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Chapter 6: 
Impedance Bond 
Graphs
Samantha Ramirez

Preview Questions

What connections are there between linear algebra and 
differential equations?

How can you transform a system of differential equations into 
an algebraic formulation?

What advantages, if any, would an algebraic model have over 
differential equations?

Are there any concepts from electric circuits that you could 
generalize to facilitate synthesizing such models?
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Objectives & Outcomes

Objectives:
1. To understand relations between state-space and transfer-

function representations of linear, time-invariant systems,
2. To understand the synthesis and use impedance bond 

graphs, and
3. To be able to use alternative methods to derive transfer 

functions for systems that may require advanced 
formulation due to sign changes or complex bond graph 
structures.

Outcomes: Upon completion, you will
1. be able to transition between state-space and transfer-

function representations of dynamic systems,
2. be able to synthesize impedance bond graphs of 

mechanical, electrical, and hydraulic systems, and
3. be able to derive transfer functions for dynamic systems 

using bond graphs as an aid.

Laplace Transforms and the State Space 
ሶ𝒙 = 𝑨𝒙 + 𝑩𝒖
𝒚 = 𝑪𝒙+ 𝑫𝒖

Laplace transforms can be applied to the state-space to generate the 
transfer functions,

𝑠𝑿 𝑠 = 𝑨𝑿 𝑠 + 𝑩𝑼 𝑠
𝒀 𝑠 = 𝑪𝑿 𝑠 +𝑫𝑼(𝑠)

Ultimately, we wish to get the transfer functions, G(s), relating the outputs, 
Y(s), to the inputs, U(s), such that

𝒀 𝑠 = 𝑮 𝑠 𝑼(𝑠)

Solve for X(s),
𝑠𝑿 𝑠 − 𝑨𝑿 𝑠 = 𝑠𝑰 − 𝑨 𝑿 𝑠 = 𝑩𝑼 𝑠 → 𝑿 𝑠 = 𝑠𝑰 − 𝑨 −1𝑩𝑼(𝑠)

and substitute
𝒀 𝑠 = 𝑪 𝑠𝑰 − 𝑨 −1𝑩𝑼 𝑠 +𝑫𝑼 𝑠 = 𝑪 𝑠𝑰 − 𝑨 −1𝑩+𝑫 𝑼 𝑠

to derive G(s)
𝑮 𝑠 = 𝑪 𝑠𝑰 − 𝑨 −1𝑩+𝑫
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Matrices

Identity Matrix

Inverse Matrix

𝐴−1 =
1

𝐴
𝑑 −𝑏
−𝑐 𝑎

=
1

𝑎𝑑−𝑏𝑐

𝑑 −𝑏
−𝑐 𝑎

𝐴 =
𝑎 𝑏
𝑐 𝑑

I =
1 0 0
0 1 0
0 0 1

Example 6.1
Take for Example the simple mass-spring-damper depicted in 
Figure 6.2. Derive the transfer functions for the system.

ሶ𝑥
ሶ𝑝
=

0 1/𝑚
−𝑘 −𝑏/𝑚

𝑥
𝑝 +

0
1
𝐹(𝑡)

𝑦 = 𝑥 = 1 0
𝑥
𝑝 + 0 ∙ 𝐹(𝑡)
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Example 6.2
Remember the mass-spring-
damper system from Example
3.11. Figure 6.2(b) shows four
energy storing elements in
integral causality. The output of
interest are the positions of the
two masses, x1 and x2. Convert
the state-space models to
transfer functions relating each
of the displacement to the
input force.

ሶ𝑥1
ሶ𝑝1
ሶ𝛿
ሶ𝑝2

=

0 1/𝑚 0 0
−𝑘 −𝑏/𝑚 𝑘 0
0
0

−1/𝑚
0

0
−𝑘

1/𝑚
0

𝑥1
𝑝1
𝛿
𝑝2

+

0
0
0
1

𝐹(𝑡)

𝑥1
𝑥2

=
1 0 0 0
1 0 1 0

𝑥1
𝑝1
𝛿
𝑝2

+
0
0
𝐹(𝑡)

Basic 1-Port Impedances

Domain Element Effort-Flow Relation Impedance

General

R 𝑒 𝑡 = 𝑅𝑓 𝑡 ↔ 𝑒 𝑠 = 𝑅𝑓(𝑠) 𝑍𝑅 =
𝑒(𝑠)

𝑓(𝑠)
= 𝑅

C 𝑒 𝑡 =
1

𝐶
න𝑓 𝑡 𝑑𝑡 ↔ 𝑒 𝑠 =

1

𝐶𝑠
𝑓(𝑠) 𝑍𝐶 =

𝑒(𝑠)

𝑓(𝑠)
=

1

𝐶𝑠

I 𝑒 𝑡 = 𝐼
𝑑𝑓(𝑡)

𝑑𝑡
↔ 𝑒 𝑠 = 𝐼𝑠𝑓(𝑠) 𝑍𝐼 =

𝑒(𝑠)

