Chapter 6: Impedance Bond Graphs

Samantha Ramirez

Preview Questions

What connections are there between linear algebra and differential equations?

How can you transform a system of differential equations into an algebraic formulation?

What advantages, if any, would an algebraic model have over differential equations?

Are there any concepts from electric circuits that you could generalize to facilitate synthesizing such models?

Objectives & Outcomes

Objectives:

- 1. To understand relations between state-space and transferfunction representations of linear, time-invariant systems,
- 2. To understand the synthesis and use impedance bond graphs, and
- 3. To be able to use alternative methods to derive transfer functions for systems that may require advanced formulation due to sign changes or complex bond graph structures.

Outcomes: Upon completion, you will

- be able to transition between state-space and transfer-1. function representations of dynamic systems,
- be able to synthesize impedance bond graphs of mechanical, electrical, and hydraulic systems, and 2.
- be able to derive transfer functions for dynamic systems 3. using bond graphs as an aid.

Laplace Transforms and the State Space

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Laplace transforms can be applied to the state-space to generate the transfer functions.

$$sX(s) = AX(s) + BU(s)$$

 $Y(s) = CX(s) + DU(s)$

Ultimately, we wish to get the transfer functions, G(s), relating the outputs, $\mathbf{Y}(s)$, to the inputs, $\mathbf{U}(s)$, such that Y

$$\mathbf{G}(s) = \mathbf{G}(s)\mathbf{U}(s)$$

Solve for X(s), $sX(s) - AX(s) = (sI - A)X(s) = BU(s) \rightarrow X(s) = (sI - A)^{-1}BU(s)$ and substitute $Y(s) = C(sI - A)^{-1}BU(s) + DU(s) = [C(sI - A)^{-1}B + D]U(s)$ to derive **G**(s) $\boldsymbol{G}(s) = \boldsymbol{C}(s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{B} + \boldsymbol{D}$

Basic 1-Port Impedances

R $e(t) = Rf(t) \leftrightarrow e(s) = Rf(s)$ $Z_R = \frac{e(s)}{f(s)} = R$	Impe	dance
1 (1) (a) 1	$\leftrightarrow e(s) = Rf(s) \qquad \qquad Z$	$R = \frac{e(s)}{f(s)} = R$
General C $e(t) = \frac{1}{C} \int f(t)dt \leftrightarrow e(s) = \frac{1}{Cs}f(s)$ $Z_C = \frac{e(s)}{f(s)} = \frac{1}{Cs}$	$t \leftrightarrow e(s) = \frac{1}{Cs}f(s)$ Z_{0}	$=\frac{e(s)}{f(s)}=\frac{1}{Cs}$
$e(t) = I \frac{df(t)}{dt} \leftrightarrow e(s) = Isf(s) \qquad Z_I = \frac{e(s)}{f(s)} = Is$	$\leftrightarrow e(s) = Isf(s) \qquad \qquad Z$	$e = \frac{e(s)}{f(s)} = $ Is

m	ent l	mne	dances	
	Element Type	Component	Force-Velocity	Impedance Z(s)=F(s)/V(s)
lation	R-Element	Damper	f(t) = bv(t) F(s) = bV(s)	b
anical Trans	C-Element	Spring	$f(t) = k \int v(t)dt$ $F(s) = \frac{k}{s}V(s)$	$\frac{k}{s}$
Mech	I-Element	Mass m	$f(t) = m \frac{dv(t)}{dt}$ $F(s) = msV(s)$	ms
	Element Type	Component	Torque-Velocity	Impedance Z(s)=F(s)/V(s)
ation	R-Element	Bearing	$\tau(t) = B\omega(t)$ $\tau(s) = B\Omega(s)$	В
chanical Rot	C-Element	Spring	$\tau(t) = \kappa \int \omega(t) dt$ $T(s) = \frac{\kappa}{s} \Omega(s)$	<u>κ</u> s
Me	I-Element	Inertia 	$\tau(t) = J \frac{d\omega(t)}{dt}$ $T(s) = Js\Omega(s)$	Js

