+ an E(Xn)
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Introduction to Probability and Statistics Basics of Probability

Multiple Random Variables

The r.v.’s X1,X2, . . . ,Xn are independent if and only if

fX1,X2,...,Xn (x1, x2, . . . , xn) = fX1(x1)fX2(x2) · · · fXn (xn)

If X1,X2, . . . ,Xn are independent r.v.’s then

V(a1X1 + a2X2 + · · ·+ anXn) = a2
1 V(X1) + a2

2 V(X2) + · · ·+ a2
n V(Xn)

and

Ma1X1+a2X2+···+anXn (t) = MX1(a1 t) ·MX2(a2 t) · · ·MXn (an t)

If {Xi}ni=1 is a family of independent identically distributed random
variables (i.i.d.r.v.) then

fX1,X2,...,Xn (x1, x2, . . . , xn) =
n∏

i=1

fX (xi)

and
MX1+X2+···+Xn (t) = [MX (t)]n
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Introduction to Probability and Statistics Some Discrete Random Variables

Some Discrete Random
Variables
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Introduction to Probability and Statistics Some Discrete Random Variables

Discrete Uniform Random Variable

X assumes one of the values x1, x2, . . . , xn with pmf

f (xi) =
1
n

for i = 1,2, . . . ,n
It has mean

µX =
1
n

n∑
i=1

xi = x̄

and variance

VX =
1
n

n∑
i=1

x2
i − x̄2 = x̄2 − x̄2
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Introduction to Probability and Statistics Some Discrete Random Variables

Bernoulli Random Variable

X ∼ Bernoulli(p) marks failure by 0 (off) and success by 1 (like off and
on OR miss or hit) with pmf

f (1) = p

(and of course f (0) = 1− p) It can be written as

f (x) = px (1− p)1−x

for x = 0,1
It has mean

µX = p

and variance
VX = p(1− p)
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Introduction to Probability and Statistics Some Discrete Random Variables

Binomial Random Variable

X ∼ binom(n,p) is the number of successes in n independent trials
with probability of success on each trial is p = P(S). It has pmf

f (x) = Cn
x px (1− p)n−x

for x = 0,1,2, . . . ,n
It has mean

µX = np

and variance
VX = np(1− p)

Bernoulli(p) is binom(1,p)

If {Xi}ni=1 is a family of independent identically distributed random
variables (i.i.d.r.v.) with Bernoulli(p) then

X = X1 + X2 + · · ·+ Xn ∼ Binom(n,p)
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Introduction to Probability and Statistics Some Discrete Random Variables

Multinomial Random Variable

X ∼ multinom(n,p1,p2, . . . ,pk ) is the vector (X1,X2, . . . ,Xk ) such that∑k
i=1 Xi = n of numbers of realization of the k partitioning events

({Ai}ki=1) in n independent trials with probabilities of occurrence on
each trial is pi = P(Ai) for i = 1,2, . . . , k and

∑k
i=1 pi = 1. It has joint

pmf
f (x1, x2, . . . , xk ) = Cn

x1,x2,...,xk
px1

1 · p
x2
2 · · · p

xk
k

for xi = 0,1,2, . . . ,n; i = 1,2, . . . ,n and
∑k

i=1 xi = n. It has mean

µXi = npi

and variance
VXi = npi(1− pi)

and co-variance
Cov(Xi ,Xj) = −npipj

for i 6= j
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Introduction to Probability and Statistics Some Discrete Random Variables

Multinomial Random Variable

Example: If a single student has probabilities to receive letter grades
A, . . . ,F are P(A) = .1,P(B) = .25,P(C) = .3,P(D) = .25,P(F ) = .1.
A realization of the experiment of observing letter grades of randomly
selected n = 6 students is for instance three students received A, one
student received B and two students received F, so x = (3,1,0,0,2).
The probability of that instance to occur is

f (3,1,0,0,2) =
6!

