Polynomial Simulation of CRN Models with Trimolecular Void Step-Cycle CRNs

The 22nd International Conference on Unconventional Computation and Natural Computation Sept 1-5, 2025 | Nice, France

Austin Luchsinger, Aiden Massie, Robert Schweller, Evan Tomai, Tim Wylie

(Stochastic) Chemical Reaction Networks

Chemical reaction networks model chemical kinetics in a well-mixed solution.

(Stochastic) Chemical Reaction Networks

(Stochastic) Chemical Reaction Networks

$$\mathcal{C}=(\Lambda,\Gamma)$$

CRN Configurations

$$(a,b,y) \in \mathbb{Z}_{\geq 0}^{\Lambda}$$

CRN Configurations

$$(a,b,y) \in \mathbb{Z}_{\geq 0}^{\Lambda}$$

$$A \rightarrow Y + Y$$
 (1)

$$\bigcirc B + \bigcirc Y \rightarrow \emptyset$$
 (2)

 $\{1Y\}$ is **terminal** since no reactions can happen (are applicable).

$$A \rightarrow Y + Y$$
 (1)

$$(B) + (Y) \rightarrow \emptyset$$
 (2)

 $\{1Y\}$ is **terminal** since no reactions can happen (are applicable).

$$A \rightarrow Y + Y$$
 (1)

$$(B) + (Y) \rightarrow \emptyset$$
 (2)

 $\{1Y\}$ is **reachable** from $\{2A,3B\}$

 $\{1Y\}$ is **terminal** since no reactions can happen (are applicable).

$$(B) + (Y) \rightarrow \emptyset$$
 (2)

 $\{1Y\}$ is **reachable** from $\{2A,3B\}$

$$\{2A, 3B\} \longrightarrow \{1Y\}$$

Reactions

Step CRNs also specify a sequence of k steps that each add a collection of species to terminal configurations.

Step CRNs also specify a sequence of k steps that each add a collection of species to terminal configurations.

Reactions

$$(2)$$
 (3) (4)

Step CRNs also specify a sequence of k steps that each add a collection of species to terminal configurations.

Reactions $A \rightarrow Y + Y \qquad (1)$ $R \rightarrow Q \qquad (2)$

Step CRNs also specify a sequence of k steps that each add a collection of species to terminal configurations.

Reactions $A \rightarrow Y + Y \qquad (1)$ $R + Y \rightarrow \emptyset \qquad (2)$

Step CRN Configurations also include an index to indicate the current step.

Step CRN Configurations & Dynamics Step-Cycle

Reactions $A \rightarrow Y + Y \qquad (1)$

^{*[}Wojciech Czerwiński and Łukasz Orlikowski, FOCS'21]

^{*[}Jérôme Leroux, FOCS'21]

^{*[}Wojciech Czerwiński and Łukasz Orlikowski, FOCS'21]

^{*[}Jérôme Leroux, FOCS'21]

Reactions

*[Wojciech Czerwiński and Łukasz Orlikowski, FOCS'21]

E.g., reachability falls within NP!

*[Jérôme Leroux, FOCS'21]

Rule Size:

$$(2,0) A + B \rightarrow \emptyset$$

$$(3,0) \quad \boxed{A} + \boxed{B} + \boxed{Y} \rightarrow \emptyset$$

Rule Size:

$$(2,0) A + B \rightarrow \emptyset$$

$$(3.0) \quad A + B + Y \rightarrow \emptyset$$

$$(2,1) A + B \rightarrow A$$

$$(3,1) \quad A + B + Y \rightarrow B$$

$$(3,2) \quad A + B + Y \rightarrow A + B$$

Catalytic Reactions

Rule Size:

$$(2,0) \qquad \qquad A + B \rightarrow \emptyset$$

$$(3,0) \quad A + B + Y \rightarrow \emptyset$$

$$(2,1) A + B \rightarrow A$$

$$(3,1) \quad \boxed{A} + \boxed{B} + \boxed{Y} \rightarrow \boxed{B}$$

$$(3,2) \quad A + B + Y \rightarrow A + B$$

We consider Step-Cycle CRNs that use only (3,1) void rules.

