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Abstract
Inspired by nature and motivated by a lack of top-down tools for precise nanoscale manufacture,
self-assembly is a bottom-up process where simple, unorganized components autonomously combine
to form larger more complex structures. Such systems hide rich algorithmic properties—notably,
Turing universality—and a self-assembly system can be seen as both the object to be manufactured
as well as the machine controlling the manufacturing process. Thus, a benchmark problem in
self-assembly is the unique assembly of shapes: to design a set of simple agents which, based on
aggregation rules and random movement, self-assemble into a particular shape and nothing else. We
use a popular model of self-assembly, the 2-handed or hierarchical tile assembly model, and allow the
existence of repulsive forces, which is a well-studied variant. The technique utilizes a finely-tuned
temperature (the minimum required affinity required for aggregation of separate complexes).

We show that calibrating the temperature and the strength of the aggregation between the
tiles, one can encode the shape to be assembled without increasing the number of distinct tile
types. Precisely, we show one tile set for which the following holds: for any finite connected shape
S, there exists a setting of binding strengths between tiles and a temperature under which the
system uniquely assembles S at some scale factor. Our tile system only uses one repulsive glue
type and the system is growth-only (it produces no unstable assemblies). The best previous unique
shape assembly results in tile assembly models use O(

K(S)
logK(S)

) distinct tile types, where K(S) is
the Kolmogorov (descriptional) complexity of the shape S.

2012 ACM Subject Classification Theory of computation→Models of computation, Theory of computation→Design
and analysis of algorithms→Parallel algorithms→Self-organization, Theory of computation→Design
and analysis of algorithms→Distributed algorithms→Self-organization

Keywords and phrases self-assembly, molecular computing, tiling, tile, shapes

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.14

1 This author’s research was supported in part by National Science Foundation Grants CCF-1618895 and
CCF-1652824.

2 This author’s research was supported in part by National Science Foundation Grant CCF-1817602.
3 This author’s research was supported in part by National Science Foundation Grant CCF-1817602.
4 This author’s research was supported in part by National Science Foundation Grant CCF-1817602.

© Cameron Chalk, Austin Luchsinger, Robert Schweller, and Timothy Wylie;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ctchalk@utexas.edu
mailto:austin.luchsinger01@utrgv.edu
mailto:robert.schweller@utrgv.edu
mailto:timothy.wylie@utrgv.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


14:2 Self-Assembly of Any Shape with Constant Tile Types using High Temperature

1 Introduction

Due to the limited tool set for precise fabrication at the nanoscale, the bottom-up approach
of self-assembly is an attractive area of research. Such bottom-up approaches, such as
DNA origami [17], allow for the assembly of nanoscale materials with detailed, precisely
designed shapes and patterns. Abstract self-assembly models are used to predict the behavior
of systems wherein simple, separate entities form larger complex structures based on a
simple rule set for movement and/or attachment using only local interactions and no global
leader. Such systems include swarm robotics and molecular self-assembly, particularly self-
assembling nucleic acid structures such as DNA tiles [9].

A common benchmark in such models, which aims at the manufacture of precise nanoscale
structures, is the self-assembly of shapes. In our case, a shape is defined simply as a finite,
connected subset of Z2. The model studied herein is the two-handed tile assembly model
(also called the hierarchical tile assembly model) [1]. In this model, the separate entities
are tiles, adorned with glues. The intuition is that tiles wander about randomly, and when
tiles with matching glues meet, the tiles bind to form a larger assembly; further, such larger
structures wander about and may bind to other larger assemblies or tiles.

The main measure of complexity is the number of unique types of tiles necessary and
sufficient to uniquely assemble the shape, termed the tile complexity. The temperature of
a system, denoted by τ , is the minimum required binding strength between two entities
to enforce a stable attachment; the sum of the strengths between the shared glues of two
assemblies must meet or exceed the temperature. Some studies of the model include negative-
strength glues [2,8,12–15,20], which are repulsive forces which act against a particular bond
between two assemblies. Studies of these repulsive forces are motivated by experimental
implementation of self-assembly systems which exhibit this behavior [16].

