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Chapter 7: 
Time Domain Analysis
Samantha Ramirez

Preview Questions

How do the system parameters affect the response?

How are the parameters linked to the system poles or 
eigenvalues?

How can Laplace transforms and transfer functions be used to 
analyze the time domain response of a system?

How can linear algebra and the state-space model be used to 
analyze the time domain response?
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Objective and Outcomes

Objectives

To understand first-order responses

To understand second-order responses

To understand how higher-order responses are composed 
from first- and second-order terms, and

To understand the relation between the system poles or 
eigenvalues and the overall system response.

Outcomes

Identify the characteristics of first-order responses

Identify the characteristics of second-order responses

Identify the dominant poles of higher-order systems,

Use the transfer function or state-space representation to 
determine a system’s characteristic roots, and

Predict overall response based on pole placement

Transient Response of 
First-Order Systems
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The Natural Response

𝑇
𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 ⇒ 𝑥 𝑡 = 𝑥(0)𝑒−𝑡/𝑇

The Impulse Response

𝑇
𝑑𝑥

𝑑𝑡
+ 𝑥 = 𝐴 ሚ𝛿(𝑡)

𝑥 𝑡 =
𝐴

𝑇
𝑒−𝑡/𝑇
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The Step Response
𝑇𝑠𝑥 𝑠 + 𝑥 𝑠 = 𝑇𝑠 + 1 𝑥 𝑠 =

𝐴

𝑥

𝑥 𝑡 = 𝐴(1 − 𝑒−𝑡/𝑇)

Example 7.1
A simple torsion system is depicted. It is a disk mounted on a
bearing and is excited by an input torque. The rotational inertia
can be readily attained by measuring the mass and diameter of
the disk. The bearing damping coefficient, on the other hand, is
not something that is commonly advertised or supplied. However,
this can be readily determined using experimental data and a
model of the system. Given the measured step response plotted
in the following figure, what are the rotational inertia, J, and
damping coefficient, β?
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The Ramp Response
𝑇
𝑑𝑥

𝑑𝑡
+ 𝑥 = 𝐴𝑡

𝑥 𝑡 = 𝐴(𝑡 − 𝑇 − 𝑇𝑒−
𝑡
𝑇)

Complex Numbers
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5.2.1 Complex Numbers

𝑧 = 𝑥 + 𝑗𝑦

𝑧 = 𝑥2 + 𝑦2

𝜃 = tan−1
𝑦

𝑥

ҧ𝑧 = 𝑥 − 𝑗𝑦

Transient Responses of Second-Order 
Systems
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Prototypical Second-Order System

ሶ𝑥 =
𝑝

𝑚

ሶ𝑝 = −𝑘𝑥 −
𝑏

𝑚
𝑝 + 𝐹(𝑡)

The Natural Response

Prototypical second-order differential equation with no input

Associated characteristic equation in the s-domain

Characteristic roots

ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 0

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 = 0

𝑠1,2 =
−2𝜁𝜔𝑛 ± 4 𝜁𝜔𝑛

2 − 4𝜔𝑛
2

2
= −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1
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Undamped Natural Response 
(ζ=0)
Differential Equation

Characteristic Equation

ሷ𝑥 + 𝜔𝑛
2𝑥 = 0

𝑠2 + 𝜔𝑛
2 = 0

𝑠1,2 = ±𝑗𝜔𝑛

𝑥 𝑡 = 𝑥 0 𝑐𝑜𝑠𝜔𝑡

Purely 
Imaginary 
Roots

Characteristic Roots

Response

Underdamped Natural Response 
(ζ<1)
Roots

Complex 
Conjugate 
Roots

𝑠1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1

= −𝜁𝜔𝑛 ± 𝜔𝑛 −1 1 − 𝜁2

= −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2

Response

Damping 
Frequency
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Critically Damped Natural 
Response (ζ=1)
Characteristic Roots

Repeated 
Negative Real 
Roots

𝑠1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1

= −𝜁𝜔𝑛 ± 𝜔𝑛 12 − 1

= −𝜔𝑛

𝑥 𝑡 = 𝑥(0)(1 + 𝜔𝑛𝑡)𝑒
−𝜔𝑛𝑡

Response

Overdamped Natural Response 
(ζ>1)
Characteristic Roots

𝑠1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1

= −𝜔𝑛(𝜁 ∓ 𝜁2 − 1

Response

Distinct 
Negative Real 
Roots
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Second-Order Natural Responses