Catalytic Reactions

Rule Size:

$$(2,0) \qquad \qquad A + B \rightarrow \emptyset$$

$$(3,0) \quad A + B + Y \rightarrow \emptyset$$

$$(2,1) A + B \rightarrow A$$

$$(3,1) \quad A + B + Y \rightarrow B$$

$$(3,2) \quad A + B + Y \rightarrow A + B$$

We consider Step-Cycle CRNs that use only (3,1) void rules.

Despite the significant loss in power for basic CRNs, (3,1) Void Step-Cycle CRNs are *equivalent* to general Step-Cycle CRNs!

Catalytic Reactions

Register Machine

Turing Machine

Register Machine

Turing Machine

Register Machine

$$inc(r_i,s_j) \ dec(r_i,s_j,s_k)$$

Turing Machine

Register Machine

 $r_1 \qquad r_2 \qquad \qquad r$

 $inc(r_i,s_j) \ dec(r_i,s_j,s_k)$

Computationally Equivalent

Turing Machine

AAAAAA

(3,1) Void Step-Cycle CRN C^\prime

General Step-Cycle CRN $\,C\,$

$$D + A \rightarrow B + Y + C$$

(3,1) Void Step-Cycle CRN C^\prime

General Step-Cycle CRN $\,C\,$

$$D + A \rightarrow B + Y + C$$

(3,1) Void Step-Cycle CRN C^\prime

$$A + B + Y \rightarrow B$$

General Step-Cycle CRN $\,C\,$

$$D + A \rightarrow B + Y + C$$

(3,1) Void Step-Cycle CRN C^\prime

$$A + B + Y \rightarrow B$$

General Step-Cycle CRN $\,C\,$

$$D + A \rightarrow B + Y + C$$

Polynomial-time computable function $\,M: \mathrm{configs}_{C'} o \mathrm{configs}_{C} \,$

(3,1) Void Step-Cycle CRN C^\prime

$$A + B + Y \rightarrow B$$

 $M\left(\overrightarrow{A_1'}\right) \,=\, \overrightarrow{A}$

General Step-Cycle CRN $\,C\,$

$$D + A \rightarrow B + Y + C$$

Polynomial-time computable function $M: \mathrm{configs}_{C'} o \mathrm{configs}_{C}$

Configuration Space of Original System

Configuration Space of Original System

Configuration Space of Simulating System

Configuration Space of Original System

 $\rightarrow (\overrightarrow{B})$

Configuration Space of Simulating System

 $M: \operatorname{configs}_{C'} o \operatorname{configs}_C$

Configuration Space of Original System

Configuration Space of Simulating System

 $M: \operatorname{configs}_{C'} o \operatorname{configs}_C$

Definition 7 (It Follows). We say system T follows system T' if whenever $\overrightarrow{A'} \Rightarrow_{T'} \overrightarrow{B'}$ and $M(\overrightarrow{A'}) \neq M(\overrightarrow{B'})$, then $M(\overrightarrow{A'}) \rightarrow_T M(\overrightarrow{B'})$.

Configuration Space of Original System

Configuration Space of Simulating System

 $M: \operatorname{configs}_{C'} o \operatorname{configs}_C$

Definition 8 (Models). We say system T' models system T if $\overrightarrow{A} \to_T \overrightarrow{B}$ implies that $\forall \overrightarrow{A'} \in [\![\overrightarrow{A}]\!]$, $\exists \overrightarrow{B'} \in [\![\overrightarrow{B}]\!]$ such that $\overrightarrow{A'} \Rightarrow_{T'} \overrightarrow{B'}$.

Configuration Space of Original System

 \overrightarrow{A} \longrightarrow \overrightarrow{B}

Configuration Space of Simulating System

 $M: \operatorname{configs}_{C'} o \operatorname{configs}_C$

- Polynomial Simulation:
- Polynomial System Size
- (Expected) Polynomial System Transitions