Our contributions. We give one tile set with a constant number of distinct tile types
which satisfies the following: given any finite connected shape S ⊂ Z2, there exists an
assignment of strengths between glues (a glue function) and a temperature τ such that the
system uniquely assembles S. The system encodes the shape in its temperature parameter
τ and its glue function. Then, by utilizing the inclusion of one negative-strength glue type,
the system assembles a width-τ assembly. This width-τ assembly is utilized as a seed for
a tile set designed by [23] which “runs” the program encoded by the seed to assemble the
shape. This work is the first to show that any shape can be built with a constant number of
distinct tile types (where the glues are a function of τ) at any scale without a staged model5,
i.e., it is the first to achieve this in a fully “hands-off” model which requires no experimenter
intervention during the assembly process.

Previous results. For self-assembling a shape S, we list the previously known results,
which do not use negative glues and use O(1) temperature unless otherwise specified. Let
K(S) be the Kolmogorov complexity6 of S, and let T (S) be the (smallest) runtime of a
Kolmogorov-optimal program outputting S. A tile complexity of Θ

(
K(S)

logK(S)

)
is known, us-

ing a scale factor of T (S) [23]. With negative-strength glues, a tile complexity of Θ
(

K(S)
logK(S)

)
is known, using a O(1) scale factor [12]. In a staged version of the model, where several
self-assembly systems are run in parallel across a series of bins and then mixed together in

5 In the staged self-assembly model, the results of [3] give a construction which can effectively use O(1) tile
types to assemble the shape by increasing the number of bins and stages used.

6 The Kolmogorov complexity of S is the number of bits in the smallest program which outputs S w.r.t. a
universal Turing machine. For more information on Kolmogorov complexity, see [11].
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stages, a tile complexity of Θ
(

K(S)
logK(S)

)
at scale factor T (S) is known for O(1) bins and O(1)

stages along with a method for (optimally) reducing the number of sufficient and necessary
tile types by increasing the number of bins and stages [3].

In another staged version of the model, where tiles are partitioned into DNA and RNA types,
and RNA types may be “washed away” at a given stage, a tile complexity of Θ

(
K(S)

logK(S)

)
at

scale factor O(log |S|) is known [7]. In a staged model where the self-assembly process is
controlled by a chemical reaction network which activates and deactivates tiles’ binding sites,
a tile plus reaction network complexity of Θ

(
K(S)

logK(S)

)
at scale factor O(1) is known [19].

Related work in high-temperature7 self-assembly. The first studies of utilizing
temperature to encode information involved the “online”, mid-assembly-process changing of
temperatures [10, 24]. Our result utilizes a high temperature bonding threshold for self-
assembly attachment, which we leverage to encode precise information for guiding the self-
assembly process through precisely set glue strengths. A number of recent related works have
also studied the effects of higher temperature self-assembly systems within various models.
Within the aTAM, larger temperatures have been shown to affect the possible behavior
of systems [4], and the tile complexity of self-assembled shapes [22]. Within the 2HAM,
unique-assembly verification has been shown to be hard for high-temperature systems [21],
while the dynamics of certain higher-temperature systems have been shown to be impossible
to simulate at lower temperatures [6].

2 Definitions and Model
In this section we first define the two-handed tile self-assembly model with both negative
and positive strength glue types. We also formulate the problem of designing a tile assembly
system that constructs a constant-scaled shape given the optimal description of that shape.

