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Fuel Efficient Computation in Passive Self-Assembly

Robert Schweller*

Abstract

In this paper we show that passive self-assembly in
the context of the tile self-assembly model is capable
of performing fuel efficient, universal computation.
The tile self-assembly model is a premiere model of
self-assembly in which particles are modeled by four-
sided squares with glue types assigned to each tile
edge. The assembly process is driven by positive
and negative force interactions between glue types,
allowing for tile assemblies floating in the plane to
combine and break apart over time. We refer to
this type of assembly model as passive in that the
constituent parts remain unchanged throughout the
assembly process regardless of their interactions. A
computationally universal system is said to be fuel
efficient if the number of tiles used up per compu-
tation step is bounded by a constant. Work within
this model has shown how fuel guzzling tile systems
can perform universal computation with only positive
strength glue interactions [33]. Recent work has in-
troduced space-efficient, fuel-guzzling universal com-
putation with the addition of negative glue interac-
tions and the use of a powerful non-diagonal class of
glue interactions [20]. Other recent work has shown
how to achieve fuel efficient computation [28] within
active tile self-assembly. In this paper we utilize neg-
ative interactions in the tile self-assembly model to
achieve the first computationally universal passive
tile self-assembly system that is both space and fuel-
efficient. In addition, we achieve this result using a
limited diagonal class of glue interactions.

1 Introduction

Self-assembly is the process by which systems of sim-
ple objects organize themselves through local inter-
actions into larger, more complex objects. There are
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perhaps two categories of self-assembly: passive and
active. In passive self-assembly the objects of the sys-
tem are simple, stagnant particles that interact sim-
ply by surface chemistry and geometry. In contrast,
objects within an active self-assembly model may be
permitted to move, rotate, adjust state, or add and
remove bonding domains based on local interactions.
Put another way, active self-assembly extends tradi-
tional passive self-assembly by considering the objects
of the system to be simple robots with abilities that
vary according to the particular model considered.

The study of passive self-assembly is important
for multiple reasons. First, many theoretical models
of active self-assembly do not currently have satis-
factory implementations at the nanoscale. In con-
trast, many computationally interesting passive tile
self-assembly constructions are seeing experimental
success based on DNA implementations [7}24}|30].
Further, it is plausible that many active self-assembly
models will see implementation through construc-
tions built up within passive self-assembly models.
For example, the system proposed in this paper which
implements a space-efficient, fuel-efficient universal
computation system might be modified to serve as
the internal machinery for a larger, active component,
thus potentially allowing for a passive self-assembly
system to simulate the behavior of a more powerful
active system. Finally, it is important to understand
the power and limits of passive self-assembly to better
understand when active components are truly neces-
sary.

In this paper we focus on an established model of
passive self-agssembly, the tile assembly model (TAM).
Monomers in the TAM are unit squares with glue
types assigned to edges. Self-assembly is driven by
a large (infinite) number of copies of a set of tile
types floating about, bumping into one another in
the plane, and potentially sticking together when glue
affinities exceed some set threshold. While simple,
the TAM has been extensively studied [1-6}8H14}/16-
19,|22, |23} [25(27,|31},[32] and shown to be capable of
universal computation [33], and even recently shown
to be intrinsically universal [21] in the case of the
abstract TAM.
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Within the TAM, we consider the problem of im-
proving existing universal computation results by ob-
taining fuel-efficiency. A TAM system that simulates
a Turing machine is said to be fuel-efficient if only a
constant number of tiles are used up per computation
step. This requirement, or close approximations to it,
are of fundamental importance for the implementa-
tion of scalable molecular computers. Unfortunately,
all passive variants of the TAM have failed to yield
fuel-efficient universal computation.

To address this fuel-deficiency, we consider the
TAM with the added power of negative glue interac-
tions. The power of negative force interactions stems
from the possibility of stable assemblies coming to-
gether with strong affinities and yet producing un-
stable products that subsequently break apart into
pieces that are different from the original pair of as-
semblies. By careful engineering, this property can
be harnessed to allow assemblies to attach to spe-
cific locations of large assemblies, surgically pry off
and replace small portions of the assembly, and fi-
nally detach the replacement mechanism and repeat
the process. If you imagine that the large assembly
represents the tape of a Turing machine, and that the
location of attachment occurs at the current head lo-
cation of the machine, you get a high level overview
of our Turing machine simulation that only uses up a
fixed number of tile types per computation step. This
stands in contrast to previous fuel-guzzling work in
which each computation step is simulated by the as-
sembly of a complete, slightly modified, copy of the
entire tape.

