CHAPTER 2: BASIC BOND GRAPH ELEMENTS

Samantha Ramirez

Challenge

• Identify the elements of the following dynamic system based on what they do with energy.

http://www.gipsa-lab.fr/~mazen.alamir/images/AMT_system.jpg

Dijectives: • To be able to decompose dynamic systems into more basic elements that facilitate mathematical modeling, • To understand how energy usage and conversion are utilized to categorize basic elements, and • To be able to model the constitutive relations of basic dynamic system elements based energy. • Dutcomes: Upon completion of this chapter, you will • be able to categorize basic elements of dynamic systems, • be able to derive the mathematical input-output relations for each element, • begin to draw analogies between basic elements in different power domains, and

begin to understand the flow of "mathematical information" within dynamic system models.

Labeling Power Bonds

- A power bond is expressed by a half-arrow which indicates the direction of power flow.
- Power is the product of an effort and a flow.
- Efforts are placed above or to the left of the power bond.
- Flows are placed below or to the right of the power bond.

2.2 Basic 1-Port Elements

- 1-Port elements store or dissipate energy
 - R-elements dissipate energy
 - C-elements store potential energy
 - I-elements store kinetic energy
- These elements are referred to as 1-ports due to their single energy port
- Power generally flows from the system to the 1-ports because the opposite would imply that the 1-port supplies energy to the system.

C-E	C-Elements • Stores potential energy $ \int_{F}^{F} \frac{y_2}{y_1} \underbrace{\varphi_1 + \varphi_2}_{F} \underbrace{\varphi_1 + \varphi_2}_{F} \underbrace{\varphi_2 + \varphi_2}_{F} \varphi_2 + $				$\dot{p} \equiv e \qquad \qquad$			
	Derivative Causality Integra	al Causality		Integral	Derivative			
Domain	Parameters	SI Units		$e = \frac{1}{2} \int f dt$	$f = \frac{d}{dr}(Ce)$			
Generalized	R=q/e	N/A		<i>c j , at</i>	dt			
Translational	1/k, spring compliance	m/N		Nonlinear	Linear			
Rotational	1/κ, rotational compliance	Rad/N-m		$q = \phi_{\mathcal{C}}(e)$	q = Ce			
Electrical	C, capacitance	F (farad)		$e = \phi_c^{-1}(q)$	$e = \frac{q}{c}$			
Hydraulic	C _f , hydraulic capacitance	m³/Pa			C			

1-Port Constitutive Relations													
Linear, 1-port R-elements													
	TION												
GE		ENERALIZED	$f = \frac{e}{R}$		e = Rf								
		RANSLATIONAL	$v = \frac{F}{h}$		F = bv								
R		OTATIONAL	$\omega = \frac{\tau}{R}$		$\tau = B\omega$								
		ECTRICAL	$i = \frac{e}{R}$		e = Ri								
	н	YDRAULIC	$Q = \frac{P}{R_{\ell}}$		$P = R_f Q$								
Liı		Linear, 1-po	ort I-elements										
DOMAIN	LINEAR RELATION	INTEGRAL RELATION	DERIVATIVE RELATION	D	OMAIN	LINEAR RELATION	INTEGRAL RELATION	DERIVATIVE RELATION					
GENERALIZED	$e = \frac{q}{C}$	$e = \frac{\int f dt}{C}$	$f = \frac{d}{dt}(Ce)$	G	ENERALIZED	$f = \frac{p}{I}$	$f = \frac{\int e dt}{I}$	$e = \frac{d}{dt}(If)$					
TRANSLATIONAL	F = kx	$F = k \int v dt$	$v = \frac{d}{dt} \left(\frac{f}{k} \right)$	Т	RANSLATIONAL	$v = \frac{p}{m}$	$v = \frac{\int F dt}{m}$	$F = \frac{d}{dt}(mv)$					
ROTATIONAL	$\tau = \kappa \theta$	$\tau = \kappa \int \omega dt$	$\omega = \frac{d}{dt} \left(\frac{\tau}{\kappa} \right)$	R	OTATIONAL	$\omega = \frac{h}{J}$	$\omega = \frac{\int \tau dt}{J}$	$\tau = \frac{d}{dt}(J\omega)$					
ELECTRICAL	$e = \frac{q}{C}$	$e = \frac{\int i dt}{C}$	$i = \frac{d}{dt}(Ce)$	E	LECTRICAL	$i = \frac{\lambda}{L}$	$i = \frac{\int e dt}{L}$	$e = \frac{d}{dt}(\lambda i)$					
HYDRAULIC	$P = \frac{V}{C_f}$	$P = \frac{\int Q dt}{C_{\ell}}$	$Q = \frac{d}{dt}(C_f P)$	н	YDRAULIC	$Q = \frac{\Gamma}{I_f}$	$Q = \frac{\int P dt}{I_f}$	$P = \frac{d}{dt}(I_f Q)$					