3! 1! 0! 0! 2!
.13.251.30.250.12

Tamer Oraby (University of Texas RGV) SC MATH 6382 Fall 2016 33 / 91



Introduction to Probability and Statistics Some Discrete Random Variables

Geometric Random Variable

X ∼ geom(p) is the number of independent trials till the 1st success
occurs, given that probability of success on a single trial is p = P(S).
Say in F ,F ,S, x = 3. It has pmf

f (x) = p(1− p)x−1

for x = 1,2, . . ..
It has mean

µX =
1
p

and variance
VX =

1− p
p2

The cdf is F (x) = P(X ≤ x) = 1− (1− p)bxc for all x ≥ 0 and zero
otherwise.
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Introduction to Probability and Statistics Some Discrete Random Variables

Geometric Random Variable

Memoryless Property

P(X > t + s|X > s) =
P(X > t + s and X > s)

P(X > s)

=
P(X > t + s)

P(X > s)

=
1− F (t + s)

1− F (s)

=
(1− p)bt+sc

(1− p)bsc

= (1− p)bt+sc−bsc

= (1− p)t if t is an integer
= P(X > t) if t is an integer
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Introduction to Probability and Statistics Some Discrete Random Variables

Geometric Random Variable

Another point of view:
Y ∼ geom(p) is the number of independent failures till the 1st

success occurs, given that probability of success on a single trial is
p = P(S). Say in F ,F ,S, y = 2. It has pmf

f (y) = p(1− p)y

for y = 0,1,2, . . .. Thus, Y = X − 1.
It has mean

µY = µX − 1 =
1
p
− 1 =

1− p
p

and variance
VY = VX =

1− p
p2

The cdf is F (y) = P(Y ≤ y) = 1− (1− p)by+1c for all y ≥ 0 and zero
otherwise.
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Introduction to Probability and Statistics Some Discrete Random Variables

Negative Binomial Random Variable

X ∼ nbinom(r ,p) is the number of independent trials till the rth

success occurs, given that probability of success on a single trial is
p = P(S). Say, with r = 3, in F ,F ,S,F ,S,F ,F ,F ,S, x = 9.
It has pmf

f (x) = Cx−1
r−1 pr (1− p)x−r

for x = r , r + 1, r + 2, . . .
It has mean

µX = r
1
p

and variance
VX = r

1− p
p2

geom(p) is nbinom(1,p)
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Introduction to Probability and Statistics Some Discrete Random Variables

Negative Binomial Random Variable

Another point of view:
Y ∼ nbinom(r ,p) is the number of independent failures till the rth

success occurs, given that probability of success on a single trial is
p = P(S). Say, with r = 3, in F ,F ,S,F ,S,F ,F ,F ,S, y = 6. That is,
Y = X − r .
It has pmf

f (y) = Cy+r−1
r−1 pr (1− p)y

for y = 0,1,2, . . .
It has mean

µY = µX − r = r
1
p
− r = r

1− p
p

and variance
VY = VX = r

1− p
p2
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Introduction to Probability and Statistics Some Discrete Random Variables

Negative Binomial Random Variable

If {Xi}ri=1 is a family of independent identically distributed random
variables (i.i.d.r.v.) with geom(p) then

X = X1 + X2 + · · ·+ Xr ∼ nbinom(r ,p)
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Introduction to Probability and Statistics Some Discrete Random Variables

Hypergeometric Random Variable

X ∼ hyper(n,M,N) is the number of items of a certain type found in a
random sample of size n selected without replacement from a
population of size N that contains a total of M items of that type.
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Introduction to Probability and Statistics Some Discrete Random Variables

Hypergeometric Random Variable

It has pmf

f (x) =
CM

x CN−M
n−x

CN
n

for x = max(0,n + M − N), . . . ,min(n,M)
It has mean

µX = n
M
N

and variance
VX = n

M
N

N −M
N

N − n
N − 1
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Introduction to Probability and Statistics Some Discrete Random Variables

Hypergeometric Random Variable

Binomial Approximation to Hypergeometric

If
M
N
→ p as N →∞ while n is fixed then the pmf of hyper(n,M,N)

approaches the pmf of binom(n,p) as N →∞.
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Introduction to Probability and Statistics Some Discrete Random Variables

Poisson Random Variable

X ∼ pois(λ) is the number of occurrences of a certain event that is
known to happen at a rate of λ per unit space or time.
It has pmf

f (x) =
e−λ λx

x!

for x = 0,1,2, . . .
It has mean equal to its variance

µX = VX = λ
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Introduction to Probability and Statistics Some Discrete Random Variables

Poisson Random Variable

Poisson Approximation to Binomial
If np → λ as n→∞ then the pmf of binom(n,p) approaches the pmf
of pois(λ) as n→∞.
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Introduction to Probability and Statistics Some Continuous Random Variables