1.1 Related Work Doty et. al. [20] first con-
sidered the effect of negative interactions in self-
assembly and showed how to design space-efficient
computational self-assembly systems by utilizing neg-
ative glues to slice off a previous assembly state af-
ter computing the next state. This state transition
construction can be applied to the simulation of a
Turing machine. However, their construction does
not achieve fuel efficiency in that each computational
step uses up a number of tiles on the order of the
current size of the tape. Their result is also not ap-
plicable to our graph traversal system in that their
technique, modified to the graph traversal problem,
would lead to dead end assemblies that violate the re-
quired dynamics of the graph traversal. Finally, their
paper utilizes a very powerful non-diagonal version of
the tile self-assembly glue function. We restrict our-
selves to the much more restricted diagonal class of
glue functions in which glues may only interact with

similarly labeled glues. Also, this restricted diagonal
class of glue functions allows us to maintain a strict
separation between positive and negative glues which
is likely more feasible for experimental implementa-
tion. Additionally, Doty et. al. provide an elegant
amortized analysis proof showing a limit to the ex-
tent to which tile reuse can be achieved with negative
force interactions within the TAM. We implicitly use
their result in that it allows us to reasonably simplify
our definition of fuel usage to not deal with tile reuse.

Some recent work has been done that shows
provable increases in power of active self-assembly
systems over passive TAM systems. Recent work
by Woods et. al. [34] and Nadine Dabby and Ho-Lin
Chen [15] has shown that local rule based active self-
assembly systems are able to assemble large shapes
in poly-logarithmic time when the monomers of the
system are able to perform operations such as pushing
a row of placed monomers a unit of distance in some
direction. Another recent work by Padilla et. al. |28]
considers an active tile self-assembly model motivated
by a DNA strand replacement mechanism in which
tiles can pass simple, fire-once signals from one
tile edge to another. They show that this simple
mechanism allows for the implementation of fuel-
efficient universal computation, as well as additional
efficiencies that are provably impossible within the
passive TAM.

Additional investigations have looked into self-
assembly models that allow self-assembly detach-
ment, a key requirement for the implementation of
space-efficient computations [1}/61/25,/32]. Other re-
cent work has considered negative glues within the
TAM to achieve universal computation with a very
limited set of glues at temperature-1 [29].

Paper layout. In Section [2| we define the tile
assembly model and present definitions that define
our graph traversal and Turing machine simulation
problems. In Section [3| we present our construction
for fuel efficient graph walking. In Section [ we
present a simple example graph walking system that
implements a base-4 oscillator. In Section we
extend our graph walking construction to simulate
Turing machines. Finally, in Section [6] we conclude
with a discussion of future research directions.

2 Definitions and Model

In this section we first define the two-handed tile
self-assembly model with both negative and positive
strength glue types and diagonal glue functions.
We also formulate the problem of designing a tile
assembly system that walks a given input graph, as

1514 Copyright © SIAM.

Unauthorized reproduction of this article is prohibited.



Downloaded 06/24/16 to 129.113.130.105. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

(@)

1
©
C

']—_

[@AN

(c)

Figure 1: This figure introduces our notation for our constructions, as well as a simple example of combination
and detachment events. We denote positive glues with vertical and horizontal lines protruding from tile edges
along with numbers and labels denoting glue strength and type. Negative strength glues are labeled with
slanted lines. Finally, bonded glues between adjacent tiles are depicted with a number denoting the bond
strength inscribed within a box between the bonded tile edges. (a) The 3-tile assembly on the left and the
singleton gray tile are combinable into a 2 x 2 square shown in (b) as the cut between the 2 assemblies yields
strength 1. Note, however, that the producible 2 x 2 square in (b) is not stable and is breakable into the

assemblies shown in (c).

well as the concept of fuel efficiency.

2.1 Tile Self-Assembly Model

Tiles. Consider some alphabet of glue types II.
A tile is a finite edge polygon with some finite subset
of border points each assigned some glue type from
II. Further, each glue type g € II has some rational
number strength str(g). Finally, each tile may be
assigned a finite length string label. In this paper we
consider a special class of tiles that are unit squares
of the same orientation with at most one glue type
per face, with each glue being placed exactly in the
center of the tile’s face.

