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Chapter 4: 

The State Space and 

Numerical Simulation
Samantha Ramirez

Preview Questions

 What mathematical formulation might we apply to the 

models we derived in the previous chapter in order to 

facilitate predicting and analyzing their dynamic 

responses?

 What are typical system inputs and outputs? 

 How can we use a numerical language like MATLAB to 

simulate dynamic responses?

 What are typical responses for common types of inputs?
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Objectives & Outcomes

 Objectives:

 To understand how systems of first-order differential equations 
are converted to state-space representations, 

 To study and understand the use of mathematical functions utilized to 
model commonly occurring system inputs, and 

 To simulate dynamic systems represented by state-space equations using 
MATLAB. 

 Outcomes: Upon completion, you should

 be able to reformulate equations derived using bond graphs into 
state-space representations, 

 be able to model a variety of physical inputs using some basic 
mathematical functions, and 

 simulate dynamic responses for simple and moderately complex systems 
using the state-space formulation. 

The State Space

 ሶ𝒙 = 𝑨𝒙 + 𝑩𝒖

 𝒚 = 𝑪𝒙 + 𝑫𝒖

 A is an [n x n] matrix

 x is an [n x 1] state vector

 B is an [n x m] matrix

 u is an [mx1] input vector

 y is an [r x 1] output vector

 C is an [r x n] matrix

 D is an [r x m] matrix
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Composing State-Space 

Representations

 Identify the states, inputs, and outputs

 Rewrite each state equation as a linear combination of 

all the states and all the inputs

 Write the differential equations as a linear algebraic 

equation in terms of the state and input vectors

 Write each output as a linear combination of all the 

states and all the inputs

 Rewrite the linear system of output equations as a 

single linear algebraic equation in terms of the state 

and input vectors

Example 4.1
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Example 4.1 Continued

Example 4.2
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Example 4.2 Continued

Figure 4.1

Example 4.3
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Example 4.3 Continued

Review Problems

 Put the differential equations in state-space format for 

the following problems.
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Review Problem 1

 ሶ𝑝1 =
𝑏

𝑚
𝑝2 − 𝑝1 + 𝑘𝛿2 − 𝑘𝑥1

 ሶ𝑥1 =
𝑝1

𝑚

 ሶ𝑝2 = −
𝑏

𝑚
𝑝2 − 𝑝1 − 𝑘𝛿2 + 𝐹(𝑡)

 ሶ𝛿1 =
𝑝2

𝑚
−

𝑝1

𝑚

Review Problem 2

 ሶ𝜆1 = 𝑒 𝑡 −
𝑁1

𝑁2

𝑞

𝐶

 ሶ𝑞 =
𝑁1

𝑁2

𝜆1

𝐿1
− 𝑖(𝑡)

