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CHAPTER 5:

LAPLACE TRANSFORMS
SAMANTHA RAMIREZ

PREVIEW QUESTIONS

 What are some commonly recurring functions in dynamic systems and their 

Laplace transforms?

 How can Laplace transforms be used to solve for a dynamic response in the time 

domain?

 What purpose does the Laplace transform play in analyzing the time domain 

response?

 What are the relationships between the time domain and s-domain?
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OBJECTIVES & OUTCOMES

 Objectives

 To review the transforms of commonly occurring functions used for modeling 

dynamic systems,

 To review some of the more often used theorems that aid in the analysis and 

solution of dynamic systems, and

 To understand algebraic analysis of Laplace transforms.

 Outcomes: Upon completion, you should

 Be able to transform and inverse transform common functions,

 Be able to conduct partial fraction expansions to find inverse Laplace transforms,

 Be able to use MATLAB to analyze Laplace transforms, and

 Be able to solve linear differential equations using Laplace transforms.

5.2.1 COMPLEX NUMBERS

𝑧 = 𝑥 + 𝑗𝑦

𝑧 = 𝑥2 + 𝑦2

𝜃 = tan−1
𝑦

𝑥

ҧ𝑧 = 𝑥 − 𝑗𝑦
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5.2.2 EULER’S THEOREM

 Refer to the textbook (§5.2.2 for derivation of theorem and identities)

 Euler’s Theorem

 Cosine Identity

 Sine Identity

𝑒−𝑗𝜃 = cos 𝜃 − 𝑗 sin 𝜃

cos 𝜃 =
𝑒𝑗𝜃 + 𝑒−𝑗𝜃

2

sin 𝜃 =
𝑒𝑗𝜃 − 𝑒−𝑗𝜃

2𝑗

5.2.3 COMPLEX ALGEBRA

𝑧 = 𝑥 + 𝑗𝑦 and w = u + jv

𝑧 + 𝑤 = 𝑥 + 𝑢 + 𝑗(𝑦 + 𝑣)

𝑎𝑧 = 𝑎𝑥 + 𝑗𝑎𝑦

𝑧 − 𝑤 = 𝑥 − 𝑢 + 𝑗(𝑦 − 𝑣)

𝑧𝑤 = 𝑥𝑢 − 𝑦𝑣 + 𝑗(𝑥𝑣 + 𝑦𝑢)

𝑧𝑤 = 𝑧 𝑤 ∠(𝜃 + 𝜙)

𝑗𝑧 = −𝑦 + 𝑗𝑥 = 𝑧 ∠(0 + 90°)

𝑧

𝑤
=

𝑧

𝑤
∠ 𝜃 − 𝜙 =

𝑥𝑢 + 𝑦𝑣

𝑢2 + 𝑦2
+ 𝑗

𝑦𝑢 − 𝑥𝑣

𝑢2 + 𝑦2

𝑧

𝑗
= 𝑦 − 𝑗𝑥 = 𝑧 ∠(𝜃 − 90°)

𝑧𝑛 = 𝑧 ∠𝜃 𝑛 = 𝑧 𝑛∠(𝑛𝜃)

𝑧1/𝑛 = 𝑧 ∠𝜃 1/𝑛 = 𝑧 1/𝑛∠(𝜃/𝑛)
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COMPLEX VARIABLES AND FUNCTIONS

 Transfer function

 Ratio of polynomials in the s-domain

 Zeroes

 Roots of the numerator

 Poles

 Roots of the denominator

𝑠 = 𝜎 + 𝑗𝜔

𝐺 𝑠 =
𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2 …(𝑠 + 𝑧𝑚)

𝑠 + 𝑝1 𝑠 + 𝑝2 …(𝑠 + 𝑝𝑛)

5.3 THE LAPLACE TRANSFORM

 Laplace transform of a function

 Inverse Laplace transform of a function

 The Laplace transform is a linear operation

ℒ 𝑔(𝑡) = g s = න
0

∞

𝑒−𝑠𝑡𝑔 𝑡 𝑑𝑡

ℒ−1 g s = 𝑔(𝑡)

ℒ 𝑎𝑔1 𝑡 + 𝑏𝑔2 𝑡 + 𝑐𝑔3 𝑡 = 𝑎ℒ 𝑔1 𝑡 + 𝑏ℒ 𝑔2 𝑡 + 𝑐ℒ 𝑔3 𝑡
= 𝑎g1 s + 𝑏g2 s + 𝑐g3 s
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EXISTENCE OF THE LAPLACE TRANSFORM

 Requirements

1. g(t) is a piecewise continuous function on the interval 0<t<∞.

