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Chapter 8: 
Frequency Domain Analysis
Samantha Ramirez

Preview Questions

1. What is the steady-state response of a linear system excited 
by a cyclic or oscillatory input?

2. How does one characterize the response at steady-state 
when the system is exposed to a consistent oscillatory 
input?

3. Is the time domain still appropriate for conducting our 
analyses of such systems?

4. What tools are useful for examining such dynamics?
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Objectives and Outcomes
Objectives
1. To analyze mechanical vibration systems including transmission 

and modal analysis,
2. To be able to analyze basic AC circuits, and
3. To conduct frequency response analysis.

Outcomes: You will be able to
1. determine the steady-state response of a linear time-invariant 

system to a sinusoidal input,
2. calculate the force or motion transmitted by a vibration isolation 

system,
3. conduct basic modal analysis of free vibration systems,
4. conduct basic analyses of AC circuits,
5. identify the characteristics for frequency responses of first- and 

second-order systems, and
6. compose Bode plots that visualize the frequency response of an 

oscillatory system.

5.2.1 Complex Numbers

𝑧 = 𝑥 + 𝑗𝑦

𝑧 = 𝑥2 + 𝑦2

𝜃 = tan−1
𝑦

𝑥

ҧ𝑧 = 𝑥 − 𝑗𝑦
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5.2.2 Euler’s Theorem

Refer to the textbook (§5.2.2 for derivation of theorem and 
identities)

Euler’s Theorem 𝑒−𝑗𝜃 = cos𝜃 − 𝑗 sin 𝜃

Cosine Identity cos 𝜃 =
𝑒𝑗𝜃 + 𝑒−𝑗𝜃

2

Sine Identity sin 𝜃 =
𝑒𝑗𝜃 − 𝑒−𝑗𝜃

2𝑗

5.2.3 Complex Algebra

𝑧 = 𝑥 + 𝑗𝑦 and w = u + jv

𝑧 + 𝑤 = 𝑥 + 𝑢 + 𝑗(𝑦 + 𝑣)

𝑎𝑧 = 𝑎𝑥 + 𝑗𝑎𝑦

𝑧 − 𝑤 = 𝑥 − 𝑢 + 𝑗(𝑦 − 𝑣)

𝑧𝑤 = 𝑥𝑢 − 𝑦𝑣 + 𝑗(𝑥𝑣 + 𝑦𝑢)

𝑧𝑤 = 𝑧 𝑤 ∠(𝜃 + 𝜙)

𝑗𝑧 = −𝑦 + 𝑗𝑥 = 𝑧 ∠(0 + 90°)

𝑧

𝑤
=

𝑧

𝑤
∠ 𝜃 − 𝜙 =

𝑥𝑢 + 𝑦𝑣

𝑢2 + 𝑦2
+ 𝑗

𝑦𝑢 − 𝑥𝑣

𝑢2 + 𝑦2

𝑧

𝑗
= 𝑦 − 𝑗𝑥 = 𝑧 ∠(𝜃 − 90°)

𝑧𝑛 = 𝑧 ∠𝜃 𝑛 = 𝑧 𝑛∠(𝑛𝜃)

𝑧1/𝑛 = 𝑧 ∠𝜃 1/𝑛 = 𝑧 1/𝑛∠(𝜃/𝑛)
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Complex Variables and Functions

Transfer function

Ratio of polynomials in the s-domain

Zeroes

Roots of the numerator

Poles

Roots of the denominator

𝑠 = 𝜎 + 𝑗𝜔

𝐺 𝑠 =
𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2 …(𝑠 + 𝑧𝑚)

𝑠 + 𝑝1 𝑠 + 𝑝2 …(𝑠 + 𝑝𝑛)

8.2 Properties of Sinusoids

Sinusoids of different 
amplitude

Period of 
oscillation

Sinusoids of different 
phase angle
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The Sinusoidal Transfer Function

Partial fraction of sinusoidal response

𝑦(𝑠)

𝑢(𝑠)
= 𝐺 𝑠 =

𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2 …(𝑠 + 𝑧𝑚)

𝑠 + 𝑝1 𝑠 + 𝑝2 …(𝑠 + 𝑝𝑛)

𝑦 𝑠 = 𝐺 𝑠
𝐴𝜔

𝑠2+𝜔2 =
𝑎

𝑠+𝑗𝜔
+

ത𝑎

𝑠−𝑗𝜔
+

𝑏1

𝑠+𝑝1
+

𝑏2

𝑠+𝑝2
+…+

𝑏𝑛

𝑠+𝑝𝑛

If the response is 
stable, these terms 
lead to decaying 
exponentials and 
decaying sinusoids.