Some Continuous Random
Variables
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Introduction to Probability and Statistics Some Continuous Random Variables

Continuous Uniform Random Variable

X ∼ unif (a,b) so as to P(X ∈ (x , x + h)) = P(X ∈ (y , y + h)) for all
x , y ,h such that (x , x + h) and (y , y + h) ⊂ (a,b)
It has a pdf given by

f (x) =
1

b − a
for a < x < b

where a < b, and mean

µX =
a + b

2
variance

VX =
(b − a)2

12
and cdf

F (x) =


0 if x < a,
x − a
b − a

if a ≤ x < b,

1 if x ≥ b.
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Introduction to Probability and Statistics Some Continuous Random Variables

Continuous Uniform Random Variable

If U ∼ unif (0,1), then X = a + (b − a) ∗ U ∼ unif (a,b).
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Introduction to Probability and Statistics Some Continuous Random Variables

Exponential Random Variable

X ∼ exp(λ) is the simplest way to stochastically model time till success
(an event) takes place, e.g., time between transitions made by a
Markov process or time between arrivals of customers to an ATM
It has a pdf given by

f (x) = λe−λx for x ≥ 0

where the rate λ > 0 and mean

µX =
1
λ

variance
VX =

1
λ2

and cdf

F (x) =

{
0 if x < 0,
1− e−λx if x ≥ 0.
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Introduction to Probability and Statistics Some Continuous Random Variables

Exponential Random Variable

The survival function is S(x) := P(X > x) = 1− F (x) = e−λx

whenever x ≥ 0 and a constant hazard function h(x) :=
f (x)

S(x)
= λ

Memoryless Property

P(X > t + s|X > s) =
P(X > t + s and X > s)

P(X > s)

=
P(X > t + s)

P(X > s)

=
S(t + s)

S(s)

=
e−λ(t+s)

e−λs

= e−λt = P(X > t)
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Exponential Random Variable

Recall that geom and exp distributions have also memoryless property.
Also, geom distribution models discrete time till success whereas exp
distribution models continuous time till success.
In addition, ...
If X ∼ geom(p), let p = λ/n and X = Y/n then as n→∞ the
probability distribution of Y approaches the probability distribution of
exp(λ)
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Double Exponential (Laplace) Random Variable

X ∼ doublex(µ, λ) requires the library "smoothmest" in R. It is two
exponential distributions glued back-to-back at a location µ.
It has a pdf given by

f (x) =
λ

2
e−λ|x−µ| for −∞ < x <∞

where the rate λ > 0 and mean

µX = µ

variance
VX =

2
λ2

If X ∼ doublex(µ, λ) then |X − µ| ∼ exp(λ)
If X ,Y ∼ exp(λ) are independent r.v.’s then X − Y ∼ doublex(0, λ)
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Gamma Random Variable

X ∼ gamma(r , λ) to the exponential distribution in continuous r.v.’s is
like the negative binomial distribution to the geometric distribution in
discrete r.v.’s. It models time as well.
It has a pdf given by

f (x) =
λr

Γ(r)
x r−1e−λx for x ≥ 0

where r , λ > 0 and the special function Γ(r) :=
∫∞

0 x r−1e−xdx is the
gamma function
It has a mean

µX =
r
λ

variance
VX =

r
λ2

exp(λ) is gamma(1, λ)
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Gamma Random Variable

Let r be an integer. If {Xi}ri=1 is a family of independent identically
distributed random variables (i.i.d.r.v.) with exp(λ) then

X = X1 + X2 + · · ·+ Xr ∼ gamma(r , λ)
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Gamma Random Variable

Remarks about the special function gamma function
Γ(r) :=

∫∞
0 x r−1e−xdx

Γ(r + 1) = rΓ(r) for r ∈ R− {0,−1,−2, . . .}

and if r is an integer then Γ(r + 1) = r ! with Γ(1) = 0! = 1

Γ(
1
2

) =
√
π

Γ(
3
2

) =
1
2
√
π

Γ(
5
2

) =
3
2

1
2
√
π
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Chi-square Random Variable

X ∼ chisq(ν) is gamma(
ν

2
, 1

2) where the degrees of freedom
ν = 1,2, . . .
It has a pdf given by

f (x) =
1

2
ν
2 Γ(ν2 )

x
ν
2−1e−x/2 for x ≥ 0

It has a mean
µX = ν

variance
VX = 2ν
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Chi-square Random Variable