Tiles and Assemblies. A tile is an axis-aligned unit square centered at a point in
Z2, where each edge is labeled by a glue selected from a glue set Π. A strength function
str : Π → Z denotes the strength of each glue. Two tiles equal up to translation have the
same type. A positioned shape is any subset of Z2. A positioned assembly is a set of tiles
at unique coordinates in Z2, and the positioned shape of a positioned assembly A is the set
of those coordinates. For a given positioned assembly Υ, define the bond graph GΥ to be
the weighted grid graph in which each element of Υ is a vertex and the weight of an edge
between tiles is the strength of the matching coincident glues or 0.8 A positioned assembly
C is τ -stable for positive integer τ provided the bond graph GC has min-cut at least τ .

For a positioned assembly A and integer vector ~v = (v1, v2), let A~v denote the positioned
assembly obtained by translating each tile in A by vector ~v. An assembly is a translation-
free version of a positioned assembly, formally defined to be a set of all translations A~v of
a positioned assembly A. An assembly is τ -stable if and only if its positioned elements are
τ -stable. A shape is the set of all integer translations for some subset of Z2, and the shape of
an assembly A is defined to be the set of the positioned shapes of all positioned assemblies
in A. The size of either an assembly or shape X, denoted as |X|, refers to the number of
elements of any positioned element of X.

7 We say high-temperature self-assembly for consistency with previous literature. The term high tempera-
ture may be misleading; e.g., we are not attempting to model what happens in DNA-based self-assembly
systems when the literal temperature of the system is raised to high values. Intuitively, higher temperature
in this model implies more fine-grained glue strengths. Another natural way to think of high temperature
is to fix the temperature to one, but allow rational glue strengths.

8 Note that only matching glues of the same type contribute a non-zero weight, whereas non-equal glues
always contribute zero weight to the bond graph. Relaxing this restriction has been considered [5].
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Figure 1 The black lines between two tiles indicate unique unimportant τ -strength bonds. If
τ = 2, str(A) = 1 and str(B) = 1, then the two assemblies in (a) are τ -combinable, since str(A) +

str(B) ≥ τ and the positioned assemblies may be translated such that the A and B glues are
aligned— such a combination is termed cooperative binding, since neither the A nor B glue are alone
sufficient to satisfy τ -combination. In (b), we consider two cases concerning the negative strength
glue X. If τ = 2, str(C) = 2, and str(X) = −1, then the assemblies in (b) are not τ -combinable
since str(C) + str(X) < τ . If τ = 1, str(C) = 2, str(D) = 2, str(E) = 1 and str(X) = −1,
then the assemblies are τ -combinable since str(C) + str(X) ≥ τ ; however, the resultant assembly
is unstable, since a cut along the X and E glue has strength str(X) + str(E) < τ ; this violates the
valid growth-only system definition.

Combinable Assemblies. Two assemblies are τ -combinable provided they may attach
along a border whose strength sums to at least τ . Formally, two assemblies A and B are
τ -combinable into an assembly C provided GC′ for any C ′ ∈ C has a cut (A′, B′) of strength
at least τ for some A′ ∈ A and B′ ∈ B. We call C a combination of A and B. Figure 1
gives examples of combinable and not combinable assemblies.

2.0.0.1 Two Handed Assembly Model: Growth-only Version

A two-handed tile assembly system (2HAM system) is an ordered pair (T, τ) where T is a set
of single tile assemblies, called the tile set, and τ ∈ N is the temperature. In the growth-only
model, assembly proceeds by repeated combination of assembly pairs to form new assemblies
starting from the initial tile set. The producible assemblies are those constructed in this way.

I Definition 1 (2HAM Producibility (growth-only)). For a given 2HAM system Γ = (T, τ),
the set of producible assemblies of Γ, denoted PRODΓ, is defined recursively:

(Base) T ⊆ PRODΓ

(Combinations) For any A,B ∈ PRODΓ such that A and B are τ -combinable into C, then
C ∈ PRODΓ.
The inclusion of negative glues, in general, allows for unstable assemblies to be pro-

ducible. In previous literature, such assemblies “detach”, forming two new producible as-
semblies. We impose the following constraint on growth-only systems which disallows pro-
duction of unstable assemblies which would fall apart. Satisfying the growth-only constraint
argues that the system has simpler kinetics than a non-growth-only system since the system
does not rely on detachment events.

