MECE 3321: Mechanics of Solids Chapter 12

SAMANTHA RAMIREZ

The Elastic Curve

The deflection diagram of the longitudinal axis that passes through the centroid of each cross-sectional area of a beam.

- Supports that apply a moment restrict displacement as well as rotation or slope.
- Supports that apply a force, restrict displacement.

[Diagram showing the elastic curve with points P]
To Find the Elastic Curve:

1. Draw the moment diagram
2. Apply the restriction at the connections
3. Take into account the curvature and determine the inflection points where M is zero.

Sign Convention

Positive internal moment concave upwards

Negative internal moment concave downwards

Example 1

Note: Point C is an inflection point (change of curvature).

It is necessary to determine ΔA and ΔE to find the maximum deflection of the beam.
Example 2

Note the inflection point (change of curvature) occurs when $M=0$.

It is necessary to determine ΔC and ΔD to find the maximum deflection of the beam.

Moment-Curvature Relationship

For the element dx, O' is the center of curvature and ρ is the radius of curvature.
Radius of Curvature

Combining Hooke’s Law and the Flexure Formula,

\[
\frac{1}{\rho} = \frac{M}{EI}
\]

where

\(\rho\): the radius of curvature at the point on the elastic curve (sign depends on M)

\(M\): the internal moment in the beam at the point

\(E\): the material’s modulus of elasticity

\(I\): the beam’s moment of inertia about the neutral axis

“Flexural Rigidity” (EI) is always positive.

Slope & Displacement by Integration

From Calculus, the radius of curvature is defined where \(v=f(x)\)

\[
\frac{1}{\rho} = \frac{d^2v}{dx^2} \left[1 + \left(\frac{dv}{dx}\right)^2\right]^{3/2}
\]

In many engineering applications, \(\frac{dv}{dx} \ll 1\)

\[
\frac{1}{\rho} = \frac{d^2v}{dx^2}
\]

Apply relation between radius of curvature and flexure formula

\[
\frac{M}{EI} = \frac{d^2v}{dx^2}
\]
Slope & Displacement by Integration

Equation (1) \[M(x) = EI \frac{d^2v}{dx^2} \]

Integrating the bending moment diagram twice will give you the deflection at any point along the beam.

Recall the relationship between a distributed load, shear force, and bending moment:

\[\frac{dM}{dx} = V \]
\[\frac{dv}{dx} = -w(x) \]

Thus,

Equation (2) \[V(x) = EI \frac{d^3v}{dx^3} \]
Equation (3) \[-w(x) = EI \frac{d^4v}{dx^4} \]

Note: Equations 1, 2, & 3 are only valid when EI is constant along the beam.

Discontinuities & Sign Convention

Discontinuities occur at the end or start of distributed loadings, concentrated forces, and concentrated moments.

Recall, a positive sign convention for beam bending will cause the beam to “hold water”
Boundary Conditions

Boundary conditions are required to determine the constants of integration of internal forces and displacement.

Continuity Conditions

Continuity conditions are also used to determine constants of integration of the displacement and slope curves.

Continuity Equations

\[v_1(a) = v_2(a) \]

\[\theta_1(a) = -\theta_2(a) \]
Problem 12-4

Determine the equations of the elastic curve using the \(x_1 \) and \(x_2 \) coordinates. EI is constant.

Method of Superposition

Superposition is used to determine the slope or deflection at certain points of a beam due to several loads whose effect is first separately computed and then added to find total values.

<table>
<thead>
<tr>
<th>Simply Supported Beam Slopes and Deflections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
</tr>
<tr>
<td>v</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>v</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

\[\theta = \theta_1 + \theta_2 \]
Problem 12-89
The W8x24 simply supported beam is made of A-36 steel and is subjected to the loading shown. Determine the deflection at C and the slopes of A and B.

Example 2
The C180x22 beam is made of 2014-T6 aluminum and subjected to the loadings shown. Determine the deflection at C and the slope of A and B.
Example 3

The W12x26 beam is made of Gray ASTM 20 cast iron and is subjected to the loadings shown. Determine the deflection and slope at the end of the beam (point B).

Example 4

Determine the reactions at the fixed support A and the roller B. E = 200 GPa, I = 65E-6 m⁴
Problem 12-121

Determine the deflection at the end B of the clamped A-36 steel strip. The spring has a stiffness of $k = 2 \text{ N/mm}$. The strip is 5 mm wide and 10 mm high. Also, draw the shear and moment diagrams for the strip.

Problem 12-123

Determine the reactions at support C. EI is the same for both beams.