𝑦𝑠𝑠 𝑡 = 𝑎𝑒−𝑗𝜔𝑡 + ത𝑎𝑒𝑗𝜔𝑡

𝑎 = −
𝐴

2𝑗
𝐺(−𝑗𝜔)

ത𝑎 =
𝐴

2𝑗
𝐺(𝑗𝜔)

See textbook for 
derivation of these 
coefficients

𝑦𝑠𝑠 𝑡 = 𝑎𝑒−𝑗𝜔𝑡 + ത𝑎𝑒𝑗𝜔𝑡 = −
𝐴

2𝑗
𝐺 𝑗𝜔 𝑒−𝑗𝜙𝑒−𝑗𝜔𝑡 +

𝐴

2𝑗
𝐺 𝑗𝜔 𝑒𝑗𝜙𝑒𝑗𝜔𝑡

= 𝐺 𝑗𝜔 𝐴
𝑒𝑗(𝜔𝑡+𝜙) − 𝑒−𝑗(𝜔𝑡+𝜙)

2𝑗
= 𝐺 𝑗𝜔 𝐴𝑠𝑖𝑛(𝜔𝑡 + 𝜙)

= 𝑌𝑠𝑖𝑛(𝜔𝑡 + 𝜙)

We use 
Euler’s 
Theorem

Magnitude and Phase Angle

𝑦𝑠𝑠 𝑡 = 𝐺 𝑗𝜔 𝐴𝑠𝑖𝑛(𝜔𝑡 + 𝜙)

= 𝑌 𝑠𝑖𝑛(𝜔𝑡 + 𝜙)

𝒀 = 𝑮 𝒋𝝎 𝑨 and       𝝓 = ∠𝑮(𝒋𝝎)

𝐺 𝑗𝜔 =
𝑦(𝑗𝜔)

𝑢(𝑗𝜔)
= 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑜 𝑖𝑛𝑝𝑢𝑡 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑟𝑎𝑡𝑖𝑜

∠𝐺 𝑗𝜔 = ∠
𝑦(𝑗𝜔)

𝑢(𝑗𝜔)
= tan−1

ℑ 𝐺(𝑗𝜔)

ℜ 𝐺(𝑗𝜔)

= tan−1
ℑ 𝑦(𝑗𝜔)

ℜ 𝑦(𝑗𝜔)
− tan−1

ℑ 𝑢(𝑗𝜔)

ℜ 𝑢(𝑗𝜔)

= 𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑖𝑛𝑝𝑢𝑡
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Example 8.1

Find the steady-state 
response to a sinusoidal input 
displacement of the form 
𝑦𝑟𝑜𝑎𝑑 = 𝐴sin𝜔𝑡 𝑚/𝑠
where A=0.03 m and ω=10 
rad/s. The system parameters 
for m, b, and k are 500 kg, 
8000 N-s/m, and 34,000 N/m, 
respectively. The transfer 
function is given below.

𝑦(𝑠)

𝑦𝑟𝑜𝑎𝑑(𝑠)
= 𝐺 𝑠 =

𝑏𝑠 + 𝑘

𝑚𝑠2 + 𝑏𝑠 + 𝑘

Complex Operations in MATLAB

Function Description

abs(X) Returns magnitude(s) of complex element(s) in X

angle(X) Returns phase angle(s) of complex element(s) in X

conj(X) Returns complex conjugate(s) of complex element(s) in X

imag(X) Returns imaginary part(s) of complex element(s) in X

real(X) Returns real part(s) of complex element(s) in X
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Example 8.2

>> m=500; b=8000; k=34000; w=10; 
A=0.03;

>> G=(k+j*b*w)/((k-m*w^2)+j*b*w)

G =   0.8798 - 0.6010i

>> abs(G)

ans =    1.0655

>> angle(G)

ans =   -0.5993

>> num=k+j*b*w;
>> den=(k-m*w^2)+j*b*w

den =  -1.6000e+04 + 8.0000e+04i

>> G=(num*conj(den))/(den*conj(den))

G =   0.8798 - 0.6010i

>> magnitude=abs(num)/abs(den)

magnitude =    1.0655

>> phase=angle(num)-angle(den)

phase =   -0.5993

>> magnitude=sqrt(real(G)^2+imag(G)^2)

magnitude =    1.0655

>> phase=atan(imag(G)/real(G))

phase =   -0.5993

Mechanical 
Vibration
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Transmissibility

In vibration isolation systems, transmissibility is the amplitude 
ratio of the transmitted force (displacement) to the excitation 
force (displacement). 