For a system Γ = (T, τ), we say A →Γ
1 B for assemblies A and B if A is τ -combinable

with some producible assembly to yield B, or if A = B. Intuitively this means that A may
grow into assembly B through one or fewer combination. We define the relation →Γ to be
the transitive closure of→Γ

1 , ie., A→Γ B means that A may grow into B through a sequence
of combinations.

I Definition 2 (Valid Growth-Only System). A 2HAM system Γ = (T, τ) is a valid growth-
only system if for all A ∈ PRODΓ, A is τ -stable.

I Definition 3 (Terminal Assemblies). A terminal assembly of a valid growth-only 2HAM
system is a producible assembly that cannot combine with any other producible assembly.
Formally, an assembly A ∈ PRODΓ of a 2HAM system Γ = (T, τ) is terminal provided A is
not τ -combinable with any producible assembly of Γ.

We formalize what it means for a 2HAM system to uniquely build a given assembly or
a given shape.
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Figure 2 A simplified overview of the growing step. Si is a width-Θ(i), height-Θ(2i) assembly
with particular exposed edge glues. Si nondeterministically assembles one of two assemblies; a top
and bottom. The top and bottom share one glue of strength 2τ − 1 shown in yellow, and i many
−1 strength glues shown in red. Thus, the top and bottom bind with strength 2τ − i− 1, which is
τ -stable only if i < τ . The resultant assembly adds two width and doubles the height of Si, so its
dimensions are Θ(i+ 1)×Θ(2i+1). Further, its exposed glues allow the process to repeat.

I Definition 4 (Unique Assembly). A 2HAM system uniquely produces an assembly A if
all producible assemblies have a growth path towards the terminal assembly A. Formally,
a 2HAM system Γ = (T, τ) uniquely produces an assembly A provided that A is terminal,
and for all B ∈ PRODΓ, B →Γ A.

I Definition 5 (Unique Shape Assembly9). A 2HAM system uniquely produces a shape S if
all producible assemblies have a growth path to a terminal assembly of shape S. Formally,
a 2HAM system Γ = (T, τ) uniquely assembles a finite shape S if for every A ∈ PRODΓ, there
exists a terminal A′ ∈ PRODΓ of shape S such that A→Γ A′.

3 Assembly of General Shapes with Constant Tiles

Here we give the main construction of the paper. First presented is our key contribution—
assembly of a precise-width rectangle— detailed in Subsection 3.1, followed by its composi-
tion with established techniques from [23] for the main result in Subsection 3.2.

3.1 Key idea: precise-width rectangle using O(1) tile types

Here, we present a construction for building a precise-width rectangle from a constant-
bounded set of tile types. Note that the convention in this paper is width × height. Formally,

I Lemma 6. Given a temperature τ > 2, there exists a negative glue, growth-only 2HAM
tile system Γ = {T, τ} such that |T | = O(1) and Γ uniquely produces an assembly which is
a (18 + 4τ)× (2τ+5 − 6) rectangle.

I Proof 1. We give a proof by construction. Unless explicitly stated otherwise, all glues
have strength d τ2 e, so at least two matching glues are required for a τ -stable attachment.
This is called cooperative binding. The construction is split into two steps: growing and
finishing. Figure 2 shows a simplified overview of the growing step. The growing step of
the construction concerns producing an assembly with width 7 + 2τ , through a process
consisting of τ iterations of growth, each adding a constant-bounded width to the assembly.

9 Some previous literature calls this strict self-assembly, typically to contrast another definition, weak self-
assembly; we choose the name unique shape assembly to contrast unique assembly.