If {Xi}ni=1 is a family of independent random variables with
Xi ∼ chisq(νi) then

n∑
i=1

Xi ∼ chisq

(
n∑

i=1

νi

)
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Weibull Random Variable

X ∼ weibull(κ, λ) is another way to stochastically model time till
success (an event) takes place.
It has a pdf given by

f (x) = κλκxκ−1e−(λx)κ for x ≥ 0

where the rate κ, λ > 0 and mean

µX =
Γ(1 + 1

κ)

λ

variance

VX =
1
λ2

(
Γ(1 +

2
κ

)−
(

Γ(1 +
1
κ

)

)2
)

and cdf

F (x) =

{
0 if x < 0,
1− e−(λx)κ if x ≥ 0.

Note: weibull(1, λ) is exp(λ)
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Beta Random Variable

X ∼ beta(α, β) is a famous model of a fraction and probability of
events, e.g., success.
It has a pdf given by

f (x) =
1

B(α, β)
xα−1(1− x)β−1 for 0 ≤ x ≤ 1

where α, β > 0 and the special function

B(α, β) :=
∫ 1

0 xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α + β)
is the beta function

It has a mean
µX =

α

α + β

variance
VX =

αβ

(α + β)2(α + β + 1)
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Beta Random Variable

unif (0,1) is beta(1,1)

If X ∼ gamma(α,1) and Y ∼ gamma(β,1) are two independent
r.v.’s, then

X
X + Y

∼ beta(α, β)
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Normal Random Variable

X ∼ norm(µ, σ) is used to model many phenomena and
measurements.
It has a pdf given by

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 for −∞ < x <∞

where −∞ < µ <∞ and σ > 0
It has a mean µX = µ and variance VX = σ2

Z = X−µ
σ ∼ norm(0,1) the standard normal distribution

The cdf of the standard normal is denoted by

Φ(t) :=

∫ t

−∞

1√
2πσ

e−
x2
2 dx
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Normal Random Variable

If X ∼ norm(µ, σ), and a,b are constant, then

aX + b ∼ norm(aµ+ b, |a|σ)

If {Xi}ni=1 is a family of independent random variables with
Xi ∼ norm(µi , σi) then

X =
n∑

i=1

aiXi ∼ norm

 n∑
i=1

aiµi ,

√√√√ n∑
i=1

a2
i σ

2
i


If {Xi}ni=1 is a family of independent random variables with
Xi ∼ norm(µi , σi) then

X̄ =
1
n

n∑
i=1

Xi ∼ norm

1
n

n∑
i=1

µi ,
1
n

√√√√ n∑
i=1

σ2
i


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Normal Random Variable

If {Xi}ni=1 is a family of independent identically distributed random
variables (i.i.d.r.v.) with Xi ∼ norm(µ, σ) then

X̄ =
1
n

n∑
i=1

Xi ∼ norm(µ,
σ√
n

)

Chi-square Random Variable (revisited) If {Zi}ni=1 is a family of
independent identically distributed random variables (i.i.d.r.v.) with
Zi ∼ norm(0,1) then

n∑
i=1

Z 2
i ∼ chisq(n)

Application: (n − 1)S2/σ2 ∼ chisq(n − 1) where
S2 = 1

n−1
∑n

i=1(Xi − X̄ )2 is the sample variance.
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Log-Normal Random Variable

If X ∼ norm(µ, σ) then eX ∼ lnorm(µ, σ). The log-normal r.v. is
sometimes used to model time till success or any specific event takes
place.
It has a pdf given by

f (x) =
1

x
√

2πσ
e−

(log x−µ)2

2σ2 for x > 0

where µ, σ > 0
It has a mean µX = eµ+σ2/2 and variance VX = e2µ+σ2

(eσ
2 − 1)
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Student T Random Variable

X ∼ t(ν) is a result of X =
Z√
χ2/ν

where Z ∼ norm(0,1) and

χ2 ∼ chisq(ν) are two independent r.v.’s
It has a pdf given by

f (x) =
Γ(ν+1

2 )

Γ(ν2 )

1√
νπ

1(
1 + x2

ν

) ν+1
2

for −∞ < x <∞

where ν = 1,2, . . .
It has a mean µX = 0 whenever ν > 1 and variance VX =

ν

ν − 2
whenever ν > 2
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Student T Random Variable