Assemblies. An assembly is a set of tiles whose
interiors do not overlap. For a given assembly T,
define the bond graph Gy to be the weighted graph
in which each element of T is a vertex, and each
edge weight between tiles is the sum of the strengths
of the overlapping, matching glue points of the two
tiles. An assembly C is said to be stable if the
bond graph G¢ has min-cut at least 1, and unstable
if the min-cut is less than 1. Note that if the
set of border points of all tiles in an assembly is
not a connected set, then the assembly cannot be
stable. Note that only overlapping glues that are
the same type contribute a non-zero weight, whereas
overlapping, non-equal glues always contribute zero
weight to the bond graph. The property that only
equal glue types interact with each other is referred to
as the diagonal glue function property and is perhaps
more feasible for experimental implementation than
more general glue functions. Additionally, with
the square tiles considered in this paper, stable

assemblies will necessarily consist of tiles stacked face
to face, forming a subset of the 2D grid.

For an assembly A, let A* denote the set of all
assemblies that are equal to A up to translation. For
a set of assemblies T, let T denote the set of all
assembly sets A* such that A € T. Put another way,
T* is a set that represents a set of assemblies T if we
do not care about translation.

Breakable Assemblies. For an (unstable) as-
sembly C' whose bond graph G¢ has a cut into as-
semblies A and B with weight less than 1, we say that
C is breakable into A and B.

Combinable Assemblies. Informally, two as-
semblies A and B are said to be combinable into an
assembly C' if the assemblies can be translated to-
gether in such a way that they do not overlap and
the sum of the matched glue strengths between the
two assemblies is at least 1. Formally, consider two
assemblies A and B. If B can be translated into B’
such that C = A|J B’ is a valid (not overlapping)
assembly such that the cut of G4y into A and B’
has strength at least 1, then we say that A and B are
combinable into C.

Note that A and B may be combinable into an
assembly that is not stable. This is a key property
that is leveraged throughout our constructions. See
Figure 1] for an example.

Producible Assemblies. A set of initial assem-
blies T has an associated set of producible assem-
blies, PRODy, which define what assemblies can grow
from the initial set T by any sequence of combina-
tion and break events. Formally, T" C PRODr as a
base case set of producible assemblies. Further, given

1515 Copyright © SIAM.

Unauthorized reproduction of this article is prohibited.



Downloaded 06/24/16 to 129.113.130.105. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

any A, B € PRODy with A and B combinable into C,
then C € PRODy, and for any C' € PRODy where C'
is breakable into A and B, then A, B € PRODy. Put
another way, the set of producible assemblies con-
tains any assembly that can be obtained by a valid
sequence of combinations and breaks, starting from
the initial set of assemblies T. We further define the
set of terminal assemblies, TERM7, to be the subset of
PRODy such that no element of TERMy can undergo a
break or combination transition with another element
of PROD7.

Typically, we require that an initial assembly set
consist only of stable assemblies. When T consists
only of assemblies that are singleton tiles, T is called
a tile set.

2.2 Additional Definitions

Valid Assembly Sequence. For an initial as-
sembly set T, a valid assembly sequence for T is any
sequence of assemblies S = (aq, . ..ay) such that each
a; € PROD7, and for each i from 1 to k—1, a; is either
combinable with some b € PRODy to form a;41, or a;
is breakable into a;41 and b for some assembly b. In
addition, a valid assembly sequence S is said to be
{-focused for label { if each assembly in S contains at
least one tile with label £. A valid assembly sequence
is said to be nascent if a; € T.

For a given partial function f : PRODy — V for a
set V, define function f'({(ay,...ax)) to be a function
from assembly sequences over PRODy to sequences
over V defined by replacing each a; with f(a;) if f(a;)
is defined, and deleting a; if f(a;) is not defined.

Graph Walking Assemblies. Consider a di-
rected graph G = (V, E), a start vertex s € V, and
an initial assembly set 7" in which some tiles of some
assemblies are labeled with ¢. T is said to walk graph
G if there exists a partial function f : PRODp — V
such that:

1. (assembly sequences are walks) For any ¢-focused
nascent assembly sequence S of T, f/(S) is a
valid walk of G starting at vertex s.

2. (walks are assembly sequences) For any walk W
of GG starting at vertex s, there exists a nascent,
(-focused assembly sequence S such that f/(S) =
w.

3. (no undesired dead-ends) Consider an edge
(u,v) € E. Then for any ¢-focused assembly
sequence S such that f/'(S) = (u), there exists
an {-focused assembly sequence R such that S is
a prefix of R and f/'(R) = (u,v).

