CHAPTER 5:
LAPLACE TRANSFORMS

SAMANTHA RAMIREZ

PREVIEW QUESTIONS

=  What are some commonly recurring functions in dynamic systems and their
Laplace transforms?

= How can Laplace transforms be used to solve for a dynamic response in the time
domain?

=  What purpose does the Laplace transform play in analyzing the time domain
response?

= What are the relationships between the time domain and s-domain?
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OBJECTIVES & OUTCOMES

= Objectives

= To review the transforms of commonly occurring functions used for modeling
dynamic systems,

= To review some of the more often used theorems that aid in the analysis and
solution of dynamic systems,and

= To understand algebraic analysis of Laplace transforms.
= Qutcomes: Upon completion, you should
= Be able to transform and inverse transform common functions,
= Be able to conduct partial fraction expansions to find inverse Laplace transforms,
= Be able to use MATLAB to analyze Laplace transforms,and

= Be able to solve linear differential equations using Laplace transforms.
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5.2.2 EULER’'STHEOREM

= Refer to the textbook (§5.2.2 for derivation of theorem and identities)

= Euler’s Theorem
e/ = cos@ —jsin@

= Cosine Identity

el0 + 70
cosf = —
= Sine Identity
elf _ ¢=16
sinf =
2j

5.2.3 COMPLEX ALGEBRA
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COMPLEXVARIABLES AND FUNCTIONS

s=0+jw

K(s+2z)(s +2)) ...(s + zp)

G(s) = (s + P1)(5 + pz) (s + )

= Transfer function

= Ratio of polynomials in the s-domain
= Zeroes

= Roots of the numerator
= Poles

= Roots of the denominator

5.3 THE LAPLACE TRANSFORM

= Laplace transform of a function
o

Ll =) = [ etg@e
= Inverse Laplace transform of a function 0

L7 g(s)] = g(t)
= The Laplace transform is a linear operation

Llag:(t) + bg,(t) + cgs ()] = aLlg, ()] + bL[g, ()] + cL[g3 ()]
= ag,(s) + bg,(s) + cg3(s)
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EXISTENCE OF THE LAPLACE TRANSFORM

= Requirements
1. g(t) is a piecewise continuous function on the interval 0<t<eo.

2. g(t) is of exponential order.That is to say there exist real-valued positive constants A
and t such that |g(t)| < Ae® for all t2T.

= Does the Laplace transform

exist for this function? AN
I II |I I|
||I I|I I|I I|I
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TRANSFORMS OF COMMON FUNCTIONS

Exponential Functions Ramp Functions

0, t<0 Aea _ o, t<0

9(0) = { Aot 150 Ch { A tso
1 0 A
L A —at = A = —
[4e™%] s+a LlAt] s2

Sinusoidal Functions

0, £<0
9 _{Asinwt, >0

Step Functions

0, t<0
Al(t)z{A t>0

L[A1(D)] = é L[Asinwt] = A

$2 + w?

L|A t|=A———
[A cos wt] e~
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MULTIPLICATION BY EXPONENTIAL

Lle™%g(t)] = g(s +a)

1)

Lle ¥ sinwt] = ———————

[ ] (s + a)? + w?
s+a

Lle ™ coswt] = ——————

[ ] (s+ a)? + w?

= These will require completing the square.

SHIFTING VS TRANSLATION OF A FUNCTION

Llgt—a)1(t—a)] = e ¥g(s)

= Evaluating a mathematical function fli=a) .
at t-a shifts the function to the right The ffmcnon
- ! shifted
along t an amount a. y
= However, when deriving Laplace (a)
transforms, we have assumed that 4 1(t—a) Unit step
the functions are “truncated” such | shifted
that they are 0 for t<0. !
= A translated function is truncated (b)
and shifted. A flt=a)l(t—a)  The function
|\ /\ /\ translated
\/ \/ \/ I
()




A RECTANGULAR PULSE

. 1l
‘ A
o
. 8(1) = g1{r) +2a(r)
= Two step functions are summed . ,
1
to generate a rectangular pulse. >
I3
elr)=—Al{r—n) 0 o
(a) b)

g(t) = AL(t — t;) — AL(t — tz) = A[1(t — t1) — 1(t — £)]

Llg®)] = A[

e~tiS  gtas
[— [e—f15 — e—tZS]
N N

EXAMPLE 5.1

= Find the Laplace transform for the piecewise continuous function in the figure
shown.

g(1)

—— g(1) = &1(t) +g2(1)

I
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IMPULSE FUNCTIONS

< A —
L[A§(®)] = tleoto_s [1—e~tos] 0
diA[1 — etos]
. to
= lim
to=0 Lt s
dt, °
_ Asetos
= lim
to—0 S
_As
s

iy

DIFFERENTIATION THEOREM

= Laplace transform of the first derivative
LIg(®)] = sg(s) — g(0)
= Laplace transform of the second derivative
LIG®)] = s*g(s) —sg(0) — g(0)
= Laplace transform of the nth derivative

£lgm(®)] = s"g(s) = s"1g(0) — ™2 (0) -

= gD (0)
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EXAMPLE 5.2

= Using the differentiation theorem, derive the Laplace transforms of the
untranslated unit step and impulse functions from the unit ram function.