Second-Order Natural, 
Underdamped Response

From Logarithmic Decrement

𝑇
𝑝=

2𝜋

𝜔𝑛 1−𝜁2)
=
2𝜋
𝜔𝑑

𝑥(0)

1 − 𝜁2
𝑒−𝜁𝜔𝑛𝑡

𝑇 =
1

𝜁𝜔𝑛

𝜁 =

1
𝑛 − 1

𝑙𝑛
𝑥1
𝑥𝑛

4𝜋2 +
1

𝑛 − 1
𝑙𝑛
𝑥1
𝑥𝑛

2
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Example 7.2
Given the natural response, 
how could you determine the 
damping coefficient, β, and 
the shaft rigidity, κ? The disk is 
the same as from Example 1.

The Natural Frequency, Damping 
Ratio, and Pole Placement
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Second-Order Response of 
Varying Damping Ratio

Second-Order Response of 
Varying Natural Frequency
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The Impulse Response

Undamped
𝑥 𝑡 =

𝐴

𝜔𝑛
𝑠𝑖𝑛𝜔𝑛𝑡

Underdamped
𝑥 𝑡 =

𝐴

𝜔𝑛
𝑒−𝜁𝜔𝑛𝑡𝑠𝑖𝑛𝜔𝑑𝑡

Critically Damped 𝑥 𝑡 = 𝐴𝑡𝑒−𝜔𝑛𝑡

Overdamped
𝑥 𝑡 =

𝐴

2𝜔𝑛 𝜁2 − 1
−𝑒−𝜔𝑛𝜁1𝑡 + 𝑒−𝜔𝑛𝜁2𝑡

where        𝜁1 = 𝜁 + 𝜁2 − 1

and            𝜁2 = 𝜁 − 𝜁2 − 1

ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 𝐴 ሚ𝛿(𝑡)

Second-Order Impulse Response
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The Step Response

ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 𝐴1(𝑡)

Undamped
𝑥 𝑡 =

𝐴

𝜔𝑛
2 (1 − 𝑐𝑜𝑠𝜔𝑛𝑡)

Underdamped
𝑥 𝑡 =

𝐴

𝜔𝑛
2 1 − 𝑒−𝜁𝜔𝑛𝑡

𝜁

1 − 𝜁2
𝑠𝑖𝑛𝜔𝑑𝑡 + 𝑐𝑜𝑠𝜔𝑑𝑡

Critically Damped
𝑥 𝑡 =

𝐴

𝜔𝑛
2 1 − 𝑒−𝜔𝑛𝑡 −𝜔𝑛𝑒

−𝜔𝑛𝑡𝑡

Overdamped
𝑥 𝑡 =

𝐴

2𝜔𝑛
2

𝜁

𝜁2 − 1
𝑒−𝜔𝑛𝜁1𝑡 − 𝑒−𝜔𝑛𝜁2𝑡 − 𝑒−𝜔𝑛𝜁1𝑡 − 𝑒−𝜔𝑛𝜁2𝑡 + 2

Second-Order Step Response
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Characteristics of an 
Underdamped Step Response

Maximum (percent) overshoot

Delay 
Time

Peak 
Time

Rise 
Time

Settling Time

𝑀𝑝 =
𝑥 𝑡𝑝 − 𝑥(∞)

𝐴/𝜔𝑛
2 × 100

𝑡𝑠 = 4𝑇 =
4

𝜁𝜔𝑛
(2% Criteria)

The Ramp Response

ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 𝐴𝑡

Undamped
𝑥 𝑡 =

𝐴

𝜔𝑛
3 (𝜔𝑛𝑡 − 𝑠𝑖𝑛𝜔𝑛𝑡)

