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Abstract. Self-assembly is fundamental to both biological processes and nanoscience. Key features of self-assembly are its
probabilistic nature and local programmability. These features can be leveraged to design better self-assembled systems. The
conventional Tile Assembly Model (TAM) developed by Winfree using Wang tiles is a powerful, Turing-universal theoretical
framework which models varied self-assembly processes. A particular challenge in DNA nanoscience is to form linear assemblies
or rulers of a specified length using the smallest possible tile set, where any tile type may appear more than once in the assembly.
The tile complexity of a linear assembly is the cardinality of the tile set that produces it. These rulers can then be used as
components for construction of other complex structures. While square assemblies have been extensively studied, many questions
remain about fixed length linear assemblies, which are more basic constructs yet fundamental building blocks for molecular
architectures. In this work, we extend TAM to take advantage of inherent probabilistic behavior in physically realized self-
assembled systems by introducing randomization. We describe a natural extension to TAM called the Probabilistic Tile Assembly
Model (PTAM). A restriction of the model, which we call the standard PTAM is considered in this report. Prior work in DNA
self-assembly strongly suggests that standard PTAM can be realized in the laboratory. In TAM, a deterministic linear assembly
of length N requires a tile set of cardinality at least N . In contrast, we show various non-trivial probabilistic constructions
for forming linear assemblies in PTAM with tile sets of sub-linear cardinality, using techniques that differ considerably from
existing assembly techniques. In particular, for any given N , we demonstrate linear assemblies of expected length N with a
tile set of cardinality Θ(logN) using one pad per side of each tile. We prove a matching lower bound of Ω(logN) on the tile
complexity of linear assemblies of any given expected length N in standard PTAM systems using one pad per side of each tile.
We further demonstrate how linear assemblies can be modified to produce assemblies with sharp tail bounds on distribution
of lengths by concatenating various assemblies together. In particular, we show that for infinitely many N we can get linear
assemblies with exponentially dropping tail distributions using O(log3 N) tile types. We also propose a simple extension to
PTAM called κ-pad systems in which we associate κ pads with each side of a tile, allowing abutting tiles to bind when at least
one pair of corresponding pads match. This gives linear assemblies of expected length N with a 2-pad (two pads per side of each

tile) tile set of cardinality Θ
(

logN
log logN

)
for infinitely many N . We show that we cannot get smaller tile complexity by proving

a lower bound of Ω
(

logN
log logN

)
for each N on the cardinality of the κ-pad (κ-pads per side of each tile) tile set required to form

linear assemblies of expected length N in standard κ-pad PTAM systems for any positive integer κ. The techniques that we
use for deriving these tile complexity lower bounds are notable as they differ from traditional Kolmogorov complexity based
information theoretic methods used for lower bounds on tile complexity. Also, Kolmogorov complexity based lower bounds do
not preclude the possibility of achieving assemblies of very small tile multiset cardinality for infinitely many N . In contrast, our
lower bounds are stronger as they hold for every N , rather than for almost all N . All our probabilistic constructions are free
from co-operative tile binding errors. Thus, for linear assembly systems, we have shown that randomization can be exploited
to get large improvements in tile complexity at a small expense of precision in length.

Keywords: Tile Assembly Model, Tile complexity, Linear assemblies, Wang tilings, Self-assembly, DNA
tiles.

1. Introduction. Biological systems show a remarkable range of form and function. How are these
multitude of systems constructed? What are the principles that govern them? In particular, as computer
scientists, we ask if there are simple rules whose repeated application can give rise to such complex systems.
This leads us to the study of self-assembly.