Application: If {Xi}ni=1 is a family of independent identically distributed
random variables (i.i.d.r.v.) with Xi ∼ norm(µ, σ) then

X̄ ∼ norm(µ,
σ√
n

)

and so, on one hand,

Z =
X̄ − µ
σ/
√

n
∼ norm(0,1)

and on the other hand

χ2 =
(n − 1)S2

σ2 ∼ chisq(n − 1)

X̄ and S2 are independent r.v.’s (proof is out of the scope of the
course) then

T =
Z√

χ2/(n − 1)
=

X̄ − µ
S/
√

n
∼ t(n − 1)
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Cauchy Random Variable

X ∼ cauchy(µ, σ) is a heavy tail distribution (α-stable law with α = 1)
It has a pdf given by

f (x) =
1
πσ

1

1 +

(
x − µ
σ

)2 for −∞ < x <∞

with σ > 0
The mean, variance and all the moments do not exist. But the cdf is
given by

F (x) =
1
2

+ arctan(
x − µ
σ

) for −∞ < x <∞

The Standard Cauchy cauchy(0,1) is t(1)
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F Random Variable

X ∼ f (ν1, ν2) is a result of X =
χ2

1/ν1

χ2
2/ν2

where χ2
1 ∼ chisq(ν1) and

χ2
2 ∼ chisq(ν2) are independent

It has a pdf given by

f (x) =
1

B(ν1
2 ,

ν2
2 )

(
ν1

ν2

) ν1
2 x

ν1
2 −1(

1 + ν1
ν2

x
) ν1+ν2

2

for x > 0

where ν1, ν2 = 1,2, . . .
It has a mean µX =

ν2

ν2 − 2
whenever ν2 > 2 and variance

VX =
2ν2

2(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4)
whenever ν2 > 4

Tamer Oraby (University of Texas RGV) SC MATH 6382 Fall 2016 67 / 91



Introduction to Probability and Statistics Some Continuous Random Variables

F Random Variable

Application: If {Xi}ni=1 and {Yi}mi=1 are two independent families of
independent identically distributed random variables (i.i.d.r.v.) with
Xi ∼ norm(µX , σX ) and Yj ∼ norm(µY , σY ) then

χ2
1 =

(n − 1)S2
X

σ2
X

∼ chisq(n − 1)

and

χ2
2 =

(m − 1)S2
Y

σ2
Y

∼ chisq(m − 1)

are independent and thus

F =
S2

X/σ
2
X

S2
Y/σ

2
Y
∼ f (n − 1,m − 1)
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Discrete mixture of probability distributions

Let X1,X2, . . . ,XK be r.v. with Xi ∼ FXi (·|θi)
A discrete-mixture distribution of X is

FX (·|θ) = p1FX1(·|θ1) + p2FX2(·|θ2) + · · ·+ pK FXK (·|θK )

where pi > 0 and p1 + p2 + · · ·+ pK = 1
Example: Flip a coin, if it lands up head use norm(0,1) otherwise use
norm(0,2), then the resulting r.v. X has a cdf

FX (x) =
1
2

Φ(x) +
1
2

Φ(
x
2

)

Tamer Oraby (University of Texas RGV) SC MATH 6382 Fall 2016 69 / 91



Introduction to Probability and Statistics Some Continuous Random Variables

Continuous mixture of probability distributions

Let Y be r.v. with Y ∼ FY (·|θ, λ1) and Θ ∼ FΘ(θ|λ2)
A continuous-mixture distribution of X is

FX (·|λ) =

∫
R

FY (·|θ, λ1) fΘ(θ|λ2) dθ

where fΘ(θ|λ2) > 0 and
∫
R fΘ(θ|λ2) dθ = 1
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Continuous mixture of probability distributions

Example: (Gamma-Poisson mixture)
Let Y ∼ pois(λ) and λ ∼ gamma(r , β). It is known analytically that the
Gamma-Poisson mixture follows nbiom(r , β

1+β ), since for each
x = 0,1, . . .

fX (x |r , β) =

∫
R

fY (x |λ) fΛ(λ|r , β) dλ

=

∫ ∞
0

λx

x!
e−λ

βr

Γ(r)
λr−1e−βλ dλ

=
βr

x!Γ(r)

∫ ∞
0

λx+r−1e−(1+β)λ dλ

=
Γ(x + r)

x!Γ(r)

βr

(1 + β)x+r

=
Γ(x + r)

x!Γ(r)

(
β

1 + β

)r ( 1
1 + β

)x
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Continuous mixture of probability distributions

Example: (Gamma-Poisson mixture)
If r is an integer, then for each x = 0,1, . . .

fX (x |r , β) =
Γ(x + r)

x!Γ(r)

(
β

1 + β

)r ( 1
1 + β

)x

=
(x + r − 1)!

x!(r − 1)!