Step	Addition	s		Relevant Rules						
0			\overrightarrow{G}	$\forall \gamma_i \in \mathcal{A}$	Γ :		$1. \overrightarrow{G} + \overrightarrow{G}_i + \overrightarrow{g}_i \to \emptyset$			
							$24. \ \overrightarrow{z} + \overrightarrow{G} \rightarrow \overrightarrow{z}$			
1	$\forall \gamma_i \in \varGamma, \forall i$	$r_j \in \mathcal{R}_i$:	$\overrightarrow{E}_{i}^{j}$	$\forall \gamma_i \in \mathcal{A}$	$\Gamma, \forall r$	$j \in \mathcal{R}_i$:	$2. \ \overrightarrow{G}_i + \overrightarrow{E}_i^j \to \overrightarrow{G}_i$			
2			\overrightarrow{w}	$\forall \gamma_i \in$	$\Gamma, \forall r$	$j \in \mathcal{R}_i$:	$3. \ \overrightarrow{w} + \overrightarrow{g}_i \rightarrow \overrightarrow{w}$			
50.0				10 100		TS:	$4. \ \overrightarrow{w} + \overrightarrow{r}_j + \overrightarrow{E}_i^j \to \overrightarrow{w}$			
3			\overrightarrow{a}_y	$\forall \gamma_i \in \mathcal{A}$	$\Gamma, \forall r$	$j \in \mathcal{R}_i$:	$ \begin{array}{ccc} 5. \overrightarrow{E}_{i}^{j} + \overrightarrow{a}_{y} + \overrightarrow{w} \rightarrow \overrightarrow{E}_{i}^{j} \\ 25. \overrightarrow{a}_{y} + \overrightarrow{w} + \overrightarrow{z} \rightarrow \emptyset \end{array} $			
			1570				$25. \ \alpha_y + w + z \to \emptyset$			
4			\overrightarrow{a}_n				$6. \overrightarrow{a}_y + \overrightarrow{a}_n + \overrightarrow{w} \to \overrightarrow{a}_y$			
	$\forall \gamma_i \in \varGamma :$	$\forall r_j \in \mathcal{R}_i$:	$\overrightarrow{r}_j, \overrightarrow{R}_i^j$				7. $\overrightarrow{G}_i + \overrightarrow{r}_j + \overrightarrow{R}_i^j \rightarrow \overrightarrow{G}_i$			
(3)				$\forall \gamma_i \in I$		$\forall r_j \in \mathcal{R}_i$:	$: 8. \ \overrightarrow{E}_{i}^{j} + \overrightarrow{r}_{j} + \overrightarrow{R}_{i}^{j} \to \emptyset $			
5					Γ :		9. $\overrightarrow{a}_y + \overrightarrow{r}_j + \overrightarrow{R}_i^j \rightarrow \overrightarrow{a}_y$			
		$\forall p_j \in \mathcal{P}_i$:	$\overrightarrow{p}_i, \overrightarrow{P}_i^j$			V - 0	9. $a_y + r_j + R_i \rightarrow a_y$ 10. $\overrightarrow{G}_i + \overrightarrow{p}_j + \overrightarrow{P}_i^j \rightarrow \overrightarrow{G}_i$			
						$\forall p_j \in \mathcal{P}_i$	$11. \overrightarrow{a}_n + \overrightarrow{p}_j + \overrightarrow{P}_i^j \rightarrow \overrightarrow{a}_n$			
6	$\forall \gamma_i \in \Gamma$:		$\overrightarrow{x}, \overrightarrow{G}'_i$	$\forall \gamma_i \in \mathcal{A}$	Γ :		12. $\overrightarrow{x} + \overrightarrow{G}'_i + \overrightarrow{G}_i \to \emptyset$			
7	$\forall \gamma_i \in \Gamma$:		\overrightarrow{c}	$\forall \gamma_i \in \mathcal{A}$	Γ :		13. $\overrightarrow{a}_y + \overrightarrow{c} + \overrightarrow{G}'_i \rightarrow \overrightarrow{a}_y$			
						V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\forall \gamma_i \in \Gamma :$		$\overrightarrow{g_i}$ \overrightarrow{y}_1	$\forall \gamma_i \in I$	Γ :	$\forall r_j \in \mathcal{R}_i$:	$15. \overrightarrow{y}_1 + \overrightarrow{R}_i^j \rightarrow \overrightarrow{y}_1$			
				00.000000000000000000000000000000000000		$\forall p_i \in \mathcal{P}_i$	$: 16. \overrightarrow{y}_1 + \overrightarrow{P}_i^j \to \overrightarrow{y}_1$			
8						- 3	17. $\overrightarrow{G}'_i + \overrightarrow{g}_i \rightarrow \overrightarrow{G}'_i$			
							18. $\overrightarrow{y}_1 + \overrightarrow{x} \rightarrow \overrightarrow{y}_1$			
			0 1				19. $\overrightarrow{y}_1 + \overrightarrow{a}_y \rightarrow \overrightarrow{y}_1$			
							$20. \ \overrightarrow{y}_1 + \overrightarrow{a}_n \to \overrightarrow{y}_1$			
							21. $\overrightarrow{y}_1 + \overrightarrow{c} \rightarrow \overrightarrow{y}_1$			
9			$\overrightarrow{y}_2, \overrightarrow{z}$ \overrightarrow{G}_i				$22. \ \overrightarrow{y}_1 + \overrightarrow{y}_2 \to \emptyset$			
9	$\forall \gamma_i \in \Gamma$:		\overrightarrow{G}_i	$\forall \gamma_i \in \mathcal{A}$	Γ :		$23. \ \overrightarrow{z} + \overrightarrow{g}_i \to \overrightarrow{g}_i$			
Return to Step 0.										