𝑓(𝑠)
= Is
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Element Impedances
Element Type Component Force-Velocity Impedance Z(s)=F(s)/V(s)

R-Element Damper 𝑓 𝑡 = 𝑏𝑣(𝑡)

𝐹 𝑠 = 𝑏𝑉(𝑠)
𝑏

C-Element Spring
𝑓 𝑡 = 𝑘න𝑣 𝑡 𝑑𝑡

𝐹 𝑠 =
𝑘

𝑠
𝑉(𝑠)

𝑘

𝑠

I-Element Mass

𝑓 𝑡 = 𝑚
𝑑𝑣 𝑡

𝑑𝑡
𝐹 𝑠 = 𝑚𝑠𝑉(𝑠)

𝑚𝑠

Element Type Component Torque-Velocity Impedance Z(s)=F(s)/V(s)

R-Element Bearing 𝜏 𝑡 = 𝐵𝜔(𝑡)

𝜏 𝑠 = 𝐵Ω(𝑠)
𝐵

C-Element Spring
𝜏 𝑡 = 𝜅න𝜔 𝑡 𝑑𝑡

𝑇 𝑠 =
𝜅

𝑠
Ω(𝑠)

𝜅

𝑠

I-Element Inertia
𝜏 𝑡 = 𝐽

𝑑𝜔 𝑡

𝑑𝑡
𝑇 𝑠 = 𝐽𝑠Ω(𝑠)

𝐽𝑠
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Element Impedances
Element Type Component Voltage-Current Impedance Z(s)=F(s)/V(s)

R-Element Resistor 𝑒 𝑡 = 𝑅𝑖(𝑡)

𝐸 𝑠 = 𝑅𝐼(𝑠)
𝑅

C-Element Capacitor
𝑒 𝑡 =

1

𝐶
න 𝑖 𝑡 𝑑𝑡

𝐸 𝑠 =
1

𝐶𝑠
𝐼(𝑠)

1

𝐶𝑠

I-Element Inductor
𝑒 𝑡 = 𝐿

𝑑𝑖 𝑡

𝑑𝑡
𝐸 𝑠 = 𝐿𝑠𝐼(𝑠)

𝐿𝑠

Element Type Component Pressure-Flow Impedance Z(s)=F(s)/V(s)

R-Element Valve 𝑃 𝑡 = 𝑅𝑓𝑄(𝑡)

𝑃 𝑠 = 𝑅𝑓𝑄(𝑠)
𝑅𝑓

C-Element Accumulator

𝑃 𝑡 =
1

𝐶𝑓
න𝑄 𝑡 𝑑𝑡

𝑃 𝑠 =
1

𝐶𝑓𝑠
𝑄(𝑠)

1

𝐶𝑓𝑠

I-Element Inertia
𝑃 𝑡 = 𝐼𝑓

𝑑𝑄 𝑡

𝑑𝑡
𝑃 𝑠 = 𝐼𝑓𝑠𝑄(𝑠)

𝐿𝑠
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Impedance Bond Graph Synthesis

Same process as regular bond graphs

Use impedances in place of R-, C-, and I-elements

Do not include causal strokes

Do not use sources

Instead label the Laplace transform of the supplied effort or 
flow

Example 6.3

Recall the mass-spring-
damper problem from 
Example 6.2. Generate 
the impedance bond 
graph for this system.
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Example 6.4

Recall the circuit 
for Example 3.5. 
Create a regular 
bond graph and 
compare to an 
impedance bond 
graph.

Challenge Problem

Recall the bond graph for the challenge problem. Convert the 
bond graph to an impedance bond graph.
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Transfer Function Derivation

1. Identify the desired system inputs and outputs

2. Formulate a strategy

3. Iteratively condense (simplify) using equivalencies

Junctions, Transformers, and 
Gyrators (For Condensing)

Item Impedance

1-Junction 𝑍𝑒𝑞 = 𝑍1 + 𝑍2

0-Junction
𝑍𝑒𝑞 =

𝑍1𝑍2
𝑍1 + 𝑍2

Item Impedance

1-Junction 𝑍𝑒𝑞 = 𝑍1 + 𝑍2

0-Junction
𝑍𝑒𝑞 =

𝑍1𝑍2
𝑍1 + 𝑍2

Transformer 𝑍𝑒𝑞 = 𝑛2𝑍

Gyrator
𝑍𝑒𝑞 =

𝑟2

𝑍
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Example 1

Generate an impedance bond graph. Reduce the resulting 
impedance bond graph to a single power bond.

