CHAPTER 5:
 LAPLACE TRANSFORMS

PREVIEW QUESTIONS

- What are some commonly recurring functions in dynamic systems and their Laplace transforms?
- How can Laplace transforms be used to solve for a dynamic response in the time domain?
- What purpose does the Laplace transform play in analyzing the time domain response?
- What are the relationships between the time domain and s-domain?

OBJECTIVES \& OUTCOMES

- Objectives
- To review the transforms of commonly occurring functions used for modeling dynamic systems,
- To review some of the more often used theorems that aid in the analysis and solution of dynamic systems, and
- To understand algebraic analysis of Laplace transforms.
- Outcomes: Upon completion, you should
- Be able to transform and inverse transform common functions,
- Be able to conduct partial fraction expansions to find inverse Laplace transforms,
- Be able to use MATLAB to analyze Laplace transforms, and
- Be able to solve linear differential equations using Laplace transforms.

5.2.I COMPLEX NUMBERS

$z=x+j y$
$|z|=\sqrt{x^{2}+y^{2}}$
$\theta=\tan ^{-1} \frac{y}{x}$

$$
\begin{aligned}
z & =x+j y \\
& =|z| \cos \theta+j|z| \sin \theta \\
& =|z|(\cos \theta+j \sin \theta) \\
& =|z| \angle \theta \\
& =|z| e^{j \theta}
\end{aligned}
$$

$$
\begin{gathered}
z=z+j y=|z|(\cos \theta+j \sin \theta)=|z| \angle \theta \\
\bar{z}=x-j y=|z|(\cos \theta-j \sin \theta)=|z| \angle-\theta . \\
z \bar{z}=(x+j y)(x-j y)=x^{2}-j x y+j x y+y^{2}=x^{2}+y^{2}, \\
\frac{1}{z}=\frac{1}{z} \frac{\bar{z}}{\bar{z}}=\frac{\bar{z}}{x^{2}+y^{2}} .
\end{gathered}
$$

5.2.2 EULER'S THEOREM

- Refer to the textbook (§5.2.2 for derivation of theorem and identities)
- Euler's Theorem

$$
e^{-j \theta}=\cos \theta-j \sin \theta
$$

- Cosine Identity

$$
\cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2}
$$

- Sine Identity

$$
\sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j}
$$

5.2.3 COMPLEX ALGEBRA

$$
\begin{array}{lc}
z=x+j y \text { and } \mathrm{w}=\mathrm{u}+\mathrm{jv} \\
z+w=(x+u)+j(y+v) & j z=a x+j a y \\
z-w=(x-u)+j(y-v) \\
z w=-y+j x=|z| \angle\left(0+90^{\circ}\right) \\
z w=(x u-y v)+j(x v+y u) & \frac{z}{j}=y-j x=|z| \angle\left(\theta-90^{\circ}\right) \\
z w=|z||w| \angle(\theta+\phi) & z^{n}=(|z| \angle \theta)^{n}=|z|^{n} \angle(n \theta) \\
\frac{z}{w}=\frac{|z|}{|w|} \angle(\theta-\phi)=\frac{x u+y v}{u^{2}+y^{2}}+j \frac{y u-x v}{u^{2}+y^{2}} & z^{1 / n}=(|z| \angle \theta)^{1 / n}=|z|^{1 / n} \angle(\theta / n)
\end{array}
$$

COMPLEXVARIABLES AND FUNCTIONS

$$
\begin{gathered}
s=\sigma+j \omega \\
G(s)=\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \ldots\left(s+p_{n}\right)}
\end{gathered}
$$

- Transfer function
- Ratio of polynomials in the s-domain
- Zeroes
- Roots of the numerator
- Poles
- Roots of the denominator

5.3 THE LAPLACE TRANSFORM

- Laplace transform of a function

$$
\mathcal{L}[g(t)]=\mathrm{g}(\mathrm{~s})=\int_{0}^{\infty} e^{-s t} g(t) d t
$$