Step	ep Additions			Relevant Rules				
0			\overrightarrow{G}	$\forall \gamma_i \in \Gamma$:		$1. \overrightarrow{G} + \overrightarrow{G}_i + \overrightarrow{g}_i \to \emptyset$		
						$24. \ \overrightarrow{z} + \overrightarrow{G} \rightarrow \overrightarrow{z}$		
1	$\forall \gamma_i \in \varGamma, \forall$	$r_j \in \mathcal{R}_i$:	$\overrightarrow{E}_{i}^{j}$	$\forall \gamma_i \in \Gamma, \forall$	$r_j \in \mathcal{R}_i$:	$2. \ \overrightarrow{G}_i + \overrightarrow{E}_i^j \to \overrightarrow{G}_i$		
2			\overrightarrow{w}	$\forall \gamma_i \in \Gamma, \forall$	$r_j \in \mathcal{R}_i$:	$3. \overrightarrow{w} + \overrightarrow{g}_i \to \overrightarrow{w}$		
				\ - T\	· - D	$\underbrace{4. \overrightarrow{w} + \overrightarrow{r}_j + \overrightarrow{E}_i^j \rightarrow \overrightarrow{w}}_{z \rightarrow i}$		
3			\overrightarrow{a}_y	$\forall \gamma_i \in \Gamma, \forall$	$r_j \in \mathcal{R}_i$:	5. $\overrightarrow{E}_{i}^{j} + \overrightarrow{a}_{y} + \overrightarrow{w} \rightarrow \overrightarrow{E}_{i}^{j}$ 25. $\overrightarrow{a}_{y} + \overrightarrow{w} + \overrightarrow{z} \rightarrow \emptyset$		
4			\overrightarrow{a}_n			$6. \overrightarrow{a}_y + \overrightarrow{a}_n + \overrightarrow{w} \to \overrightarrow{a}_y$		
						7. $\overrightarrow{G}_i + \overrightarrow{r}_j + \overrightarrow{R}_i^j \rightarrow \overrightarrow{G}_i$		
					$\forall r_j \in \mathcal{R}_i$:	$\begin{array}{l} 1. \ G_{i} + \overrightarrow{r}_{j} + \overrightarrow{R}_{i} \to G_{i} \\ 1. \ 8. \ \overrightarrow{E}_{i}^{j} + \overrightarrow{r}_{j} + \overrightarrow{R}_{i}^{j} \to \emptyset \\ 1. \ 9. \ \overrightarrow{a}_{y} + \overrightarrow{r}_{i} + \overrightarrow{R}_{j}^{j} \to \overrightarrow{a}_{y} \end{array}$		
5	$\forall \gamma_i \in \varGamma :$					9. $\overrightarrow{a}_y + \overrightarrow{r}_j + \overrightarrow{R}_i^j \rightarrow \overrightarrow{a}_y$		
		$\forall p_j \in \mathcal{P}_i$:	$\overrightarrow{p}_j, \overrightarrow{P}_i^j$		$\forall n \in \mathcal{D}_i$	$10. \overrightarrow{G}_i + \overrightarrow{p}_j + \overrightarrow{P}_i^j \rightarrow \overrightarrow{G}_i$		
					$VPj \subset Ii$.	11. $a_n + p_j + P_i \rightarrow a_n$		
6	$\forall \gamma_i \in \Gamma$:		$\overrightarrow{x}, \overrightarrow{G}'_i$	$\forall \gamma_i \in \Gamma$:		12. $\overrightarrow{x} + \overrightarrow{G}'_i + \overrightarrow{G}_i \to \emptyset$		
7	$\forall \gamma_i \in \Gamma$:		\overrightarrow{c}	$\forall \gamma_i \in \Gamma$:		13. $\overrightarrow{a}_y + \overrightarrow{c} + \overrightarrow{G}'_i \rightarrow \overrightarrow{a}_y$		
					$\forall r_i \in \mathcal{R}_i$	$ \begin{array}{c} 14. \ \overrightarrow{y}_1 + \overrightarrow{E}_i^j \to \overrightarrow{y}_1 \\ 15. \ \overrightarrow{y}_1 + \overrightarrow{R}_i^j \to \overrightarrow{y}_1 \end{array} $		
	$\forall \gamma_i \in \Gamma$:			$\forall \gamma_i \in \Gamma$:				
			$\overrightarrow{g_i}$ \overrightarrow{y}_1		$\forall p_j \in \mathcal{P}_i$:	16. $\overrightarrow{y}_1 + \overrightarrow{P}_i^j \rightarrow \overrightarrow{y}_1$		
8	$\forall \gamma_i \in I$:					17. $\overrightarrow{G}'_i + \overrightarrow{g}_i \rightarrow \overrightarrow{G}'_i$		
						18. $\overrightarrow{y}_1 + \overrightarrow{x} \rightarrow \overrightarrow{y}_1$		
						19. $\overrightarrow{y}_1 + \overrightarrow{a}_y \rightarrow \overrightarrow{y}_1$		
						20. $\overrightarrow{y}_1 + \overrightarrow{a}_n \rightarrow \overrightarrow{y}_1$		
			\rightarrow			$ \begin{array}{ccc} 21. \ \overrightarrow{y}_1 + \overrightarrow{c} \to \overrightarrow{y}_1 \\ 22. \ \overrightarrow{y}_1 + \overrightarrow{y}_2 \to \emptyset \end{array} $		
9	$\forall \alpha \in \Gamma$		$\overrightarrow{y}_2, \overrightarrow{z}$ \overrightarrow{G}_i	$\forall \gamma_i \in \Gamma$:		22. $y_1 + y_2 \rightarrow y_1$ 23. $\overrightarrow{z} + \overrightarrow{g}_i \rightarrow \overrightarrow{g}_i$		
	$\forall \gamma_i \in \Gamma :$		200.00		ten ()	$20. \ z + y_i \rightarrow y_i$		
Return to Step 0.								

