MECE 3321: MECHANICS OF SOLIDS CHAPTER 5 SAMANTHA RAMIREZ

TORSION DIAGRAM				
 A torsion dia at any point a 	ram is a graphica ong a shaft.	l representation o	of the internal result	ant torque
Torque (Nm or Ibin)				
			[Distance m or in)

PROBLEM F5-8

• The gear motor can develop 3 hp when it turns at 150 rev/min. If the allowable shear stress for the shaft is τ_{allow} =12 ksi, determine the smallest diameter of the shaft to the nearest 1/8 in that can be used.

PROBLEM 5-31

The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled to a motor at C, which delivers 3 kW of power to the shaft while it is turning at 50 rev/s. If gears A and B remove 1 kW and 2 kW, respectively, determine the maximum shear stress developed in the shaft within regions AB and BC. The shaft is free to turn in its support bearing D and E.

ANGLE OF TWIST

 Assuming a homogeneous material with a constant cross-sectional area and applied torque,

$$\phi = \frac{TL}{JG}$$

- T: the internal torque at the arbitrary position x
- J: the shaft's polar moment of inertia
- G: the shear modulus of elasticity or the modulus of rigidity

PROBLEM 5-51

• The 60 mm diameter shaft is made of 6061-T6 aluminum having an allowable shear stress of τ_{allow} =80 MPa. Determine the maximum allowable torque T. Also, find the corresponding angle of twist of disk A relative to disk C.

1.20 m

R

1.20 m

PROBLEM 5-86/87

The two shafts are made of A-36 steel. Each has a diameter of 25 mm and they are connected using the gears fixed to their ends. Their other ends are attached to fixed supports at A and B. They are also supported by journal bearings at C and D, which allow free rotation of the shafts along their axes. If a torque of 500 Nm is applied to the gear at E as shown, determine the reactions at A and B. Determine the rotation of the gear at E.