- Inverse Laplace transform of a function

$$
\mathcal{L}^{-1}[\mathrm{~g}(\mathrm{~s})]=g(t)
$$

- The Laplace transform is a linear operation

$$
\begin{aligned}
\mathcal{L}\left[a g_{1}(t)+b g_{2}(t)+c g_{3}(t)\right] & =a \mathcal{L}\left[g_{1}(t)\right]+b \mathcal{L}\left[g_{2}(t)\right]+c \mathcal{L}\left[g_{3}(t)\right] \\
& =a \mathrm{~g}_{1}(\mathrm{~s})+b \mathrm{~g}_{2}(\mathrm{~s})+c \mathrm{~g}_{3}(\mathrm{~s})
\end{aligned}
$$

EXISTENCE OFTHE LAPLACETRANSFORM

- Requirements

1. $g(t)$ is a piecewise continuous function on the interval $0<t<\infty$.
2. $g(t)$ is of exponential order. That is to say there exist real-valued positive constants A and t such that $|g(t)| \leq A e^{a t}$ for all $\mathrm{t} \geq \mathrm{T}$.

- Does the Laplace transform exist for this function?

TRANSFORMS OF COMMON FUNCTIONS

Exponential Functions

$$
\begin{gathered}
g(t)= \begin{cases}0, & t<0 \\
A e^{-a t}, & t \geq 0\end{cases} \\
\mathcal{L}\left[A e^{-a t}\right]=A \frac{1}{s+a}
\end{gathered}
$$

Step Functions

$$
\begin{gathered}
A 1(t)= \begin{cases}0, & t<0 \\
A, & t \geq 0\end{cases} \\
\mathcal{L}[A 1(t)]=\frac{A}{s}
\end{gathered}
$$

Ramp Functions

$$
\begin{gathered}
g(t)= \begin{cases}0, & t<0 \\
A t, & t \geq 0\end{cases} \\
\mathcal{L}[A t]=\frac{A}{s^{2}}
\end{gathered}
$$

Sinusoidal Functions
$g(t)= \begin{cases}0, & t<0 \\ A \sin \omega t, & t \geq 0\end{cases}$
$\mathcal{L}[A \sin \omega t]=A \frac{\omega}{s^{2}+\omega^{2}}$
$\mathcal{L}[A \cos \omega t]=A \frac{s}{s^{2}+\omega^{2}}$

MULTIPLICATION BY EXPONENTIAL

$$
\begin{gathered}
\mathcal{L}\left[e^{-a t} g(t)\right]=\mathrm{g}(\mathrm{~s}+\mathrm{a}) \\
\mathcal{L}\left[e^{-a t} \sin \omega t\right]=\frac{\omega}{(s+a)^{2}+\omega^{2}} \\
\mathcal{L}\left[e^{-a t} \cos \omega t\right]=\frac{s+a}{(s+a)^{2}+\omega^{2}}
\end{gathered}
$$

- These will require completing the square.

SHIFTING VS TRANSLATION OF A FUNCTION

$$
\mathcal{L}[g(t-a) 1(t-a)]=e^{-a s} g(s)
$$

- Evaluating a mathematical function at $t-a$ shifts the function to the right along t an amount a.
- However, when deriving Laplace transforms, we have assumed that the functions are "truncated" such that they are 0 for $\mathrm{t}<0$.
- A translated function is truncated and shifted.

A RECTANGULAR PULSE

- Two step functions are summed to generate a rectangular pulse.

(a)

(b)

$$
\begin{gathered}
g(t)=A 1\left(t-t_{1}\right)-A 1\left(t-t_{2}\right)=A\left[1\left(t-t_{1}\right)-1\left(t-t_{2}\right)\right] \\
\mathcal{L}[g(t)]=A\left[\frac{e^{-t_{1} s}}{s}-\frac{e^{-t_{2} s}}{s}\right]=\frac{A}{s}\left[e^{-t_{1} s}-e^{-t_{2} s}\right]
\end{gathered}
$$

EXAMPLE 5.1

- Find the Laplace transform for the piecewise continuous function in the figure shown.