INTEGRATION, FINAL VALUE,

AND INITIALVALUE THEOREMS

= Integration Theorem
t
s
LU g(t)dt] = 0]
0 s
=  Final Value Theorem
lim g(¢) = lim sg(s)
= |nitial Value Theorem

g(0+) = lim sg(s)




EXAMPLE 5.3

= Using the integration theorem, beginning with the impulse function, derive the
Laplace transforms of the unit step and ramp functions.

PARTIAL FRACTION EXPANSION

WITH DISTINCT POLES

B(s) K(s+zl)(s+zz) (s+zm) n 7y et i
A(S)  (G+p)G+py)..(s+py)  (s+ pl) (s +p2) (s+pw)

G(s) =

(s)
[(5+Pk)A(S)] [(s+p)( +pk)+( + )(5+pk)+
t o PO S 5+ ) oy Tk
B(s)
+p)—=
welereial.,
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EXAMPLE 5.4

Recall the quarter-car ‘p
suspension simulated in !ﬂa ko |6
Example 4.4. Assume for ,(%l_( 0~ 1
this particular example that -
the mass, damping constant, ; 1&1,@{!}

and spring rate are 500 kg, Vioad (1) r
8,000 N-s/m, and 30,000 S Rib
N/m, respectively. Derive @ ®

the response of the system p=ké+b {erzd(f) - %]

to a unit impulse 8 = Vyoaa(t) —

displacement. »
y=-
nt

PARTIAL FRACTION EXPANSION

WITH REPEATED POLES

_B(s) _ K(s+2z)(s+2) ...(s+ zp)
TAG) T (s+p)s+p) .. (s+pn)

G(s)

. n n "2 I "n
C(s+p) (s+pw) (s +pn)

B(s) K(s+2z)(s+2) ... (s + z)

A(S)m =(s+p)(s+ pZ)Z (s +pn) (s +p)(s +p2) . (s +pn)

K(s+2z)(+2)..(s+2z,) =(G+p?..(s+p)ny
+(s +p)(s +p2) .. (s + Py
+(s+p)(s +p2) . (s + D)
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EXAMPLE 5.5

s+4
(s+D(s+2)%(s+3)

= Find the partial fraction expansion of ~ G(s) =

EXAMPLE 5.6

=  Find the unit impulse response of the quarter-car suspension from Example 5.4 if
the mass, damping constant, and spring rate are 500 kg, 8,000 N-s/m, and 32,000
N/m, respectively. Recall that the transform we derived was

bs+k

ms2+bs+k Yroaa (s)-

y(s) =
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PARTIAL FRACTION EXPANSION

WITH COMPLEX POLES

B(s) K(s + z1)(s + z3)

G(s) = A(s) ~ (s +p)(s +p)[(s +a)? + w?]

_ m + p) + 1r3S+ 1y
S (s+p)  (5+p) (+a)?+w?

K(s+2z)(5+2z)=(s+p)[(s+a)?+w?]ny
+(s + p)[(s + a)? + w?]ry
+(s +p)(s +p2)(r3s +14)

EXAMPLE 5.7

s+4
(s+1)(s?2+2s+5)

= Find the partial fraction expansion of ~ G(s) =
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EXAMPLE 5.8

= Find the unit impulse response of the quarter-car suspension from Example 5.4 if
the mass, damping constant, and spring rate are 500 kg, 8,000 N-s/m, and 34,000
N/m, respectively. Recall that the transform we derived was

bs +k

y(s) = 5Z ¥ e 7 e Vroad (5

POLES, ZEROS,

PARTIAL FRACTION EXPANSION,AND MATLAB

tf(num,den)
pole(sys)
zero(sys)
zpk(Z,PK)
conv(A,B)

residue(num,den)

defines transfer function using polynomials
computes poles of a LTI system object

computes zeros of a LTI system object

defines transfer function with zeros, poles, and gain
calculates polynomial multiplication

computes partial fraction expansion
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EXAMPLE 5.9

= Using MATLAB, find the poles, zeros, and partial fraction expansion of

52495+ 20
s*+4s3+10s24+125s+5

G(s) =

SUMMARY

Laplace transforms are used to convert differential equations in the time domain to algebraic equations in the s-domain.

Linear differential equations become polynomials in the s-domain.

Sinusoids can be represented using complex exponential functions.As such, they can be manipulated using basic algebraic
principles.

A Laplace transform can be decomposed through partial fraction expansions into terms that can be readily inverse Laplace
transformed using Laplace transform primitives.

Laplace transforms lead to transfer function models.A transfer function is an algebraic construct that represents the
output/input relation in the s-domain.

The zeros are defined as the roots of the polynomial in the numerator of a transfer function.

The poles are defined as the roots of the polynomial in the denominator of a transfer function.

MATLAB includes a series of functions to represent transfer functions, compute poles and zeros, conduct polynomial
multiplication,and compute partial fraction expansions.
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