(
β

1 + β

)r ( 1
1 + β

)x

which is nbiom(r , β
1+β ). If r > 0 a real-number the it is called

polya(r , µ) with β = µ
r which then has mean µ and variance µ+ 1

r µ
2.

The parameter r (or its reciprocal) is called clustering, aggregation,
heterogeneity, or over-dispersion parameter. As r →∞, polya(r , µ)
approaches pois(µ).
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Map

Source: https://en.wikipedia.org/wiki/Relationships_among_probability_distributions
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Multi-variate Normal
distribution
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Multi-variate Normal distribution

X ∼ mvnorm(µ,Σ) requires the library "mvtnorm" in R, where
X = (X1,X2, . . . ,Xd ) is a vector of possibly correlated random
variables. The mean vector

µ = (µ1, µ2, . . . , µd )

and the variance-covariance matrix

Σ = (σi,j)
d
i,j=1

is a symmetric positive definite matrix in which σi,j = Cov(Xi ,Xj). Note
then σi,i = σ2

i .
The joint pdf is

f (x) =
1

(2π)d/2
√

det(Σ)
exp

(
−1

2
(x − µ)′Σ−1(x − µ)

)
for x = (x1, x2, . . . , xd ) ∈ Rd

Each Xi ∼ norm(µi , σi)
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Bi-variate Normal distribution

X ∼ mvnorm(µ,Σ) where X = (X1,X2) is a vector of possibly
correlated random variables. The mean vector

µ = (µ1, µ2)

and the variance-covariance matrix

Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
where ρ is the correlation coefficient. The joint pdf is

f (x) =
1

2πσ1σ2
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
(
x1 − µ1

σ1
)2

−2ρ(
x1 − µ1

σ1
)(

x2 − µ2

σ2
) + (

x2 − µ2

σ2
)2
])

for x = (x1, x2) ∈ R2
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Bi-variate Normal distribution

Each Xi ∼ norm(µi , σi)

X1|X2 = x2 ∼ norm
(
µ1 + ρσ1

x2−µ2
σ2

, σ2
1(1− ρ2)

)
X2|X1 = x1 ∼ norm

(
µ2 + ρσ2

x1−µ1
σ1

, σ2
2(1− ρ2)

)
X1 and X2 are independent if and only if ρ = 0
For any two constants a1 and a2,
if (X1,X2) ∼ mvnorm(µ,Σ) then

a1X1 + a2X2 ∼ norm
(

a1µ1 + a2µ2,
√

a2
1σ

2
1 + a2

2σ
2
2 + 2a1a2ρσ1σ2

)
If (X1,X2) ∼ mvnorm(µ,Σ) then Z1 =

X1 − µ1

σ1
and

Z2 =
1√

1− ρ2

X2 − µ2

σ2
− ρ√

1− ρ2

X1 − µ1

σ1
are two independent

norm(0,1) random variables
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Bi-variate Normal distribution

Xi ∼ norm(µi , σi) for i = 1,2 doesn’t imply that the joint distribution is a
bi-variate normal distribution.
Counter example: Let X ∼ norm(0,1) and let

Y =

{
X if X > 0,
−X if X < 0

then Y has a norm(0,1) distribution. But

X + Y =

{
2X if X > 0,
0 if X < 0

which is not normally distributed in contradiction to the now-a-fact: the
sum of two jointly normal r.v.’s is a normal r.v.