ESA 2018
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Figure 3 The base assembly, shown in two separate subassemblies; (a) shows the top subassembly,
and (b) the bottom. The two subassemblies combine using cooperative binding at the strength-d τ

2
e

glues labeled X. The dotted line indicates distinct tile types which attach along the path with full
τ strength glues. The snaking pattern ensures that each subassembly is complete before both X

glues are available. Once these two subassemblies bind, the resultant assembly satisfies S0.

The i + 1th iteration of growth is initiated by a combination of two assemblies with total
binding strength 2τ − i − 1; thus, after the τ th iteration of growth, the binding strength
which would initiate the next iteration of growth has total binding strength 2τ − τ − 1 < τ ,
and growth halts.

The finishing step involves the system’s “detecting” that the growth process has com-
pleted. This is achieved using the following technique: by adding a total strength of 1 shared
between two assemblies at each iteration of growth, once the assemblies have completed τ
repetitions of growth, they bind with strength τ . This step also gives the system its property
of unique assembly of an assembly whose shape is a rectangle (and not just unique shape
assembly). That is, there is exactly one terminal assembly of the system— as opposed to
several terminal assemblies with the correct rectangular shape. Maintaining this property
in this lemma is required to achieve the same property in Theorem 7.

3.1.1 Growing

The construction is described and proven correct via induction. The induction is on iter-
ations of rectangular assemblies with well-defined exposed glues, termed Si. Formally, Si
refers to a (7 + 2i) × (2i+4 − 6) rectangular assembly with the following exposed glue la-
bels, written as strings built by concatenating the glue labels in left-to-right/top-to-bottom
order):

North glues: qpigni+5

East glues: E2i+3−5R2E2i+3−3

South glues: QP iGN i+5

West glues: LW 2i+3−7LW 4LW 2i+3−7L

The goal is to show that if an assembly satisfying Si is producible, then an assembly satisfying
Si+1 is producible iff i < τ . Further, only O(1) tile types are used in the inductive step.
Then it suffices to show that S0 is producible in O(1) tile types, implying Sτ is producible,
which has width × height as in the lemma statement.

Base case. An assembly satisfying S0 is shown to be trivially assembled by a set of
O(1) tile types in Figure 3.

Inductive step. The next three paragraphs describe the inductive step. The goal is
to show that if Si is producible, then a top and bottom assembly are producible which can
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Figure 4 An assembly satisfying Si. The dots indicate an omitted set of repeated tiles; e.g.,
the dots between the tiles exposing p indicate the omission of the i glues with label p. On the
right are the keystones, which attach cooperatively using R glues. Only one keystone may attach,
introducing nondeterminism; this is how the producibility of two assemblies, a top and bottom
assembly, are implied by the production of one assembly satisfying Si.

bind to produce Si+1 iff i < τ . Consider an assembly with exposed glues satisfying Si. The
two R glues exposed allow attachment of a keystone assembly via cooperative binding as
seen in Figure 4. There are two keystone types: up and down. Only one may attach. The
L glues in the middle of the west-side exposed glues, spaced by four W glues, also allow the
attachment of a supertile using cooperative binding. Once the keystone or west-side supertile
has attached, a single tile type suffices to attach tiles along any long set of repeating glues
on the assembly (e.g., the E glues on the east side), until the glue is no longer available,
as seen in Figure 5. This type of single tile type attaching along arbitrary walls is termed
propagation of a tile.

The tiles which propagate to the corners of the west side of the assembly allow the at-
tachment of three tiles around the corner which allow propagation of tiles along the north
and south faces of the assembly. Once these tiles propagate, depending on which keystone
was attached to the assembly, the attachment of a tooth occurs on the corresponding face
(e.g., on the north face if the up keystone was attached) as shown in Figure 6. The tooth
is a supertile with a specific geometry which will be motivated later on. The tooth initiates
a propagation of tiles along the corresponding face. The result is the production of two
assemblies, one having attached the up keystone and attached all previously discussed prop-
agating tiles and supertiles, and one having attached the down keystone and similar tiles.
We refer to the former as a top assembly, and the latter as a bottom assembly.