اما						
ier	nent	impe	dances			
	Element Type	Component	Voltage-Current	Impedance Z(s)=F(s)/V(s)		
its	R-Element	Resistor	e(t) = Ri(t) $E(s) = RI(s)$	R		
ectrical Circu	C-Element	Capacitor $\square \subset C$	$e(t) = \frac{1}{C} \int i(t)dt$ $E(s) = \frac{1}{Cs}I(s)$	$\frac{1}{Cs}$		
Ĕ	I-Element	Inductor L	$e(t) = L \frac{di(t)}{dt}$ $E(s) = LsI(s)$	Ls		
	Element Type	Component	Pressure-Flow	Impedance Z(s)=F(s)/V(s)		
lits	R-Element	Valve	$P(t) = R_f Q(t)$ $P(s) = R_f Q(s)$	R_f		
Vdraulic Circu	C-Element	Accumulator	$P(t) = \frac{1}{C_f} \int Q(t) dt$ $P(s) = \frac{1}{C_f s} Q(s)$	$\frac{1}{C_f s}$		
Ξ	I-Element	Inertia I	$P(t) = I_f \frac{dQ(t)}{dt}$ $P(s) = I_f sQ(s)$	Ls		

Impedance Bond Graph Synthesis

Same process as regular bond graphs

Use impedances in place of R-, C-, and I-elements

Do not include causal strokes

Do not use sources

Instead label the Laplace transform of the supplied effort or flow

Transfer Function Derivation

- 1. Identify the desired system inputs and outputs
- 2. Formulate a strategy
- 3. Iteratively condense (simplify) using equivalencies

Example 2

Convert the following bond graph to an impedance bond graph. Determine the transfer functions for the following relationships: $\frac{f_1}{f}$, $\frac{f_2}{f}$, $\frac{e_1}{\tau_m}$, $\frac{e_2}{\tau_m}$.

Review Problem 1

Recall the bond graph synthesized in Chapter 3 for the given system. Derive transfer functions relating the displacements of both masses to the input force F(t).

Review Problem 3

Recall the bond graph synthesized in Chapter 3 for the given system. Derive the transfer function relating the displacement of the mass to the input voltage, $e_{in}(t)$.

Function	Description
ss2tf(A,B,C,D)	converts from state space to transfer function
tf2ss(num,den)	converts from transfer function to state space

Example 6.11

Use MATLAB to convert the state-space representation of Example 6.2 assuming that the mass, damping constants, and spring rate are 10 kg, 20 N-m/s, and 60 N/m.

$[\dot{x_1}]$		0	1/	'm	0)	0	11	$[x_1]$		[0]	
$\dot{p_1}$	_	-k	-b	/m	k	:	0		p_1	+	0	F(t)
Ś	_	0	-1	/m	0)	1/m	ı	δ	'	0	1 (1)
$\dot{p_2}$		0	()	-	k	0]	p_2		1	
							$\begin{bmatrix} x_1 \end{bmatrix}$					
	Ľ	$[r_{1}] =$	[1	0	0	0]	p_1	+	[0]	F(t)	
	D	¢2]	ι1	0	1	01	0		r01	(
							p_2					

Summary Continued

A 1-junction can be used as an effort divider to determine the transfer function relating the effort on any attached bond to the effort on the primary bond.

A 0-junction can be used as a flow divider to determine the transfer function relating the flow on any attached bond to the flow on the primary bond.

Sign changes can be readily accounted for in impedance bond graphs. The basic relations for equivalent impedance remain the same. However, to maintain the sign change the flow on the primary bond of a 1-junction with a sign change is negated, and the effort on the primary bond of a 0-junction with a sign change is negated. For effort and flow dividers, the overall relations are negated.

The basic steps to deriving transfer functions directly from an impedance bond graph are: (1) identify the inputs and outputs to determine the necessary transfer functions, (2) formulate a strategy to determine intermediate steps, and (3) iteratively condense the impedance bond graph using equivalencies while solving for any necessary intermediate transfer functions.

An alternate approach to deriving transfer functions from bond graphs is to use the summation of effort and summation of flow equations resulting from junctions to derive a set of linear algebraic equations in terms of unknown efforts and flows in the s-domain that can be solved simultaneously using Linear Algebra. The basic procedure is: (1) label junctions with distinct efforts and flows, (2) derive remaining unknown efforts and flows using impedance relations, (3) derive summation of effort and summation of flow equations, (4) arrange the resulting equations into set linear algebraic equations in terms of the efforts and flows, and (5) solve the equations simultaneously.

MATLAB includes several commands for converting between state-space and transfer-function representations.