2. g(t) is of exponential order. That is to say there exist real-valued positive constants A 

and t such that 𝑔(𝑡) ≤ 𝐴𝑒𝑎𝑡 for all t≥T.

 Does the Laplace transform 

exist for this function?

TRANSFORMS OF COMMON FUNCTIONS

Exponential Functions Ramp Functions

Step Functions Sinusoidal Functions

𝑔 𝑡 = ቊ
0, 𝑡 < 0

𝐴𝑒−𝑎𝑡 , 𝑡 ≥ 0

ℒ 𝐴𝑒−𝑎𝑡 = 𝐴
1

𝑠 + 𝑎

𝑔 𝑡 = ቊ
0, 𝑡 < 0
𝐴𝑡, 𝑡 ≥ 0

ℒ 𝐴𝑡 =
𝐴

𝑠2

𝐴1(𝑡) = ቊ
0, 𝑡 < 0
𝐴, 𝑡 ≥ 0

ℒ 𝐴1(𝑡) =
𝐴

𝑠

𝑔 𝑡 = ቊ
0, 𝑡 < 0
𝐴 sin𝜔𝑡 , 𝑡 ≥ 0

ℒ 𝐴 sin𝜔𝑡 = 𝐴
𝜔

𝑠2 + 𝜔2

ℒ 𝐴 cos𝜔𝑡 = 𝐴
𝑠

𝑠2 + 𝜔2
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MULTIPLICATION BY EXPONENTIAL

 These will require completing the square.

ℒ 𝑒−𝑎𝑡𝑔 𝑡 = g(s + a)

ℒ 𝑒−𝑎𝑡 sin𝜔𝑡 =
𝜔

𝑠 + 𝑎 2 + 𝜔2

ℒ 𝑒−𝑎𝑡 cos𝜔𝑡 =
𝑠 + 𝑎

𝑠 + 𝑎 2 +𝜔2

SHIFTING VS TRANSLATION OF A FUNCTION

 Evaluating a mathematical function 

at t-a shifts the function to the right 

along t an amount a.

 However, when deriving Laplace 

transforms, we have assumed that 

the functions are “truncated” such 

that they are 0 for t<0.

 A translated function is truncated 

and shifted.

ℒ 𝑔 𝑡 − 𝑎 1 𝑡 − 𝑎 = 𝑒−𝑎𝑠𝑔(𝑠)
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A RECTANGULAR PULSE

 Two step functions are summed 

to generate a rectangular pulse.

𝑔 𝑡 = 𝐴1 𝑡 − 𝑡1 − 𝐴1 𝑡 − 𝑡2 = 𝐴[1 𝑡 − 𝑡1 − 1 𝑡 − 𝑡2 ]

ℒ 𝑔 𝑡 = 𝐴
𝑒−𝑡1𝑠

𝑠
−
𝑒−𝑡2𝑠

𝑠
=
𝐴

𝑠
[𝑒−𝑡1𝑠 − 𝑒−𝑡2𝑠]

EXAMPLE 5.1

 Find the Laplace transform for the piecewise continuous function in the figure 

shown.
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IMPULSE FUNCTIONS

ℒ 𝐴 ሚ𝛿 𝑡 = lim
𝑡𝑜→0

𝐴

𝑡𝑜𝑠
[1 − 𝑒−𝑡𝑜𝑠]

= lim
𝑡𝑜→0

𝑑
𝑑𝑡𝑜

𝐴[1 − 𝑒−𝑡𝑜𝑠]

