Mechanical Translation Example 1
Mechanical Translation Example 2
Mechanical Rotation Example 1
Mechanical Rotation Example 2
Challenge Problem: Wind Turbine Bond Graph Synthesis
Electrical Circuits Example 1
Electrical Circuits Example 2
Electrical Circuits Example 3
Hydraulic Circuit
Example 1

Q → [C₁] → [R₁] → [C₂] → [I₁] → [R₂] → (a)
Hydraulic Circuit Example 2
Mixed System Example
MECE 3304 System Dynamics
Chapter 3 Lecture Problems: Synthesize the bond graph for the following problems.

Practice Problem 1

![Bond Graph Diagram]

\[
x_1(t) \quad b \quad x_2(t) \quad F(t)
\]

- \(m \) denotes mass
- \(k \) denotes spring constant
- \(b \) denotes damping coefficient
Chapter 3 Lecture Problems: Synthesize the bond graph for the following problems.

Practice Problem 2
Chapter 3 Lecture Problems: Synthesize the bond graph for the following problems.

Practice Problem 3
Practice Problem 4
Chapter 3 Lecture Problems: Synthesize the bond graph and derive the differential equations for the following problems.

Mass-Spring-Damper Example
MECE 3304 System Dynamics
Chapter 3 Lecture Problems: Synthesize the bond graph and derive the differential equations for the following problems.

Mechanical Rotation Example
Chapter 3 Lecture Problems: Synthesize the bond graph and derive the differential equations for the following problems.

Electric Circuit Example
Chapter 3 Lecture Problems: Synthesize the bond graph and derive the differential equations for the following problems.

Hydraulic Circuit Example
MECE 3304 System Dynamics
Chapter 3 Lecture Problems: Synthesize the bond graph and derive the differential equations for the following problems.

Mixed System Example
MECE 3304 System Dynamics

Chapter 3 Lecture Problems: Synthesize the bond graph and derive the differential equations for the following problems.

Algebraic Loops
Challenge Problem

Bond Graph and Differential Equations

Consider the bond graph shown above. Synthesize the bond graph and derive the differential equations for the following problems.

- **Accumulator** with capacity C_{acc}
- **Pipe** with resistance R_{pipe} and flow rate I_{pipe}
- **Motor** with moment of inertia J_m, resistance R_m, inductance L_m, and overall force F_m (which is a function of N_1 and N_2)
- **Generator** with moment of inertia J_g, resistance R_g, and voltage $v(t)$

Use the bond graph symbols and conventions to model the system dynamics.