 ሶ𝜆2 = 𝑅1𝑖 𝑡 −
𝑅1

𝐿2
𝜆2 −

𝑅2

𝐿2
𝜆2
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Review Problem 3

 ሶ𝜆 = 𝑒𝑖𝑛 −
𝑅𝑚

𝐿𝑚
𝜆 −

𝑘𝑚

𝐽𝑚
ℎ

 ሶℎ =
𝑘𝑚

𝐿𝑚
𝜆 −

𝛽

𝐽𝑚
ℎ −

𝑁1

𝑁2

2 𝛽

𝐽𝑚
ℎ −

𝑁1

𝑁2
𝜅𝜃

 ሶ𝜃 =
𝑁1

𝑁2

1

𝐽𝑚
ℎ −

𝜅

𝛽𝑓𝑟𝑖𝑐
𝜃

Review Problem 4

 ሶ𝜆 = 𝑒𝑖𝑛 𝑡 −
𝑅

𝐿
𝜆 −

𝑘𝑚

𝐽
ℎ

 ሶℎ =
𝑘𝑚

𝐿
𝜆 −

𝑁1

𝑁2

2 𝛽

𝐽
ℎ −

𝑁1

𝑁2
𝜅𝜃

 ሶ𝜃 =
𝑁1

𝑁2

ℎ

𝐽
−

𝜅

𝛽
𝜃 +

𝑅𝑝𝜅

𝛽
𝛿

 ሶ𝛿 =
𝑅𝑝𝜅

𝛽
𝜃 −

𝑅𝑝
2𝜅

𝛽
𝛿 −

𝑝

𝑚

 ሶ𝑝 = 𝜅𝛿 −
𝑏

𝑚
𝑝
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Challenge Problem

 ሶΓ =
𝑘𝑝

𝐽𝑚
ℎ𝑚 −

𝑅𝑝𝑖𝑝𝑒

𝐼𝑝𝑖𝑝𝑒
Γ −

𝑉

𝐶𝑎𝑐𝑐

 ሶ𝑉 =
Γ

𝐼𝑝𝑖𝑝𝑒

 ሶℎ𝑚 =
𝑘𝑚

𝐿𝑚
𝜆𝑚 −

𝑘𝑝

𝐼𝑝𝑖𝑝𝑒
Γ −

𝛽3

𝐽𝑚
ℎ𝑚

 ሶ𝜆𝑚 =
𝑞

𝐶
−

𝑅𝑚

𝐿𝑚
𝜆𝑚 −

𝑘𝑚

𝐽𝑚
ℎ𝑚

 ሶ𝑞 =
𝜆𝑔

𝐿𝑔
−

𝜆𝑚

𝐿𝑚

 ሶ𝜆𝑔 =
𝑘𝑔

𝐽𝑔
ℎ𝑔 −

𝑅𝑔

𝐿𝑔
𝜆𝑔 −

𝑞

𝐶

 ሶℎ𝑔 =
𝑁2

𝑁1
𝑘𝑓𝑎𝑛𝑣 𝑡 −

𝑁2

𝑁1

2 𝛽1

𝐽𝑔
ℎ𝑔 −

𝛽2

𝐽𝑔
ℎ𝑔 −

𝑘𝑔

𝐿𝑔
𝜆𝑔

Basic Transient Responses
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 Also known as the Dirac delta function

 Infinitely high

 Infinitesimal width

 Total area under the curve of 1

 Sometimes used to approximate inputs of 

large magnitude that operate over short 

periods of time (e.g. an impact force)

Figure 4.2

The Unit Impulse Response

 Also known as the Heaviside Function

 The unit step is the integral of the unit 

impulse

 Often used to represent constant 

inputs that are “switched on” at initial 

time 

Figure 4.3

The Unit Step Response
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 The unit ramp response is the 

integral of the unit step 

response

 Used to represent inputs that 

vary proportionally with time
Figure 4.4

The Unit Ramp Response

 sys = ss(A,B,C,D), state-space representation

 step(sys), unit step response

 impulse(sys), unit impulse response

 lsim(sys), general input response

 initial(sys,x0), simulate the initial condition 

response

State-Space Simulations Using 

MATLAB
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Applications

Example 4.4

 This is a quarter-car suspension model.

Typical vehicle mass, damping constant,

and spring rate for a family sedan are

1700 kg, 750 Ns/m, and 30 kN/m,

respectively. If the vehicle drives over a

curb, what is the approximate response?
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>> m = 0.30*1700; 

>> b = 750; k = 30e3;

>> A = [-b/m,k,0;-1/m,0,0;1/m,0,0];

>> B = [b;1;0];C = [0,0,1]; D = 0;

>> sys = ss(A,B,C,D);

>> [Y,T] = impulse(sys);

>> plot(T,0.20*Y);

>> xlabel(’Time (seconds)’)

>> ylabel(’y(t) (m)’)

Example 4.4

Example 4.5

 A PMDC motor operates at a constant input voltage. When the

voltage is initially applied, the input instantaneously jumps from

zero to a constant value just like a step input. A transient

response ensues. Plot the response of the system to a 24-volt

input.
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 Recall PMDC motor from Example 4.1

>> ein_max = 24; L = 8.62e-3; R = 17.2; km = 2.73e-2;

>> J = 9.2e-7; n = 1/187.7; beta = 5.9e-7;

>> A = [-R/L,-km/J;km/L,-n^2*beta/J];

>> B = [1;0]; C = [0,n/J]; >> D = 0;

>> sys = ss(A,B,C,D);

>> t = [0:0.001:0.2]’;

>> [Y,T] = step(sys,t);