In this definition, the ¢ label is meant to denote
tiles and assemblies that are meant to be part of
the output, and not garbage. That is, to walk a
graph efficiently there will necessarily be dead-end
garbage assemblies. Our definition thus requires that
all such garbage assemblies be free of the ¢ label
and thus can be distinguished from the assemblies
that represent the graph walking assemblies. In
a sense, our definition states that if you stare at
one f-labeled tile within an assembly, over time the
assembly containing that tile will be guaranteed to
walk the graph correctly, whereas if you stare at a
portion of the assembly that is not labeled with the
£, it is possible that portion may detach and become
garbage at some point.

Fuel Efficiency. Consider two assemblies a and
b. Define fuel(a,b) to be |b| —|a| if |b] > |a|, and zero
otherwise. For an assembly sequence A = (aq,...ay),
define fuel(A) to be > fuel(a;, ait1).

For a tile set T that walks a directed graph G, T’
is said to be fuel efficient if for all ¢-focused, nascent
assembly sequences S, fuel(S)/|f'(S)| = O(1). That
is, for all possible walks, the average fuel per vertex
transition is bounded by a constant.

3 Graph Walking

In this section we construct a tile assembly set for the
fuel-efficient walk of a given input directed graph:

THEOREM 3.1. For any given finite directed graph
G = (V,E), there exists a fuel efficient initial as-
sembly set T that walks G. Further, T contains at
most O(|V| + |E|) distinct assemblies each of O(1)

size.

This theorem can be slightly strengthened in that
it is possible to modify the construction so that T
consists of only singleton tiles. However, for clarity
we do not present this modification.

The construction for this result serves two pur-
poses. First, we believe the result itself is interesting.
One example corollary is the ability to implement os-
cillator self-assembly systems with an example given
in Section [ The second purpose is that this con-
struction presents some of the key techniques in a
simplified form that we will extend to construct our
main result: fuel efficient Turing machines.

The remainder of this section describes the con-
struction for the proof of this theorem.

3.1 Template Assembly Set The following tile
assembly template allows one to create an assembly
set that can non-deterministically walk across a di-
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rected graph. This template creates an assembly set
that has O(|]V |+ |E|) assembly types. Also, the tem-
plate uses a modest 9 fuel tiles per transition step.
An example of constructing an assembly set using
this template follows in Section [ where we build a
base four oscillator.

+ _+
a a

(a) (b) (©)

Figure 2: These four tiles are needed in order to
represent a vertex in a graph. All glues labeled with
some form of an a require unique glues to the specific
vertex these tiles represent and may not be shared
amongst other vertices. The tile in Figure [2a] allows
an edge gadget to detach its corresponding vertex.
The tile in Figure [2¢| allows an edge gadget to know
when its vertex has finished attaching. Finally, the
pair of tiles in Figure 2b|reperesent a single vertex in
a graph.

Vertex Representation. For each vertex in
the graph you must have the set of two tiles shown in
Figure [2D] a vertex detachment tile shown in Figure
and finally a vertex attachment tile which is
shown in Figure The five glues labeled o', a*,
a., a™ and a on the duple of Figure [2b| are unique to
some vertex a while the two southern glues are the
same for all pairs of tiles.

B

|

| |
a b a* b- z 718
L | 78 s 28 s B /
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Figure 3: The edge gadget and its detachment tile.
The assembly in Figure is the edge gadget and
represents a directed edge from vertex a to vertex b.
The tile in Figure 3D is the tile that will allow the
edge gadget to detach itself once done.

Edge Gadget. Figure [3a is the edge gadget
which exchanges a vertex a with the vertex b on the
cell assembly. When the edge gadget detaches itself
from the cell assembly all tiles that detach with the
gadget are no longer usable. In Figure [3al the glues

a
|
| -
a agf ATa3s 38T A T8 a+ -+
| |
|
c d

labeled with some a represent glues unique to some
vertex a while the glues labeled with some b represent
glues specific to some vertex b. The glue labeled with
a z is unique to the edge detachment tile shown in
Figure This tile allows the edge gadget including
its junk to detach from the cell assembly.

Figure 4: The initial pre-built starting cell assembly
with a vertex already attached. As can be seen in the
figure, we have labeled one of the tiles on the cell with
an ¢ making any assembly sequence which contains it
£-focused.

Cell Assembly. This cell assembly is assumed
to be pre-built and contains the initial starting vertex
v already placed on top of the cell assembly. As
you can see in Figure 4| the glues ¢ and d are not
discriminatory and allow any two tiles representing a
vertex to attach to the cell assembly with the aid of

an edge gadget. The gth glue along with the ax glue
allow the edge gadget to attach. After the attachment

the %th glue allows for the widget to get a better
“grip” on the assembly cell so that it may detach the

current vertex. The final %th glue on the assembly
allows the edge gadget to pry itself off.