When a top assembly and bottom assembly attach, the result is an assembly satisfying
Si+1. A top assembly and bottom assembly are designed to attach iff i < τ . When i ≥ τ , the
binding strength between a top and bottom assembly is τ − 1, and thus is insufficient. This
design can be seen in Figure 7. Note that the −1 glues are propagated via the N -labeled
glues from the base assembly. Since Si has i + 5 many N glues exposed, 5 of which are

ESA 2018
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Figure 5 Once the keystone and supertile on the left have attached, a sequence of single tile
attachments may occur using cooperative binding at newly available glues. The tiles are designed
such that they may attach along arbitrarily long faces, as long as the appropriate glue is exposed
(e.g., a W glue in the top-left tile’s case).

covered by the tooth, the bottom/top assembly which assembles from Si exposes i many −1

glues. Then the bonding strength between top and bottom assemblies is 2τ − 1 − i, which
is less than τ iff i ≥ τ . The complementary geometry of the teeth ensure that a top and
bottom assembly which are assembled from Si and Sj respectively, with i 6= j, cannot align
their a glues and will not attach.

Dimensions of Si. The base assembly satisfying S0 is 7× 10. When a top and bottom
assembly attach, both have added 2 width in tiles; one tile width propagated on the west
side, and one on the east. Then the width of Si is 7 + 2i. A top and bottom assembly which
have combined add 6 height in tiles on top of doubling in height: 2 via tile propagation
on the top and bottom, and 4 along where the top and bottom assemblies attach. Then
the height of Si, h(i), is defined by the recurrence h(i) = 2h(i − 1) + 6 with h(0) = 10.
Solving the recurrence gives a height of 2i+4− 6. Then consider a combination of a top and
bottom assembly which formed from some assembly satisfying Si−1; the resultant dimension
is (7 + 2i)× (2i+4 − 6).

3.1.2 Finishing

When a top and bottom assembly combine to form an assembly satisfying Sτ , the growing
step shows that the process will not continue to produce Sτ+1. However, the attachment
of a supertile on the west side, a keystone, and the resultant tile propagation still occurs.
The teeth attach and so do the tiles which propagate resulting from the attachment of a
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Figure 6 At the top-right and bottom-right corners, tiles attach which indicate that the left-hand
side tile propagation has reached the right-hand side of the assembly. In the case of an assembly
which has attached an up keystone, the tooth attaches on the top side of the assembly, and initiates
a propagation of tiles along the top face. A tooth with complementary geometry will attach on the
bottom side of the assembly if a down keystone attaches instead, as can be seen in Figure 7.

tooth. Then an assembly satisfying Sτ implies the production of the corresponding top and
bottom assemblies. These assemblies are not rectangular. This step involves detecting that
the iterative process has reached τ repetitions, and the system should finish its rectangle.

Figure 8 gives an overview of the finishing step. The technique discussed in the growing
phase is employed by two disjoint tile sets, one called system 1 and the other system 2. The
sets of glues on the tiles in the two systems are disjoint except for two glues: the −1 glue, and
the +2 glue described but not used in the growing phase. In the growing phase, recall that on
the north face of a bottom assembly of system 1 which assembled from Si, there are i many
strength 2 glues labeled +2 exposed which are not used (recall Figure 7). These glues are
designed to match with the corresponding glues in system 2. Then the strength of binding
between these shared glues is 2i − i = i. Thus, only when i ≥ τ is this binding τ -stable.
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Figure 7 A bottom assembly (left) and top assembly (right). At the top of the figure are the tiles
whose glues bond a bottom and top assembly; in particular, the a and −1 glues, with str(a) = 2τ−1

and str(−1) = −1. A top and bottom assembly grown from an assembly Si each expose i glues
with strength −1. Then the strength of the attachment between them is 2τ − i− 1, and is sufficient
when i < τ but insufficient when i = τ . Note that +2 and +2′ glues do not match; their purpose
is described later in the finishing step.

