Convection Heat Transfer over a Cylinder

Free Convection:

First, calculate the Rayleigh number using Equation [1],

$$Ra_D = \frac{g\beta(T_S - T_a)D^3}{v\alpha}$$
 [1]

where g is the acceleration of gravity, $\beta=\frac{1}{T_f}$ is the volumetric thermal expansion coefficient for gases, $T_f=\frac{T_S+T_a}{2}$ is the film temperature, T_s is the surface temperature, T_a is the ambient temperature, D is the cylinder diameter, v is the kinematic viscosity, and α is the thermal diffusivity.

Note: Make sure that you convert your film temperature to Kelvin before calculating β . Evaluate all air properties at T_f .

Now, calculate the average Nusselt number using Equation [2] and Table [1],

$$Nu_D = \frac{hD}{k} = CRa_D^n \tag{2}$$

Table [1]

Ra _D	C	n
$10^{-10} - 10^{-2}$	0.675	0.058
$10^{-2} - 10^2$	1.02	0.148
$10^2 - 10^4$	0.850	0.188
$10^4 - 10^7$	0.480	0.250
$10^7 - 10^{12}$	0.125	0.333

From Equation [2], you can solve for the convection heat transfer coefficient (h) and use it to calculate the heat transfer rate using Equation [3],

$$Q_C = hA(T_S - T_a) ag{3}$$

Calculate the heat transfer due to radiation using the following equation:

$$Q_R = \varepsilon \sigma A (T_S^4 + T_A^4) \tag{4}$$

Finally, the total heat transfer from the surface of the cylinder is then equal to the heat transfer by convection and radiation,

$$Q_{Total} = Q_C + Q_r ag{5}$$

Forced Convection:

First calculate the Reynold's number using Equation [5],

$$Re_D = \frac{VD}{V}$$
 [6]

where v is the kinematic viscosity, V is the flow velocity, and D is the diameter of the cylinder.

Now, using Equation [6] and Table [2], calculate the average Nusselt number,

$$Nu_D = \frac{hD}{k} = CRe_D^m Pr^{1/3}$$
 [7]

Table [2]

Re _D	C	m
0.4 - 4	0.989	0.330
4 – 40	0.911	0.385
40 – 4000	0.683	0.466
4000 – 40,000	0.193	0.618
40,000 – 400,000	0.027	0.805

Finally, calculate the convection, radiation, and total heat transfer rates from Equation [3], [4], and [5], respectively.

<u>Note:</u> All properties of air should be evaluated at the film temperature (T_f). Use your heat transfer book to get the properties.