3.2 Correctness As can be seen from Figure[5|the
possible transitions made by changing from one state
to another are straight forward and verifying that
each single tile addition must happen in the order
shown is left as a short exercise to the reader. We
will concentrate on the two negative glue detachment
events which are more complex and need to be
verified so as to ensure that no other cuts in the
produced assemblies are unstable other than those
depicted. We shall assume that each vertical column
of the image represents a stage in the transition and
so there are a total of 9 stages from start to finish.

Correct Gadget Removal. After the gadget is

done a tile may attach to the negative %th glue on the

cell assembly which in turn pops off the edge gadget
along with any junk. Two scenarios are brought

about by the infinite binding within the cell assembly
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Figure 5: The steps necessary to transition from one state to another.

and edge gadget independently. The first scenario
occurs when the cell assembly and edge gadget end
up on opposite sides of the detachment. The other
happens when both the cell assembly and edge gadget
end up on the same side of the detachment. We will
analyze both of these scenarios and show that from
stage 8 in Figure o the only valid detachment is what
results in stage 9.

Suppose both the cell and the gadget detach
to opposite sides of the cut. We must include a
negative glue to get an unstable cut and so the edge
detachment tile must be on the same side as the
gadget. This gives us a cut with weight é not taking
into account any of the other four labeled tiles. For
the cut to be unstable we can only increase the weight
by g so as to keep it below 1. To stay unstable both
the vertex detachment tile and the vertex attached
tile must be on the side of the edge gadget because
of their % attachment. Also, the left vertex tile
must stay on the side of the cell assembly for the
same reason. With this new information the total
weight of the cut is now g and we only have the right
vertex tile to place. The right vertex tile must now
stay on the side of the cell because to keep the cut
unstable we may only increase the weight of the cut
by % more. Therefore, it is easy to see that the only
possible unstable cut if both the cell and gadget are
on opposite sides is the one displayed in Figure [}

Now, suppose that both the cell assembly and
the edge gadget detach to the same side of the cut.
In order to include the negative strength of the edge
detachment tile it must be on the opposite side of
both the edge and the gadget. This immediately
shows us that our cut is % which is stable. With
no other negative glue interactions, there is no cut
with both the cell assembly and the edge gadget on
the same side that would lead to a detachment.

Therefore, since we have exhaustively explored
both scenarios using the fact that the cell assembly
and edge gadget are infinitely bound we can say that
the only unstable cut at stage 8 is the one that results
in stage 9.

Correct Vertex Replacement. Assume we
are in stage 3 of Figure [f] We will show that the

transition to stage 4 is the only valid detachment
event that may happen. If the cell and edge gadget
were to detach to opposite sides of the cut this would
give us a cut with weight %. Then, no matter which
side of the cut you place the vertex removal tile all
cuts will be above 1. If both the edge gadget and the
cell are on the same side of the cut, the left vertex
tile must be on the opposite side of the cut since the
vertex removal tile will not fall out. This means that
either the left vertex tile or both vertex tiles must
be on the opposite side of the cut. If both vertex
tiles are on the opposite side of the cut we have a
cut with weight % which is stable. On the other
hand, if it is only the left vertex tile on the opposite
side of the cut then the weight of the cut is % which
enables it to detach. Therefore, the only detachment
event that can occur after stage 3 is the single left
vertex tile detaching from the assembly leaving the
assembly in stage 4. Once in stage 4 the right vertex
tile destabilizes and may detach, leaving room for the
next vertex to attach and stage 6 to come about.

4 Quaternary Oscillator

LN\ N

Figure 6: The directed graph of a quaternary oscilla-
tor.

A quaternary oscillator can be drawn as a di-
rected graph with vertices representing each digit in
the base-4 numeral system and the directed edges
marking the transition from one numeral to the
next. Figure [f] shows a directed graph representing
a quaternary oscillator. The Graph Walking Tem-
plate Assembly Set from Figures and [4] is non-
deterministic when any vertex in the graph has more
than one outgoing edge because any one of the edges
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may attach and continue to transition. The quater-
nary oscillator in Figure [0 on the other hand, has
only a single outgoing edge for any vertex making the
template deterministic. Figure [7] represents the com-
plete assembly set necessary to represent the graph
in Figure[6] This is a straightforward example of how
to create a concrete assembly set using the assembly
template presented in Section (3.1

5 Fuel Efficient Universal Computation

In this section we describe how to construct an ini-
tial assembly set T that will simulate a given Tur-
ing machine M. To formally define simulation of a
Turing machine, we utilize our graph walking formu-
lation. For a given Turing machine M, we consider
all possible tape configurations, states, and head lo-
cations the machine may enter over time and form a
directed graph over these possible configurations de-
picting which configurations the machine may transi-
tion between within a single computation step. With
this definition we say that an assembly set T simu-
lates M if it walks this configuration graph.