Tamer Oraby (University of Texas RGV) SC MATH 6382 Fall 2016 78 / 91



Introduction to Probability and Statistics Limit Theorems

Limit Theorems
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Weak and Strong Law of Large Numbers

If X1,X2, . . . are i.i.d.r.v.’s such that E |X1| <∞ and E(X1) = µ, and
X̄n = 1

n
∑n

i=1 Xi then
Weak Law of Large Numbers (WLLN)
for every ε > 0,

lim
n→∞

P(
∣∣X̄n − µ

∣∣ < ε) = 1

Then we state that by saying X̄n → µ in probability.
Strong Law of Large Numbers (SLLN)
for every ε > 0,

P( lim
n→∞
{ω ∈ S :

∣∣X̄n(ω)− µ
∣∣ < ε}) = 1

Then we state that by saying X̄n → µ almost surely (with
probability one).
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Central Limit Theorem

If X1,X2, . . . are i.i.d.r.v.’s such that E(X1) = µ and V(X1) = σ2 <∞,

and X̄n = 1
n
∑n

i=1 Xi and Zn =
X̄n − µ
σ/
√

n
then

Zn → Z in distribution

where Z ∼ norm(0,1)
That is,

lim
n→∞

FZn (t) = Φ(t) :=

∫ t

−∞

1√
2πσ

e−
x2
2 dx
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Basics of Statistics
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Point Estimation

If you model X ∼ dist(θ1, θ2, . . . , θk ). To fully determine the model you
sample (record) n independent instances of X so as to use them to
estimate the parameters θ1, θ2, . . . , θk which we denote θ̂1, θ̂2, . . . , θ̂k .
You then use one of the following

Method of moments
Maximum likelihood method
Expectation/Maximization method
Bayesian method
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Method of moments

If you model X ∼ dist(θ1, θ2, . . . , θk ) and selected a simple random
sample x1, x2, . . . , xn
Set

E(X r ) =
1
n

n∑
i=1

x r
i for r = 1,2, . . . , k

and solve those k equations for θ̂1, θ̂2, . . . , θ̂k .
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Maximum likelihood method

The likelihood (probability) L(x |θ) or L(θ) of observing that simple
random sample x1, x2, . . . , xn of i.i.d. measurements is

L(θ) := L(x1, x2, . . . , xn|θ1, θ2, . . . , θk ) =
n∏

i=1

f (xi |θ1, θ2, . . . , θk )

by independence
The maximum likelihood principle (due to Fisher) finds the MLE
θ̂1, θ̂2, . . . , θ̂k that maximize the likelihood L(θ) of observing those
observations x1, x2, . . . , xn.
Some times we prefer to maximize
`(θ) := log(L(θ)) =

∑n
i=1 log(f (xi |θ)) or minimize −`(θ)

Invariance property: If θ̂ is an MLE of θ then g(θ̂) is an MLE of g(θ)
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Bayesian method

The parameter θ (while has a specific but unknown value) is modeled
as a random variable Θ due to the uncertainty about its value.∗ One
can use a prior belief about it θ to assign wights fΘ(θ) to its possible
values which might be just the uniform probability distribution if their is
no specific belief about it values and so all the values are dealt with as
being equally likely.

fθ|x1,...,xn (θ) =
L(θ|x1, . . . , xn)fθ(θ)∫

Θ L(θ|x1, . . . , xn)fθ(θ)dθ
or simply

posterior ∝ likelihood × prior

and so
E(h(θ)) =

∫
Θ

h(θ)fθ|x1,...,xn (θ)dθ

Note: we don’t need to know the constant that makes L a joint pdf as it
will cancel with itself from the denominator

∗In the frequentist approach –e.g., Likelihood Method– it is assumed to be fixed non-random.
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Example
German Tank Problem

A number of Panther tanks were hunted down during WWII and their
serial numbers were recorded, say, 86,43,19,183,128,252.
The task is to know the size of the German tank production.
For more info. visit
https://en.wikipedia.org/wiki/German_tank_problem
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Example
German Tank Problem

The following is an excerpt from
https://en.wikipedia.org/wiki/German_tank_problem
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Example
German Tank Problem

Let serial numbers, generally, be x1, x2, . . . , xk were randomly sampled
from the population of production. They can be ordered to
x(1), x(2), . . . , x(k) and let the total size of production be N which is a
parameter. Thus,

P(X(k) = m|N, k) =
Cm−1

k−1

CN
k

for m = k , . . . ,N

with
E(X(k)) =

k
k + 1

(N + 1)
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Example
German Tank Problem

By the method of moments, set E(X(k)) = x(k) where the average of
the observed maximum values is x(k) itself since it is observed once,
which gives

N̂ = x(k)
k + 1

k
− 1

which is equal to 252× 7
6 − 1 = 293 tanks in the example.
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End of Set 2
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