(3,1) Step-Cycle CRNs is Turing Universal

(3,1) Void Step-Cycle CRN C^\prime

General Step-Cycle CRN $\,C\,$

equivalent under polynomial simulation

(3,1) Step-Cycle CRNs is Turing Universal

(3,1) Void Step-Cycle CRN C^\prime

General Step-Cycle CRN $\,C\,$

Step-Cycle CRNs are Turing-Universal*

(3,1) Step-Cycle CRNs is Turing Universal

(3,1) Void Step-Cycle CRN C^\prime

General Step-Cycle CRN $\,C\,$

 $D + A \rightarrow B + Y + C$

equivalent under polynomial simulation

(3,1) Void CRN

General CRN

Reachability is NP-complete

Reachability is
Ackermann-complete

Future Work

Our notion of polynomial simulation actually captures "expected" polynomial-ness. Can we achieve a tighter connection between the transition probabilities for both the original and simulating systems?

Future Work

Our notion of polynomial simulation actually captures "expected" polynomial-ness. Can we achieve a tighter connection between the transition probabilities for both the original and simulating systems?

Thank You!

Future Work

Our notion of polynomial simulation actually captures "expected" polynomial-ness. Can we achieve a tighter connection between the transition probabilities for both the original and simulating systems?

Thank You!

Questions?