𝑑
𝑑𝑡𝑜

𝑡𝑜𝑠

=
𝐴𝑠

𝑠

= lim
𝑡𝑜→0

𝐴𝑠𝑒−𝑡𝑜𝑠

𝑠

= 𝐴

DIFFERENTIATION THEOREM

 Laplace transform of the first derivative

 Laplace transform of the second derivative

 Laplace transform of the nth derivative

ℒ ሶ𝑔 𝑡 = 𝑠g s − 𝑔(0)

ℒ ሷ𝑔 𝑡 = 𝑠2g s − 𝑠𝑔 0 − ሶ𝑔(0)

ℒ 𝑔 𝑛 𝑡 = 𝑠𝑛g s − 𝑠𝑛−1𝑔 0 − 𝑠𝑛−2 ሶ𝑔 0 − ⋯− 𝑔 𝑛−1 (0)
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EXAMPLE 5.2

 Using the differentiation theorem, derive the Laplace transforms of the 

untranslated unit step and impulse functions from the unit ram function. 

INTEGRATION, FINAL VALUE,

AND INITIAL VALUE THEOREMS

 Integration Theorem

 Final Value Theorem

 Initial Value Theorem

ℒ න
0

𝑡

𝑔 𝑡 𝑑𝑡 =
g(s)

𝑠

lim
𝑡→∞

𝑔 𝑡 = lim
𝑠→0

𝑠g(s)

𝑔(0+) = lim
𝑠→0

𝑠g(s)
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EXAMPLE 5.3

 Using the integration theorem, beginning with the impulse function, derive the 

Laplace transforms of the unit step and ramp functions.

PARTIAL FRACTION EXPANSION 

WITH DISTINCT POLES

𝐺 𝑠 =
𝐵(𝑠)

𝐴(𝑠)
=
𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2 …(𝑠 + 𝑧𝑚)

𝑠 + 𝑝1 𝑠 + 𝑝2 …(𝑠 + 𝑝𝑛)
=

𝑟1
𝑠 + 𝑝1

+
𝑟2

𝑠 + 𝑝2
+⋯+

𝑟𝑛
𝑠 + 𝑝𝑛

(𝑠 + 𝑝𝑘)
𝐵(𝑠)

𝐴(𝑠)
𝑠=−𝑝𝑘

= ቈ
𝑟1

𝑠 + 𝑝1
(𝑠 + 𝑝𝑘) +

𝑟2
𝑠 + 𝑝2

𝑠 + 𝑝𝑘 +⋯

൨+
𝑟𝑘

𝑠+𝑝𝑘
𝑠 + 𝑝𝑘 +⋯+

𝑟𝑛

𝑠+𝑝𝑛
(𝑠 + 𝑝𝑘)

𝑠=−𝑝𝑘

= 𝑟𝑘

𝑟𝑘 = (𝑠 + 𝑝𝑘)
𝐵(𝑠)

𝐴(𝑠)
𝑠=−𝑝𝑘
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EXAMPLE 5.4

 Recall the quarter-car 

suspension simulated in 

Example 4.4. Assume for 

this particular example that 

the mass, damping constant, 

and spring rate are 500 kg, 

8,000 N-s/m, and 30,000 

N/m, respectively. Derive 

the response of the system 

to a unit impulse 

displacement.

PARTIAL FRACTION EXPANSION 

WITH REPEATED POLES

𝐺 𝑠 =
𝐵(𝑠)

𝐴(𝑠)
=
𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2 …(𝑠 + 𝑧𝑚)

𝑠 + 𝑝1 𝑠 + 𝑝2 …(𝑠 + 𝑝𝑛)

=
𝑟1

𝑠 + 𝑝1
+

𝑟2
𝑠 + 𝑝2

+⋯+
𝑟𝑛

𝑠 + 𝑝𝑛

𝐴 𝑠
𝐵 𝑠

𝐴 𝑠
= 𝑠 + 𝑝1 𝑠 + 𝑝2

2…(𝑠 + 𝑝𝑛)
𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2 …(𝑠 + 𝑧𝑚)

𝑠 + 𝑝1 𝑠 + 𝑝2 …(𝑠 + 𝑝𝑛)

𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2 … 𝑠 + 𝑧𝑚 = 𝑠 + 𝑝2
2… 𝑠 + 𝑝𝑛 𝑟1

+ 𝑠 + 𝑝1 𝑠 + 𝑝2 … 𝑠 + 𝑝𝑛 𝑟2
+ 𝑠 + 𝑝1 𝑠 + 𝑝2 … 𝑠 + 𝑝𝑛−1 𝑟𝑛
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EXAMPLE 5.5

 Find the partial fraction expansion of 𝐺 𝑠 =
𝑠 + 4

(𝑠 + 1) 𝑠 + 2 2(𝑠 + 3)

EXAMPLE 5.6

 Find the unit impulse response of the quarter-car suspension from Example 5.4 if 

the mass, damping constant, and spring rate are 500 kg, 8,000 N-s/m, and 32,000 

N/m, respectively. Recall that the transform we derived was

𝑦 𝑠 =
𝑏𝑠+𝑘

𝑚𝑠2+𝑏𝑠+𝑘
𝑦𝑟𝑜𝑎𝑑(𝑠).
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PARTIAL FRACTION EXPANSION

WITH COMPLEX POLES

𝐺 𝑠 =
𝐵(𝑠)

𝐴(𝑠)
=

𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2
𝑠 + 𝑝1 𝑠 + 𝑝2 [ 𝑠 + 𝑎 2 + 𝜔2]

=
𝑟1

𝑠 + 𝑝1
+

𝑟2
𝑠 + 𝑝2

+
𝑟3𝑠 + 𝑟4

𝑠 + 𝑎 2 + 𝜔2

𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2 = 𝑠 + 𝑝2 [ 𝑠 + 𝑎 2 + 𝜔2] 𝑟1
+ 𝑠 + 𝑝1 [ 𝑠 + 𝑎 2 + 𝜔2]𝑟2
+ 𝑠 + 𝑝1 𝑠 + 𝑝2 (𝑟3𝑠 + 𝑟4)

EXAMPLE 5.7

 Find the partial fraction expansion of 𝐺 𝑠 =
𝑠 + 4

(𝑠 + 1)(𝑠2 + 2𝑠 + 5)
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EXAMPLE 5.8

 Find the unit impulse response of the quarter-car suspension from Example 5.4 if 

the mass, damping constant, and spring rate are 500 kg, 8,000 N-s/m, and 34,000 

N/m, respectively. Recall that the transform we derived was

𝑦 𝑠 =
𝑏𝑠 + 𝑘

𝑚𝑠2 + 𝑏𝑠 + 𝑘
𝑦𝑟𝑜𝑎𝑑(𝑠)

POLES, ZEROS, 

PARTIAL FRACTION EXPANSION, AND MATLAB

Function Description

tf(num,den) defines transfer function using polynomials

pole(sys) computes poles of a LTI system object

zero(sys) computes zeros of a LTI system object

zpk(Z,P,K) defines transfer function with zeros, poles, and gain

conv(A,B) calculates polynomial multiplication

residue(num,den) computes partial fraction expansion
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EXAMPLE 5.9

 Using MATLAB, find the poles, zeros, and partial fraction expansion of

𝐺 𝑠 =
𝑠2 + 9𝑠 + 20

𝑠4 + 4𝑠3 + 10𝑠2 + 12𝑠 + 5

SUMMARY

 Laplace transforms are used to convert differential equations in the time domain to algebraic equations in the s-domain.

 Linear differential equations become polynomials in the s-domain. 

 Sinusoids can be represented using complex exponential functions. As such, they can be manipulated using basic algebraic 

principles.

 A Laplace transform can be decomposed through partial fraction expansions into terms that can be readily inverse Laplace 

transformed using Laplace transform primitives.

 Laplace transforms lead to transfer function models. A transfer function is an algebraic construct that represents the 

output/input relation in the s-domain.

 The zeros are defined as the roots of the polynomial in the numerator of a transfer function.

 The poles are defined as the roots of the polynomial in the denominator of a transfer function.

 MATLAB includes a series of functions to represent transfer functions, compute poles and zeros, conduct polynomial 

multiplication, and compute partial fraction expansions.