Formally, we define the simulation as follows:

Turing Machine Simulation. Consider some
Turing Machine M = (Q,T',b,%,4, qo, F), an initial
tape t, and head position h. Let a possible status
of M be a 3-tuple S = (state,tape,head) where
state represents some current state from @, tape is
some string of symbols over I', and head specifies a
location on the tape where the Turing machine head
currently sits. Additionally define the start status
for a Turing machine M and an input tape r as the
status corresponding to tape = r, head = h, and
state = qq.

Given a Turing machine M, define a directed
graph G); where the set of all statuses for M are
vertices, and there exists an edge from any status a
to status b if and only if M can transition from status
a to b in one step. Finally, we say an initial assembly
set T simulates Turing machine M if T walks Gy.
Further, we say T is a fuel-efficient simulation of M
if T constitutes a fuel-efficient walk of Gjy.

Our main result is as follows:

THEOREM 5.1. For any Turing machine M, there
exists an initial assembly set T such that T is a fuel-
efficient simulation of M. Further, |T| = O(|T'|-1Q]),
and each element of T is of O(1) size.

As with our graph walking theorem, it is possible
to strengthen this theorem such that T' contains only
singleton tile assemblies. For clarity of presentation
and space, we omit the extended construction that

achieves this.
The remainder of this section presents the con-
struction that proves Theorem [5.1

" A *

% % @ 8 &

oy a' tma' artja’ attja aphys
38 781 38 38\ A 38 38+ A 18 184 =78
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Figure 8: These tiles represent a symbol and state
pair along with their needed utility tiles.

5.1 Template Tile Set

Symbols And States. For our construction we
add an additional state, the empty state @, to M
which will be used to represent a symbol with no
state i.e. a location where the head of the Turing
Machine currently is not. For every symbol in I" and
every state in @) including @ we create the set of tiles
shown in Figure |8} This means that we should have
exactly |I'|- (|Q|+1) sets of tiles. The two center tiles
labeled with an A in Figure [§ will represent some
duple (a € Q,s € ' U ). We define a stateless state
symbol pair as having the @ state while a stateful
state symbol pair has some ¢ € ). The two leftmost
tiles are called state symbol detachment tiles and
detach the particular state symbol tile pair they were
created with. This will be useful later when trying to
transition the state of the Turing Machine. Finally,
the last tile on the right is the state symbol attached
tile and will allow the assemblies to know that the
state symbol tile pair associated with it have both
been attached.

r [

v 48 48 78 58 5/8 w

7/8 u T T T T t* . 1/8 .
t' u' e+ 78 t u
718 718 U | ' ' : t 718 7/8
e 78 78 T8 78 HIY
118 f 9 h i 78
| ) ) V
78K 78K

Figure 9: This assembly represents a single position
on the tape. It is a tape cell which can and should
contain some symbol state pair atop it attached to
glues ¢ and d. The two accompanying tiles are what
will allow the tape to extend to the right or left.

Tape Cell. A tape cell in our construction is a
single piece of tape which contains some state symbol
tile pair taken from Figure [§8] If the state contained
on the tape cell is @ then the tape cell contains only
data, i.e. a symbol from I'. On the other hand, if the
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Figure 7: The complete assembly set for creating a quaternary oscillator.

state contained on the tape is not @ then the location
of the Turing Machine’s head is at that location and it
contains some symbol from I". The whole of the tape
is then at least one tape cell possibly combined with
many more tape cells attached together with the head
of the tape in only a single location i.e. with a single
cell containing a state unequal to & at any given time.
Should the head of the Turing Machine be placed in
multiple locations it will result in undefined behavior.
When we later extend the tape we insure that the
extended piece of tape gets initialized automatically
to the blank state; i.e. the symbol b in combination
with the state @. It is important to note that in order
to properly transition across the directed graph Gy,
we must label a tile on the left-most starting tape cell
with an £.