Underdamped
𝑥 𝑡 =

𝐴

𝜔𝑛
3

𝑒−𝜁𝜔𝑛𝑡

𝜔𝑛

𝜁

1 − 𝜁2
𝜔𝑑𝑐𝑜𝑠𝜔𝑑𝑡 + 𝜁𝜔𝑛𝑠𝑖𝑛𝜔𝑑𝑡 +𝜁𝜔𝑛𝑐𝑜𝑠𝜔𝑑𝑡 − 𝜔𝑑𝑠𝑖𝑛𝜔𝑑𝑡 + 𝜔𝑛𝑡 − 2𝜁

Critically 
Damped

𝑥 𝑡 =
𝐴

𝜔𝑛
3 𝜔𝑛𝑡 + 𝜔𝑛𝑒

−𝜔𝑛𝑡𝑡 − 2𝑒−𝜔𝑛𝑡 − 2

Overdamped 𝑥 𝑡

=
𝐴

2𝜔𝑛
3

𝜁

𝜁2 − 1
−𝜁2𝑒

−𝜔𝑛𝜁1𝑡 + 𝜁1𝑒
−𝜔𝑛𝜁2𝑡 − 2 𝜁2 − 1 + 𝜁2𝑒

−𝜔𝑛𝜁1𝑡 + 𝜁1𝑒
−𝜔𝑛𝜁2𝑡 − 2𝜁 + 2𝜔𝑛𝑡
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Second-Order Ramp Response

Transient Responses of Higher-
Order Systems



8/4/2017

17

Example 7.3
A two-disk system is depicted, and the system 
parameters are provided in Table 7.1 in your textbook. 
Determine the lower-order components that contribute 
to the overall responses ϴ1(t) and ϴ2(t). Plot and 
compare the individual contributions to the overall 
responses. 𝜃1(𝑠)

𝑇(𝑠)
=

𝐽2𝑠
2 + 𝛽2𝑠 + 𝜅2 + 𝜅1

𝑎0𝑠4 + 𝑎1𝑠3 + 𝑎2𝑠2 + 𝑎3𝑠 + 𝑎4

𝜃2(𝑠)

𝑇(𝑠)
=

𝜅1
𝑎0𝑠

4 + 𝑎1𝑠
3 + 𝑎2𝑠

2 + 𝑎3𝑠 + 𝑎4

𝑎0 = 𝐽1𝐽2

𝑎1 = 𝐽1𝛽2 + 𝐽2𝛽1

𝑎2 = 𝐽1𝜅2 + 𝐽1𝜅1 + 𝐽2𝜅1 + 𝛽1𝛽2

𝑎3 = 𝛽1𝜅2 + 𝛽1𝜅1 + 𝛽2𝜅1

𝑎4 = 𝜅1𝜅2

Example 7.3

Use MATLAB to find poles Responses are combinations of two 
second-order underdamped responses

>> J1 = 0.0104;

>> J2 = J1;

>> K1 = 7;

>> K2 = 2;

>> B1 = 0.01;

>> B2 = 0.02;

>> num1 = [J2 B2 (K1+K2)];

>> num2 = K1;

>> den = [J1*J2 (J1*B2+J2*B1) ...

(J1*(K1+K2)+J2*K1+B1*B2) ...

(B1*(K1+K2)+B2*K1) K1*K2];

>> G1 = tf(num1,den);

>> G2 = tf(num2,den);

>> pole(G1)

ans =

-0.7550 +38.0560i

-0.7550 -38.0560i

-0.6872 + 9.4265i

-0.6872 - 9.4265i
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Example 7.3 Response

An Introduction to Pole-Zero 
Analysis

When a zero is in close proximity to a pole

Remember that underdamped
second-order responses
will attenuate to within

2% in 4T

Except for oscillatory or undamped responses, stable 
responses will tend to attenuate
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Pole-Zero Analysis using MATLAB

Function Description

damp(sys) Computes natural frequencies and damping ratios

pzmap(sys) Plots pole-zero map of dynamic systems

sgrid Generates s-plane grid lines for a pole-zero map

poly(A) Computes characteristic polynomial of matrix

>> m = 10; b = 20; k = 60;

>> sys2 = tf([m b 2*k],...