Similarly, system 1’s top assembly attaches with the system 2’s bottom assembly under
the same constraint. These resultant assemblies expose cooperative binding locations which
were not present before this attachment, allowing these two new assemblies to combine,
and then fill into a rectangle using a O(1)-sized tile set. Next, we give the dimensions of
the completed rectangular assembly: system 1’s top and system 2’s bottom assembly, once
attached, form a (7 + 2(τ + 1)) = (9 + 2τ)× (2(τ+1)+4− 6) = (2τ+5− 6) assembly— this can
be derived from the combination of two assemblies satisfying Sτ assembling into an assembly
satisfying Sτ+1 not in exposed glues, but in size. System 1’s top and system 2’s bottom
are combined with system 1’s bottom and system 2’s top into one via a width-two column,
resulting in a 2(9 + 2τ) + 2 = 18 + 4τ × 2τ+5 − 6 assembly. J

3.2 From rectangle to shape
To assemble the target shape, a technique is combined with Lemma 6. The technique,
shown by Soloveichik and Winfree [23], first assembles a seed block bearing a representation
(a series of exposed glues) of a Kolmogorov-optimal program which computes the spanning
tree of S. A O(1)-sized tile set is used to “run” the program (via Turing machine (TM)
simulation) from the seed block. The seed block assembles into a c × c assembly, logically
representing one coordinate of S. Assembly proceeds from the seed block in a subset of the
four cardinal directions depending on the spanning tree computed by the program. If the
spanning tree has an edge in a direction to a coordinate adjacent to the seed block, a c× c
growth block is assembled in that direction. Each time a growth block is assembled, the
program is run again to determine which adjacent coordinates (w.r.t. the growth block) are
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System 1 
Top

System 2
Bottom

System 2 
Top

System 1 
Bottom

Figure 8 An overview of the finishing step. The system described in the growing step, denoted
here as system 1, is repeated, denoted system 2, such that the only matching glues between the
two systems are a strength-2 glue type and the one strength-(−1) glue type. Between a system 1
top/bottom and system 2 bottom/top assembled from Si, the number of shared strength-2 glues
and strength-(−1) glues is i, so the sum of strengths between shared glues is 2i− i = i. This allows
the top/bottom assembly of system 1 to make a τ -stable attachment to the bottom/top of system
2 only after each system assembles Sτ , thus detecting when the rectangle has Θ(τ) width. Once
these tops and bottoms attach, new cooperative binding locations initiate a constant-sized set of
tiles to bind the two rectangles, simply to satisfy unique assembly of the rectangle.

connected by edges in the spanning tree; if so, a growth block is assembled in that direction.
After assembling all growth blocks, the unique assembly is a c× c scaled version of S.

The seed block of [23] is assembled using O( K(S)
logK(S) ) tile types. In our case, the seed

block is assembled using the O(1)-sized tile set of Lemma 6: we assemble a rectangle of
width n where n is the length of a unary encoding of the Kolmogorov-optimal program.
This seed is combined with the O(1)-sized tile set which runs the program and assembles
the shape. Figure 9 is a simplified overview of constructing a seed block compatible with a
TM simulating tileset. The formal result is as follows:

I Theorem 7. Given a shape S, there exists a negative glue, growth-only 2HAM tile system
Γ = {T, τ} with |T | = O(1) whose unique assembly has shape S at some scale factor.