Effort and Flow Sources

- Supply energy
- Effort sources specify effort as an input to the system
- Flow sources specify flow as an input to the system

2.3 Basic 2-Port Elements

- 2-port elements transmit energy from one element or junction to another
 - Transformer (TF)
 - Gyrator (GY)
- 2-ports can serve as an interface between various energy domains
- Power generally flows through 2-ports

2.4 Junctions

- Interconnect basic elements
- Energy-conserving
- Characterized by two conditions
 Primary Condition: Commonality
 - Secondary Condition: Zero summation
- Half-arrow direction specifies power direction (sign of efforts & flows)

O-Junctions • Common effort • One bond specifies the effort into the junction • Summation of flows • Solve for flow out of the junction • Flow out is caused by the bond specifying effort in $\mathcal{P}_{in} = \mathcal{P}_{out} \Rightarrow \mathcal{P}_{in} - \mathcal{P}_{out} = 0$ $\int_{j=1}^{n} \mathcal{P}_{j} = \int_{j=1}^{n} e_{j}f_{j} = 0$ $e_{1} = e_{2} = e_{3} = \cdots = e$ $\int_{j=1}^{n} \mathcal{P}_{j} = \sum_{j=1}^{n} e_{j}f_{j} = 0 \Rightarrow \sum_{j=1}^{n} f_{j} = 0$

Challenge

 Identify the elements of the following dynamic system.
 Recollect your word bond graph.

2.6 Linear vs Nonlinear Systems and Linearization

- The responses of linear systems obey the properties of superposition (or additive property) and homogeneity.
- Superposition • $y(x_1(t) + x_2(t)) = y_1(t) + y_2(t)$
- Homogeneity • ay(x(t)) = y(ax(t))
- Superposition and Homogeneity • $y(a_1x_1(t) + a_2x_2(t)) = a_1y_1(t) + a_2y_2(t)$

Summary

- R-elements dissipate energy. They have a constitutive relation that directly relates effort to flow. They can exhibit one of two causalities – effort-in-flowout or flow-in-effort-out. Power is generally assumed to flow from the system to the R-element.
- C-elements store potential energy. They have a constitutive relation that directly relates effort to displacement. They can exhibit one of two causalities – integral causality where flow is an input to the C- element and derivative causality where effort is an input to the C- element. Power is generally assumed to flow from the system to the C-element.
- I-elements store kinetic energy. They have a constitutive relation that directly relates momentum to flow. They can exhibit one of two causalities – integral causality where effort is an input to the I-element and derivative causality where flow is an input to the I-element. Power is generally assumed to flow from the system to the I-element.
- Effort sources provide an external effort as an input to the system.
- Flow sources provide an external flow as an input to the system.

Summary Continued

- Transformers transmit and/or change the form of energy. They con- serve power (i.e., the power in is equal to the power out). The efforts on either side are directly related, and the flows on either side are directly related. Only one bond attached to a transformer can specify effort as an input.
- Gyrators also transmit and change the energy form, and they also conserve power. The effort on one side is directly related to the flow on the other. Either both bonds must specify effort as an input, or both bonds must specify flow as an input.
- o-junctions have common effort and sum flows. Only one bond can specify
 effort as input. The power direction specifies whether the flows on the
 attached bonds are positive or negative relative to the junction.
- 1-junctions have common flow and sum efforts. Only one bond can specify flow as input. The power direction specifies whether the efforts on the attached bonds are positive or negative relative to the junction.
- Linearization can be used to approximate nonlinear functions and systems. This can be accomplished by using the first few terms of the Taylor Series Expansion of the nonlinear terms.