Transition Function. A Turing Instruction is
the 5-tuple I = (c € Q,s € I',p € I',{L,R},n € Q)
where c is the current state, s is the scanned symbol,
p is the symbol to print, {L, R} is the left or right
movement of the head, and n is the new state. For
each Turing Instruction in M create |I'| transition
gadgets. A single transition gadget is shown in Figure
10

For two state symbol pairs we follow the same
process as exchanging a single vertex in the Graph
Walking Template with a few exceptions. The most
obvious exception is that we are now exchanging
two symbol state pairs instead of a single vertex
pair. In order to facilitate this change we extend the

transition gadget to accompany the two exchanges.
The next difference is that after exchanging the first
pair of tiles the next symbol state pair must be
exchanged instead of detaching the whole transition
gadget. This is the reason for needing two state
symbol detachment tiles instead of just the single
one as in the Graph Walking Template. Now, of the
two detachment tiles the first is used when detaching
the left state symbol pair underneath the transition
gadget and the second is used when detaching the
right state symbol pair underneath the transition
gadget. This along with the changing of a couple
glue strengths gives us a transition gadget shown in
Figure [I0] that is able to exchange two symbol state
pairs at the same time.

Now, in order to create the transition gadgets
which represents a Turing instruction, we must prop-
erly set the label of several unlabeled glues. We will
temporarily number the unlabeled glues in Figure [I0]
from 1 starting at the left to 8 at the farthest right.
It does not matter whether you are moving the head
left or right, the stateful pair always becomes state-
less and the stateless pair always becomes stateful.
Therefore, the only difference between moving the
head right or left is that the stateful pair is at the
left when moving right or at the right when moving
left. We will continue to assume that we are creating
the transition gadgets for some I which moves the
head to the right. Since we are moving right, glues
3 and 1 will use the proper glue labels for the state
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Figure 10: The leftmost assembly represents a single “Turing Instruction” and is called a transition gadget.
The second tile is the detachment tile and the last tile is simply a tile that will be used to fill space.
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Figure 11: This is an example of a transition gadget
changing two As into an B and a C.

symbol pair (¢, s). Glues 2 and 4 use the proper glue
labels from the state symbol pairs (&,p). Now, the
next part explains the reason why we need |I'| gad-
gets. All gadgets now have glues 1 through 4 filled in
with labels from our assembly set. Next, fill in glues 5
and 7 for all gadgets with the proper glue labels from
every state symbol pair that contains the @ state.
Finally glues 6 and 8 are filled using the glue labels
for every state symbol pair that contains state n such
that the symbol represented in 5 and 7 matches those
of 6 and 8 within the same transition gadget. Figure
[I7] contains an overview of the necessary steps that
allow the transition gadget to work.

With the gadget just about to detach, we can
use the same arguments presented in Section to
prove that the transition gadget detaches correctly.
The tape cell and transition gadget themselves are
strongly connected and should not fall apart. There-
fore, we start by saying that either both the tape cell
and transition gadget end up on the same side of the
cut or they end up on different sides of the cut. Us-
ing this information and the fact that we want a cut
below 1 we can whittle down the possible sides of all
the tiles in either situation. As one will be able to
see the only possible cut below 1 happens when the
tape cell and transition gadget are on opposite sides
of the cut and all the fuel tiles are on the same side
as the transition gadget.

Tape Extension. In order to simulate a Turing
Machine and be space efficient we must ensure that
our tape does not grow infinitely but extends only
when needed. Our construction ensures that our tape
grows only when necessary. We do this by using a
recurring theme, attaching what we need and then
using some negative glues to destabilize the junk
assembly.

We will need four tiles, shown in Figure[12] which
will serve as a way for the tape extension gadgets
to detach themselves once they are done with their
work. For simplicity we create a tape extension
gadget for every stateful state symbol pair. Since the
tape extension gadget must connect to the stateful
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Figure 12: The assembly needed to extend the tape to the right including two utility tiles colored dark gray.
The four light gray tiles are necessary to allow the tape extension gadgets to remove themselves and not

continuously attach.

state symbol pair at the right end of the tape, we
create a tape extension gadget for every stateful state
symbol pair by changing only the leftmost % glue to
match the pair. The tape extension gadget can only
attach if the position of the head is at the edge of
the tape i.e. the stateful state symbol pair is at the
edge. Once the head makes its way to the edge of
the tape, the tape extension gadget is able to attach
and extend the tape. Then the tape extension gadget
places the two tiles shown in Figure[J] which will allow
another tape cell assembly to attach. Once the new
tape cell assembly has attached the stateless blank
or “default” state symbol pair can then be attached
to the tape cell. After the attachment of the state
symbol pair, tiles cooperatively bind around the tape
extension arch until it attaches a tile underneath the
tape cell arch. Finally, three tiles attach which cause
the detachment of the extension gadget. A detailed
overview of this process can be seen in Figure
The proof that the tape extension gadget detaches
properly is easily verifiable at this point and is left as
an exercise to the reader.