I Proof 2. The system is a union of the Lemma 6 system and a subset of the TM simulating
tile set of [23]. If the entire TM simulating tile set is added to the system, depending on
the seed block, some tiles may never bind to the seed block, and thus do not grow into
the target shape and violate unique assembly definition. We include the subset of the TM
simulating tile set which will be used by the program encoded by the seed block. Observe
that the unique assembly produced by the system of Lemma 6 is not a square, nor does
it have any exposed glues designed to bind with the TM simulation tile set. In order to
assemble a square from the terminal assembly of Lemma 6, two such rectangular assemblies
are assembled in parallel, one which is rotated 90 degrees— this “rotation” is w.r.t. the
other rectangular assembly and the way the two assemblies will bind. These two assemblies
combine and then “fill-in” to a square trivially using a constant-sized tile set— similar to
propagation of tiles along an edge, cooperative binding can be used to add tiles between two
assembled rectangles to assemble a square (technique first used in [18]). Once assembly of
the square is complete, more tile propagation via another constant-sized tile set assembles a
one-tile perimeter which exposes glues— described in the following paragraph— which allow
the assembly to act as a seed block similar to the Soloveichik and Winfree construction [23].

Let P be the (binary) program used to assemble S via the construction of [23], R be
some mapping from binary strings to unary strings, and R′ be some mapping from unary
strings {1}i with i ∈ N to unary strings {1}j with j = 20 + 4m for m ∈ N— the intuition for
the mapping R′ is to map arbitrary unary strings to numbers which are widths of assemblies
assembled by Lemma 6.

ESA 2018
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Figure 9 The combination of two Lemma 6 constructions into a seed block. The two-tile assembly
in the first subfigure initializes the attachment of the set of white tiles, which indicate a constant-
sized set of filler tiles which are used to fill in a full square. Once the square is filled in, new
cooperative binding locations are exposed where the filler tiles meet the non-filler tiles. At this
location, tiles begin to propagate, adding a one-tile perimeter to the assembly. The orange tiles on
the outmost perimeter of the rightmost figure demarcate the beginning and ending of glues exposing
the unary program which constructs the shape S via the TM simulation of [23]. The rest of the
perimeter exposes glues which the TM simulation ignores.

Once the square seed block is assembled and a one-tile perimeter is attached, three glue
types are exposed: 1, b, and λ. Across the length of filler tiles (those in the square which are
not from the Lemma 6 construction), λ glues are placed; these symbols are ignored by the
TM simulating tile set. The b glues are placed at the beginnings and ends of the edges of the
square; these indicate where to start the TM simulation. Along the edges of the rectangles
from the Lemma 6 construction, glues labeled 1 are placed; these 1 glues are the relevant
glues logically. The TM simulation converts these to unary strings by R′−1, and then to P
by R−1. Then the TM simulation tiles run the program P which assembles the shape. J

4 Future Work

The most apparent direction for future work is to achieve the unique assembly of shapes at a
O(1) scale factor with O(1) tile types. This result may be achieved through a combination of
the techniques used in this work and in [12], which achievesO(1)-scale factor withO( K(S)

logK(S) )

tile types where K(S) is the Kolmogorov complexity of the shape S. Their construction
utilizes a dynamic behavior of negative glues not utilized in this work called “breaking”:
the combination of two assemblies may result in an unstable assembly, which then breaks
into two assemblies— a formal model and some usages of breakage may be seen in [2,8,20].
Their usage of breaking involves performing a computation— via a self-assembly process
which simulates a TM— which builds the shape pixel-by-pixel (using O(1)-sized assemblies
per pixel), and then breaks the TM simulating assembly into O(1)-sized pieces, leaving the
shape S at a O(1) scale factor (along with “small garbage” of O(1) size). That technique
may be applicable to the construction given in this work in order to break the precise-width
rectangles after they are used as input for the TM which outputs S.

Another direction might be to achieve the unique assembly of scaled shapes with O(1)

tile types using only positive-strength glues. We have briefly discussed previous positive-
strength results which use Θ

(
K(S)

logK(S)

)
tile types. Could this be lowered to O(1) tile types

by calibrating the temperature and glue strengths, or is there some super-constant lower
bound that cannot be breached?
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