IMPULSE FUNCTIONS

$$
\begin{aligned}
\mathcal{L}[A \tilde{\delta}(t)] & =\lim _{t_{o} \rightarrow 0} \frac{A}{t_{o} s}\left[1-e^{-t_{o} s}\right] \\
& =\lim _{t_{o} \rightarrow 0} \frac{\frac{d}{d t_{o}} A\left[1-e^{-t_{o} s}\right]}{\frac{d}{d t_{o}} t_{o} s} \\
& =\lim _{t_{o} \rightarrow 0} \frac{A s e^{-t_{o} s}}{s} \\
& =\frac{A s}{s} \\
& =A
\end{aligned}
$$

$$
f(t)
$$

(b)

DIFFERENTIATIONTHEOREM

- Laplace transform of the first derivative

$$
\mathcal{L}[\dot{g}(t)]=\operatorname{sg}(\mathrm{s})-g(0)
$$

- Laplace transform of the second derivative

$$
\mathcal{L}[\ddot{g}(t)]=s^{2} g(s)-s g(0)-\dot{g}(0)
$$

- Laplace transform of the nth derivative

$$
\mathcal{L}\left[g^{(n)}(t)\right]=s^{n} g(s)-s^{n-1} g(0)-s^{n-2} \dot{g}(0)-\cdots-g^{(n-1)}(0)
$$

EXAMPLE 5.2

- Using the differentiation theorem, derive the Laplace transforms of the untranslated unit step and impulse functions from the unit ram function.

INTEGRATION, FINALVALUE,
 AND INITIALVALUETHEOREMS

- Integration Theorem

$$
\mathcal{L}\left[\int_{0}^{t} g(t) d t\right]=\frac{\mathrm{g}(\mathrm{~s})}{s}
$$

- Final Value Theorem

$$
\lim _{t \rightarrow \infty} g(t)=\lim _{s \rightarrow 0} s g(s)
$$

- Initial Value Theorem

$$
g(0+)=\lim _{s \rightarrow 0} s g(s)
$$

EXAMPLE 5.3

- Using the integration theorem, beginning with the impulse function, derive the Laplace transforms of the unit step and ramp functions.

PARTIAL FRACTION EXPANSION
 WITH DISTINCT POLES

$$
\begin{gathered}
G(s)=\frac{B(s)}{A(s)}=\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \ldots\left(s+p_{n}\right)}=\frac{r_{1}}{\left(s+p_{1}\right)}+\frac{r_{2}}{\left(s+p_{2}\right)}+\cdots+\frac{r_{n}}{\left(s+p_{n}\right)} \\
{\left[\left(s+p_{k}\right) \frac{B(s)}{A(s)}\right]_{s=-p_{k}}=\left[\begin{array}{rl}
& {\left[\frac{r_{1}}{\left(s+p_{1}\right)}\left(s+p_{k}\right)+\frac{r_{2}}{\left(s+p_{2}\right)}\left(s+p_{k}\right)+\cdots\right.} \\
& \left.+\frac{r_{k}}{\left(s+p_{k}\right)}\left(s+p_{k}\right)+\cdots+\frac{r_{n}}{\left(s+p_{n}\right)}\left(s+p_{k}\right)\right]_{s=-p_{k}}=r_{k}
\end{array}\right.} \\
r_{k}=\left[\left(s+p_{k}\right) \frac{B(s)}{A(s)}\right]_{s=-p_{k}}
\end{gathered}
$$

EXAMPLE 5.4

- Recall the quarter-car suspension simulated in Example 4.4.Assume for this particular example that the mass, damping constant, and spring rate are 500 kg , $8,000 \mathrm{~N}-\mathrm{s} / \mathrm{m}$, and 30,000 N / m, respectively. Derive the response of the system to a unit impulse displacement.

(a)

(b)

$$
\begin{aligned}
\dot{p} & =k \delta+b\left[v_{\text {road }}(t)-\frac{p}{m}\right] \\
\dot{\delta} & =v_{\text {road }}(t)-\frac{p}{m} \\
\dot{y} & =\frac{p}{m}
\end{aligned}
$$