[m^2 m*b 3*m*k b*k k^2]);

>> Z2 = zero(sys2)

Z2 =

-1.0000 + 3.3166i

-1.0000 - 3.3166i

>> P2 = pole(sys2)

P2 =

-0.7106 + 3.7722i

-0.7106 - 3.7722i

-0.2894 + 1.5361i

-0.2894 - 1.5361i

>> pzmap(sys2); sgrid

Example 7.4
Determine the dominant 
pole of the system.
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Example 7.4 Response

>> damp(sys2)

Eigenvalue          Damping     Frequency  

-2.89e-01 + 1.54e+00i     1.85e-01     1.56e+00  

-2.89e-01 - 1.54e+00i     1.85e-01     1.56e+00  

-7.11e-01 + 3.77e+00i     1.85e-01     3.84e+00  

-7.11e-01 - 3.77e+00i     1.85e-01     3.84e+00  

(Frequencies expressed in rad/seconds)

>> pzmap(sys2)

>> sgrid(0:0.1:1,1:4)

>> impulse(sys2)

Example 7.4
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Pole-Zero Analysis in the State-
Space 

The poles are the roots of the denominator
To find the poles, we seek the eigenvalues or the roots of the characteristic equation.

ቚdet(𝑠𝑰 − 𝑨)
𝑠=𝑝

= det 𝑝𝑰 − 𝑨 = 0

The zeros are the roots of the numerator
To find the zeros, we seek the roots of

𝑑𝑒𝑡
𝑨 − 𝑧𝑰 𝑩
𝑪 𝑫

= 0

Example 7.5
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Steady-State Analysis in the State 
Space

Example 7.6
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Summary
The natural response (also known as the unforced response) is the dynamic response that results when 
there are no inputs but the initial conditions are generally not zero.

Natural and impulse responses for first-order systems exponentially decay. The time constant, T, is the 
amount of time required for the response to decay to 36.8% of the initial value. The responses decay to 
under 2% in 4T.

The first-order step response asymptotically approaches the steady-state value.  The time constant,T, is 
the time required to reach 63.2% of the steady-state value.  Within 4T the step response is within 98% 
of the final value.

The first-order ramp response (increases at a constant rate that runs parallel to the input. At steady-
state, there is a constant time delay between the input and response equal to the time constant, T. Also, 
at steady-state, the difference between the response and the input is AT, where A is the rate.

Second-order systems can be categorized based on the amount of damping:

Undamped, ζ = 0

Underdamped, 0 < ζ < 1

Critically damped, ζ = 1

Overdamped, ζ > 1

Summary Continued
Undamped responses oscillate forever. Underdamped responses will oscillate, but attenuate to the 
steady-state value. Critically damped and overdamped responses do not oscillate, but rather 
asymptotically approach steady-state.

The roots of the characteristic equation are referred to as the poles. Poles are generally complex. The 
placement of second-order poles in the real-complex plane is correlated with the damping ratio (ζ), 
undamped natural frequency (ωn), and the damped frequency of oscillation (ωd):

Undamped, purely imaginary roots 

Underdamped, complex conjugate roots 

Critically damped, real repeated negative roots

Overdamped, real distinct negative roots

The second-order natural and impulse responses oscillate about, attenuate to, or asymptotically 
approach zero.

The unit step responses for second-order systems oscillate about, attenuate to, or asymptotically 
approach one.

The ramp responses of second-order systems oscillate about the ramp or settle to a steady-state 
response that runs parallel to the ramp with a constant error.
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Summary Continued
Higher-order responses are just combinations of first- and second-order responses. 

Transfer functions can be factored into first- and second-order terms. The second-
order terms have complex poles that have associated damping ratios and natural 
frequencies. Generally, the poles closest to the imaginary axis have dynamics that 
take longer to settle. If not negated by the presence of zeros, the poles closest to 
the imaginary axis will tend to dominate the overall response.

MATLAB includes functions that facilitate transient analysis including commands to 
determine eigenvalues, damping ratios, and natural frequencies. It also includes 
functions for generating and annotating pole-zero maps.

Though poles and zeros are commonly determined by factoring the numerator and 
denominator of the transfer function representation, they can also be readily 
determined using the state-space model. The poles, for example, are the 
eigenvalues of the A matrix in the state-space representation.

For systems that reach a static condition at steady-state, the rate of change of the 
state vector, x, is 0. Thus, the steady-state condition, xss, can be determined 
algebraically from the steady-state input, uss.