5.2 Tape Reduction A Turing machine in theory
has an infinite length tape to work with. To simulate
this property our construction automatically extends
the finite length tape on demand when needed. How-
ever, it is reasonable that a Turing machine may grow
a large tape, and then subsequently “blank” out much
of the tape leaving only a small length portion of tape
between the leftmost and rightmost non-blank sym-
bol. In some sense, it is a waste of space to explicitly
encode the large number of blank bits that are be-
yond this region.

In order to maintain space efficiency, which re-
quires that the size of the assembly representing each
computational step is asymptotically bounded above
by the region of the tape between the leftmost and
rightmost non-blank symbol, we have created the tape
reduction gadget. This gadget simply clips off the
rightmost bit of the tape under certain circumstances
such as if the rightmost bit has been blanked. This
gadget allows for our Turing machine to achieve space
efficiency, which is the requirement that the size of
the assembly representing each computational step is
asymptotically bounded above by the size of the re-
gion of the tape between the leftmost and rightmost
non-blank symbol, or the region between the head
position and either the right or leftmost non-blank
symbol.

One motivation for achieving space-efficiency is
the potential implementation of components from
active self-assembly models within our passive tile
assembly model. In particular, our space efficient
construction may be utilized as the internal workings
of a larger active component. While the computation
required of an active component may require a large
tape size, the final output may be taken from a small
set of options such as “turn on glue a”, or something
similar. With space efficiency, there is hope that our
passive implementation will be able to perform the
required functionality without growing so large that
the geometry of the mechanism interferes with the
higher-level active system mechanics.

We do not present the full details of our reduction
gadget(s) in this extended abstract.
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Figure 13: This figure shows the steps that occur
when extending the tape to the right.
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6 Future Work

The results of this paper raise a number of interest-
ing research questions. The first focusses on the pri-
mary drawback of our technique: the use of negative
strength glue interactions. Is fuel-efficient computa-
tion in passive self-assembly possible with the use of
only positive strength glue interactions? Such a sys-
tem seems difficult to imagine as positive strength
systems may only grow and cannot break apart under
current standard models. However, there is currently
no proof that such a system cannot exist, even in
very restricted settings such as the standard positive
strength tile assembly model.

Another direction of research is the application
of fuel-efficient constructions to complexity questions
in tile self-assembly. For example, the existence of
a space-efficient tile system with negative strength
glues that simulates universal computation implies
that some interesting verification problems in tile self-
assembly become uncomputable. Does the existence
of fuel-efficient systems have similar implications to
computability and complexity?

An additional metric that tile assembly research
often attempts to minimize is the temperature of the
tile system. The temperature is an additional positive
integer parameter included in a tile system that dic-
tates how much glue strength is required for two as-
semblies to stick together. In our paper, if we restrict
ourselves to integer glue strengths and include a tem-
perature parameter, our constructions correspond to
temperature 8 systems. An interesting question is to
determine the smallest integer temperature value at
which fuel-efficient computation can take place.

Another interesting general direction is to explore
alternate fuel sources for tile assembly. In this paper
we have focussed on the natural metric of permanent
tile expenditure. An alternate approach is to consider
some modification to the model that permits harness-
ing an external fuel source. One example is a self-
assembly system in which the temperature of the sys-
tem perpetually oscillates up and down. Is it possible
to harness such oscillation to obtain a fuel neutral
self-assembly system? Do there exist other promis-
ing and practically motivated fuel models, such as a
model that incorporates a single type of active fuel
rod component to fuel the assembly?

An additional promising direction is to explore
the extent to which active behavior can be simu-
lated within passive self-assembly models. One recent
model of active self-assembly is the signal tile assem-
bly model in which tiles may pass single, fire-once
signals across tile faces. Such systems are known to
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be capable of fuel-efficient computation. Can passive
self-assembly tile systems with negative glue interac-
tions simulate general signal tile systems?

Finally, while our construction fuel-efficiently
simulates a single tape Turing machine, the question
of fuel-efficient simulation of more efficient machines,
such as a two-tape Turing machine, is still open. In
particular, two-tape Turing machines are perhaps the
“machine of choice” among Turing machine program-
mers. In addition, two-tape machines offer a linear
factor efficiency improvement over single tape ma-
chines. Therefore, it is extremely interesting to know
if it is possible to fuel-efficiently simulate a two-tape
machine in passive self-assembly, or even in more ac-
tive models of self-assembly.
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