PARTIAL FRACTION EXPANSION WITH REPEATED POLES

$$
\begin{aligned}
& G(s)=\frac{B(s)}{A(s)}=\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \ldots\left(s+p_{n}\right)} \\
& =\frac{r_{1}}{\left(s+p_{1}\right)}+\frac{r_{2}}{\left(s+p_{2}\right)}+\cdots+\frac{r_{n}}{\left(s+p_{n}\right)} \\
& A(s) \frac{B(s)}{A(s)}=\left(s+p_{1}\right)\left(s+p_{2}\right)^{2} \ldots\left(s+p_{n}\right) \frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \ldots\left(s+p_{n}\right)} \\
& K\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{m}\right)=\left(s+p_{2}\right)^{2} \ldots\left(s+p_{n}\right) r_{1} \\
& +\left(s+p_{1}\right)\left(s+p_{2}\right) \ldots\left(s+p_{n}\right) r_{2} \\
& +\left(s+p_{1}\right)\left(s+p_{2}\right) \ldots\left(s+p_{n-1}\right) r_{n}
\end{aligned}
$$

EXAMPLE 5.5

- Find the partial fraction expansion of $\quad G(s)=\frac{s+4}{(s+1)(s+2)^{2}(s+3)}$

EXAMPLE 5.6

- Find the unit impulse response of the quarter-car suspension from Example 5.4 if the mass, damping constant, and spring rate are $500 \mathrm{~kg}, 8,000 \mathrm{~N}-\mathrm{s} / \mathrm{m}$, and 32,000 N / m, respectively. Recall that the transform we derived was

$$
y(s)=\frac{b s+k}{m s^{2}+b s+k} y_{\text {road }}(s) .
$$

PARTIAL FRACTION EXPANSION WITH COMPLEX POLES

$$
\begin{aligned}
& G(s)=\frac{B(s)}{A(s)}=\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right)\left[(s+a)^{2}+\omega^{2}\right]} \\
& =\frac{r_{1}}{\left(s+p_{1}\right)}+\frac{r_{2}}{\left(s+p_{2}\right)}+\frac{r_{3} s+r_{4}}{(s+a)^{2}+\omega^{2}} \\
& K\left(s+z_{1}\right)\left(s+z_{2}\right)=\left(s+p_{2}\right)\left[(s+a)^{2}+\omega^{2}\right] r_{1} \\
& \quad+\left(s+p_{1}\right)\left[(s+a)^{2}+\omega^{2}\right] r_{2} \\
& +\left(s+p_{1}\right)\left(s+p_{2}\right)\left(r_{3} s+r_{4}\right)
\end{aligned}
$$

EXAMPLE 5.7

- Find the partial fraction expansion of $\quad G(s)=\frac{s+4}{(s+1)\left(s^{2}+2 s+5\right)}$

EXAMPLE 5.8

- Find the unit impulse response of the quarter-car suspension from Example 5.4 if the mass, damping constant, and spring rate are $500 \mathrm{~kg}, 8,000 \mathrm{~N}-\mathrm{s} / \mathrm{m}$, and 34,000 N / m, respectively. Recall that the transform we derived was

$$
y(s)=\frac{b s+k}{m s^{2}+b s+k} y_{\text {road }}(s)
$$

POLES, ZEROS,

PARTIAL FRACTION EXPANSION,AND MATLAB

Function	Description
tf (num,den)	defines transfer function using polynomials
pole(sys)	computes poles of a LTI system object
zero(sys)	computes zeros of a LTI system object
zpk(Z,P,K)	defines transfer function with zeros, poles, and gain
$\operatorname{conv(A,B)}$	calculates polynomial multiplication
residue(num,den)	computes partial fraction expansion

EXAMPLE 5.9

- Using MATLAB, find the poles, zeros, and partial fraction expansion of

$$
G(s)=\frac{s^{2}+9 s+20}{s^{4}+4 s^{3}+10 s^{2}+12 s+5}
$$

SUMMARY

- Laplace transforms are used to convert differential equations in the time domain to algebraic equations in the s-domain.
- Linear differential equations become polynomials in the s-domain.
- Sinusoids can be represented using complex exponential functions. As such, they can be manipulated using basic algebraic principles.
- A Laplace transform can be decomposed through partial fraction expansions into terms that can be readily inverse Laplace transformed using Laplace transform primitives.
- Laplace transforms lead to transfer function models. A transfer function is an algebraic construct that represents the output/input relation in the s-domain.
- The zeros are defined as the roots of the polynomial in the numerator of a transfer function.
- The poles are defined as the roots of the polynomial in the denominator of a transfer function.
- MATLAB includes a series of functions to represent transfer functions, compute poles and zeros, conduct polynomial multiplication, and compute partial fraction expansions.