>> wout = 24*Y; % scale the output response

>> u = ein_max*ones(length(t),1); % array of ein_max

>> [AX,H1,H2] = plotyy(T,wout,t,u);

>> xlabel(’Time (seconds)’);

>> set(get(AX(1),’Ylabel’),’String’,’\omega_{out}(t) (rad/s)’)

>> set(get(AX(2),’Ylabel’),’String’,’e_{in}(t) (volts)’)

Example 4.5 Continued

Example 4.6

 What would a response of the PMDC motor be if the voltage is

ramped from 0 to 24 V in 0.2 seconds and then maintained

constant?
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>> t = [0:1/1000:0.3]’;

>> u = [0:24/200:24 24*ones(1,100)]’;

>> [Y,T] = lsim(sys,u,t);

>> [AX,H1,H2] = plotyy(t,Y,t,u);

>> xlabel(’Time (seconds)’);

>> set(get(AX(1),’Ylabel’),’String’,’\omega_{out}(t) (rad/s)’)

>> set(get(AX(2),’Ylabel’),’String’,’e_{in}(t) (Volts)’)

Example 4.6

Example 4.7
 This mass-spring-damper system has an external force

that induces motion. Motion, however, can be induced

by simply displacing the system from equilibrium. The

first mass can be displaced a given amount and then

released resulting in free vibration. Simulate the free

vibration response for an initial displacement of the

leftmost mass of a few centimeters. Assume that the

masses, damping constants, and spring rates are 10 kg,

20 N-s/m, and 60 N/m, respectively.
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 Recall Example 4.2
>> m = 10; b = 20; k = 60;

>> A = [0,1/m,0,0;-k,-b/m,k,0;0,-1/m,0,1/m;0,0,-k,0];

>> B = [0;0;0;1]; C = [1,0,0,0;1,0,1,0]; D = [0;0];

>> sys = ss(A,B,C,D);

>> [Y,T,X] = initial(sys,[0.20 0 0 0]);

>> plot(T,Y)

>> xlabel(’Time (seconds)’)

>> ylabel(’Displacement (m)’)

>> legend(’x_1(t)’,’x_2(t)’)

Example 4.7

State Transformations
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State Transformations Continued

Example 4.8
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>> m = 100; b = 25; k = 50; 

>> A = [0 1/m 0 0; -k -b/m k 0; 0 -1/m 0 1/m; 0 0 -k 0];

>> T = [1 0 0 0; 0 m 0 0; -1 0 1 0; 0 0 0 m];

>> Aalt = inv(T)*A*T;

>> eig(A)

ans =

-0.0902 + 1.1341i

-0.0902 - 1.1341i

-0.0348 + 0.4381i

-0.0348 - 0.4381i

>> eig(Aalt)

ans =

-0.0902 + 1.1341i

-0.0902 - 1.1341i

-0.0348 + 0.4381i

-0.0348 - 0.4381i

Example 4.8 Continued

 For linear systems, the differential equations and outputs can be written as a linear 
combination of the states and inputs using Linear Algebra. This type of formulation is called 
the state-space representation. 

 State-space models are composed by identifying the state, input, and output vectors. The 
individual first-order differential equations and output equations are written as linear 
combinations of the states and inputs. This facilitates identifying and separating the 
coefficients, states, and inputs in each equation. 

 At t = 0, the unit impulse function (or Dirac delta function), ሚ𝛿(𝑡), has infinite height and 
infinitesimal width. The function is referred to as unit impulse because the integral under the 
curve is one. 

 The unit step function (or Heaviside function), 1(t), is the integral of the unit impulse. The 
function is unity for all values of time greater than zero (t > 0). 

 The unit ramp function is the integral of the unit impulse. For values of t > 0 the function 
increases at a constant rate of unity. 

 Because the impulse, step, and ramp functions are related through integration and 
differentiation, so are the output responses to these inputs. 

 MATLAB provides a variety of commands for defining and simulating the responses of state-
space models, including commands to define a state-space object and to simulate responses to 
an impulse, a step, an arbitrary function, or an initial condition. 

 State-space representations are not unique. Several models can be derived to represent the 
same system in terms of distinct sets of states.  A state transformation can be used to transfer 
from one set of states to another. Regardless of the state vector chosen, the eigenvalues of the 
system are unique.

Summary


