

Introduction

Typically, building a prototype system and conducting experimental tests are either infeasible or are too expensive for a preliminary design. Therefore, mathematical modeling, analysis, and simulation of engineering systems aid the design process immensely.

Challenge

ttps://www.youtube.com/watch?v=MLejkyXbJIc&feature=player_embedded

- 1) What is the system? Rider, bike, suspension (energy absorption), spring (store energy), shock absorber (dissipates energy),
- 2) Answers to all questions are dependent on use of analysis.

Objectives & Outcomes

In this chapter you will:

come to a deeper understanding of the art of System Dynamics and the purpose it serves in the design, analysis, and control of physical systems, and

begin to conceptualize how a system is broken down into subsystems and components to enable synthesis of mathematical models that represent the dynamics.

After completing this chapter, you will be able to:

identify systems, subsystems, and components,

identify potential applications of system dynamics in design and analysis of mechanisms, and

recognize and/or recall concepts used to represent dynamic responses in other engineering courses you are or have previously taken.

Superpostition: f(x+y)=f(x)+f(y) Homogeneity: f(ax)=af(x)

System Decomposition and Model Complexity

A Quarter-Car Suspension

- ► To formulate a model we must identify the pertinent components and formulate mathematical representations for each.
- The complexity of the model depends on its intended use.

Inputs are variables that change the condition of the dynamic system and can include things like external force, voltage sources, pressure sources, etc.

Outputs are variables that are measured or observed to assess the dynamic condition of the system

States are variables that are used to mathematically model the dynamic behavior of the system.

Use a single input to determine the dynamic response.

Dynamic systems are often characterized in the time or frequency domain.

Each block in a block diagram is a dynamic system.

A Graph-Centered Approach to Modeling

- <u>Bond graphs</u> are a graphical approach for diagramming the distribution and flow of power and energy within a dynamic system.
- Originally developed by Dr. Henry M. Paynter at MIT in 1959.
- Bond graphing is a unified approach that accounts for the storage, dissipation, and conversion of energy within a dynamic system.
 - The bond graph accounts for the input/output relations between elements and subsystems of the model that leads to computer simulation of the dynamic response.

Effort: Force (F), torque (τ), voltage (e), pressure (P) Flow: linear velocity (v), angular velocity (ω), current (i), volume flow rate (Q)

Tetrahedron: 4-sided pyramid (5 sides: 4-triangular, 1-rectangular)

Effort, Flow, Momentum, and Displacement Variables

Effort and flow variables Domain Effort Flow Power F, force (N) v, velocity (m/s) $\mathscr{P} = F v$ Translational ω , angular velocity (rad/s) $\mathscr{P} = \tau \omega$ **Rotational** τ , torque (N-m) $\mathcal{P} = e i$ Electrical e, voltage (V) i, current (A) Hydraulic P, pressure (Pa) Q, flowrate (m³/s) $\mathscr{P} = PQ$

Momentum and displacement variables

Domain	Momentum	Displacement
Translational	p, linear (N-s)	x, displacement (m)
Rotational	h, angular (N-m-s)	θ , angle (rad)
Electrical	λ , flux linkage (V-s)	q, charge (C)
Hydraulic	Γ , hydraulic (N-s/m ²)	V, volume (m ³)

Momentum: p=mv $\dot{p} = \dot{m}v + m\dot{v}$ $\dot{m}v$ goes to 0 if it isn't losing mass $m\dot{v} = ma = F$ $ma = \dot{p} = F$ $p = \int Fdt$

Displacement: x

$$\dot{x} = v$$

$$\int v dt = x$$

Effort on top or left. Flow on bottom or right.

Power direction is shown in bond graph not in block diagram.

Causal stroke shows where effort is going.

Port is a connection to something else. 1-port is shown in e, f.

Challenge Problem

CREATE A WORD BOND GRAPH FOR THE SYSTEM SHOWN THROUGH PART 7.