𝑇𝑅 =
𝐹𝑜𝑢𝑡(𝑗𝜔)

𝐹𝑖𝑛(𝑗𝜔)

Example 8.3

Find the transmissibility if the foundation is forced by an excitation 
𝐹𝑖𝑛 𝑡 = 5𝑠𝑖𝑛2𝑡 𝑁. The first mass, damping constant, spring 
stiffness, and second mass are 2 kg, 2 N-s/m, 5 N/m, and 1 kg, 
respectively. 
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Motion Transmissibility
Example 8.1

Input

Output Response

Amplitude ratio of output to input

Motion Transmissibility

𝑦𝑟𝑜𝑎𝑑 = 0.03 sin 10𝑡 𝑚/𝑠

𝑦𝑠𝑠 𝑡 = 0.031965𝑠𝑖𝑛 10𝑡 − 0.59927 𝑚/𝑠

𝐺(𝑗𝜔) =
0.031965

0.03
= 1.0655

𝑇𝑅 =
𝑦(𝑗𝜔)

𝑦𝑟𝑜𝑎𝑑(𝑗𝜔)
= 1.0655

𝑦(𝑠)

𝑦𝑟𝑜𝑎𝑑(𝑠)
= 𝐺 𝑠 =

𝑏𝑠 + 𝑘

𝑚𝑠2 + 𝑏𝑠 + 𝑘

𝐺 𝑗𝜔 =
𝑦(𝑗𝜔)

𝑦𝑟𝑜𝑎𝑑(𝑗𝜔)
=

𝑘 + 𝑏𝑗𝜔

𝑚 𝑗𝜔 2 + 𝑏𝑗𝜔 + 𝑘

Resonant Frequency
Occurs when a system’s natural frequency is equal to the input 
frequency. 

Recall, from the prototypical second-order system:

Normalized frequency is the input sinusoidal frequency divided 
by the natural frequency

Resonant frequency for a prototypical second-order system

𝜔𝑛 =
𝑘

𝑚
𝜁 =

𝑏

2 𝑘𝑚

𝜔𝑟 = 𝜔𝑛 1 − 2𝜁2

𝜔

𝜔𝑛
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The Quarter-Car Suspension

Rewrite the motion transmissibility in 
terms of the damping ratio and 
normalized frequency.

𝑇𝑅 =
𝑘2 + 𝑏𝜔 2

𝑘 − 𝑚𝜔2 2 + 𝑏𝜔 2

Resonance for the Quarter-Car 
Suspension

𝜁 =
𝑏

2 𝑘𝑚
= 0.97 𝜔𝑛 =

𝑘

𝑚
= 8.25 𝑟𝑎𝑑/𝑠
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Modal Analysis of Free Vibration

Vector

Vector in set form

Matrix referenced 
as tensor

Set of second-order, free, undamped vibration equations

Set & Tensor Notation
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Recognizing that

and

we can reformulate the system 
of first-order differential equations as

Converting System of First-Order D.E. 
to System of Second-Order D.E.

Matrix Form of the Vibration 
Equations
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Frequencies and Modes of 
Vibration

In free 
vibration we 

assume

Plug into

𝑀 ሷ𝑥 + 𝐾 𝑥 = 0

The eigenvalues are the squares of the 
frequencies of vibration and the 
eigenvectors are the mode shapes.

Example 8.4
Find the natural frequencies of 
vibration and the respective mode 
shapes for the two DOF structure 
model and an axially vibrating beam 
where 𝑘1 = 2𝑘2 𝑎𝑛𝑑 𝑚1 = 2𝑚2. For 
simplicity, 𝑘2 = 𝑘 𝑎𝑛𝑑 𝑚2 = 𝑚.
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Example 8.4

Eigenvector 1 Eigenvector 2

𝑑𝑒𝑡 𝜔2 𝐼 − 𝑀 −1 𝐾 = 0

Eigenvalues