Effort and 
Flow Dividers

Item Mathematical 
Relation

Effort Divider 𝑒𝑜𝑢𝑡
𝑒𝑖𝑛

=
𝑍2

𝑍1 + 𝑍2

Flow Divider 𝑓𝑜𝑢𝑡
𝑓𝑖𝑛

=
𝑍1

𝑍1 + 𝑍2
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Example 2

Convert the following bond graph to an impedance bond graph. 
Determine the transfer functions for the following 

relationships: 
𝑓1

𝑓
,
𝑓2

𝑓
,
𝑒1

𝜏𝑚
,
𝑒2

𝜏𝑚
.

e1

e2

f

f1

f2

Example 6.5
A Mass-Spring-
Damper System
Derive a transfer function 
using an impedance bond 
graph.
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Example 6.6
An Electric
Circuit
Derive the transfer 
functions relating the 
voltages e1(s) and e2(s) to 
the input voltage e(t).

Example 6.7
A PMDC Motor

Derive a transfer function using 
an impedance bond graph to 
determine the response of the 
output torque, τ2(t), relative to 
the input voltage, ein(t).
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Review Problem 1

Recall the bond graph synthesized in Chapter 3 for the given 
system. Derive transfer functions relating the displacements of 
both masses to the input force F(t).

Review Problem 2

Recall the bond graph synthesized in Chapter 3 for the given 
system. Derive the transfer functions relating output angular 
velocity to the input voltage, ein(t).
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Review Problem 3

Recall the bond graph synthesized in Chapter 3 for the given 
system. Derive the transfer function relating the displacement 
of the mass to the input voltage, ein(t).

Challenge Problem
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Challenge Problem

Challenge Problem
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Model Transformations Using 
MATLAB

Function Description

ss2tf(A,B,C,D) converts from state space to transfer function

tf2ss(num,den) converts from transfer function to state space

Example 6.11

Use MATLAB to convert the state-space representation of Example 6.2 
assuming that the mass, damping constants, and spring rate are 10 kg, 20 N-
m/s, and 60 N/m.

ሶ𝑥1
ሶ𝑝1
ሶ𝛿
ሶ𝑝2

=

0 1/𝑚 0 0
−𝑘 −𝑏/𝑚 𝑘 0
0
0

−1/𝑚
0

0
−𝑘

1/𝑚
0

𝑥1
𝑝1
𝛿
𝑝2

+

0
0
0
1

𝐹(𝑡)

𝑥1
𝑥2

=
1 0 0 0
1 0 1 0

𝑥1
𝑝1
𝛿
𝑝2

+
0
0
𝐹(𝑡)

Laplace transforms can be applied to the differential equations derived from a bond graph to 
determine transfer functions. This is especially concise if applied to the state-space form of the 
resulting equations. However, for systems with more than three states, this can be 
cumbersome to implement analytically and many times must be done so with the aid of 
symbolic math software. 

The concept of impedance used for electric circuits analysis can be adapted to derive 
equivalent mechanical impedances. The impedance can be derived by applying the transfer 
function concept to the effort-flow relations on linear I-, R-, and C-elements. The impedance of 
an I-, R-, or C-element is the ratio of effort to flow after taking the Laplace transform of the 
constitutive relation and assuming initial conditions are zero. 

Impedance bond graphs are synthesized in much the same manner as regular bond graphs 
with a few exceptions: (1) I-, R-, and C-elements are replaced with their equivalent 
impedances, (2) causal strokes are unnecessary, and (3) sources are replaced simply by a bond 
labeled with the Laplace transform of the associated effort or flow. 

Impedances attached to 1-junctions sum like resistances in series. 

Impedances attached to 0-junctions sum like resistances in parallel. 

Equivalent impedances for transformers and gyrators in tandem with an impedance can be 
readily determined in terms of the modulus and the attached impedance . 

Summary
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A 1-junction can be used as an effort divider to determine the transfer function relating the effort on 
any attached bond to the effort on the primary bond. 

A 0-junction can be used as a flow divider to determine the transfer function relating the flow on any 
attached bond to the flow on the primary bond. 

Sign changes can be readily accounted for in impedance bond graphs. The basic relations for 
equivalent impedance remain the same. However, to maintain the sign change the flow on the 
primary bond of a 1-junction with a sign change is negated, and the effort on the primary bond of a 0-
junction with a sign change is negated. For effort and flow dividers, the overall relations are negated. 

The basic steps to deriving transfer functions directly from an impedance bond graph are: (1) identify 
the inputs and outputs to determine the necessary transfer functions, (2) formulate a strategy to 
determine intermediate steps, and (3) iteratively condense the impedance bond graph using 
equivalencies while solving for any necessary intermediate transfer functions. 

An alternate approach to deriving transfer functions from bond graphs is to use the summation of 
effort and summation of flow equations resulting from junctions to derive a set of linear algebraic 
equations in terms of unknown efforts and flows in the s-domain that can be solved simultaneously 
using Linear Algebra. The basic procedure is: (1) label junctions with distinct efforts and flows, (2) 
derive remaining unknown efforts and flows using impedance relations, (3) derive summation of 
effort and summation of flow equations, (4) arrange the resulting equations into set linear algebraic 
equations in terms of the efforts and flows, and (5) solve the equations simultaneously. 

MATLAB includes several commands for converting between state-space and transfer-function 
representations.

Summary Continued