1.1. Fundamental Nature of Self-Assembly. Self-assembly is a fundamental, pervasive natural
phenomenon that gives rise to complex structures and functions. It describes processes in which a disordered
system of pre-existing components form organized structures as a consequence of specific, local interactions
among the components without any external direction. In its most complex form, self-assembly encompasses
the processes involved in growth and reproduction of higher order life. A simpler example of self-assembly
is the orderly growth of crystals. In the laboratory, self-assembly techniques have produced increasingly
complex structures (see Park et al. (2005); Rothemund (2006); Douglas et al. (2009); Dietz et al. (2009);
Zheng et al. (2009); Andersen et al. (2009) for a few illustrative examples) and dynamical systems (see Dirks

§A PRELIMINARY VERSION OF THIS WORK HAS APPEARED IN 36TH INTERNATIONAL COLLOQUIUM ON
AUTOMATA, LANGUAGES AND PROGRAMMING (ICALP 2009).

∗Department of Computer Science, Duke University, Durham, NC. email: harish@cs.duke.edu
†Department of Computer Science, Duke University, Durham, NC. email: nikhil@cs.duke.edu
‡Department of Computer Science, Duke University, Durham, NC and Adjunct, Faculty of Computing and Information

Technology (FCIT), King Abdulaziz University (KAU), Jeddah, Saudi Arabia. email: reif@cs.duke.edu

1



and Pierce (2004); Zhang et al. (2007); Yin et al. (2008) for some examples). The roots of attempts to model
and study self-assembly begin with the study of tilings.

A Wang tile (Wang (1961)), is an oriented unit square with a pad associated with each side. Any two
tiles with the same pads on corresponding sides are said to be of the same tile type. Tile orientation is fixed,
they cannot be rotated or reflected 1. Given a finite set S of Wang tiles types, a valid arrangement of S on
a planar unit square grid consists of copies of Wang tiles from the set S such that abutting pads of all pairs
of neighboring tiles match. The tiling or domino problem for a set of Wang tiles is: can tiles from S (chosen
with replacement) be arranged to cover the entire planar grid? Berger (1966) proved the undecidability
of the tiling problem by reducing the halting problem to it. Robinson (1971) gave an alternative proof
involving a simulation of any single tape deterministic Turing Machine by some set of Wang tiles. Garey
and Johnson (1981) and Lewis and Papadimitriou (1981) proved that the problem of tiling a finite rectangle
is NP-complete. These results paved the way for Wang tiling systems to be used for computation. But
Wang tilings do not model coordinated growth and hence do not describe complex self-assembly processes.
Winfree (1995) extended Wang tilings to the Tile Assembly Model (TAM) with a view to model self-assembly
processes, laying a theoretical foundation (see Winfree (1998a); Adleman (2000); Rothemund and Winfree
(2000)) for a form of DNA based computation, particularly, molecular computation via assembly of DNA
lattices with tiles in the form of DNA motifs.

The tile complexity, defined first by Rothemund and Winfree (2000), of assembling a shape is defined
as the minimum number of tile types for assembling that shape. Tile complexity, apart from capturing
the information complexity of shapes, is also important as there exist fundamental limits on the number of
tile types one can design using DNA sequences of fixed length. Various ingenious constructions for shapes
like squares (see Rothemund and Winfree (2000); Adleman et al. (2001a); Kao and Schweller (2008); Doty
(2009)), rectangles (see Aggarwal et al. (2004)) and computations like counting (see Barish et al. (2005)),
Sierpinski triangles (Rothemund et al. (2004)) etc. exist in this model. Lower bounds on tile set complexity
have also been shown for various shapes (see Rothemund and Winfree (2000); Aggarwal et al. (2004); Doty
et al. (2011)).

Stochastic processes play a major role in self-assembly and have been investigated theoretically by
Winfree (1998b) and Adleman (2000) and in the laboratory by Schulman and Winfree (2007). However,
constructions in TAM are typically deterministic in the sense that they produce exactly one terminal assembly
given a tile set (see Bryans et al. (2011) for non-deterministic constructions in TAM). This is because at most
one type of tile is allowed to attach at any position in a partially formed assembly. See Section 2 for more
details. This work investigates the effects of relaxing these constraints and reduces the number of tile types
required to form linear assemblies of given length. In contrast to earlier work in stochastic self-assembly, we
make tile attachments irreversible (as in TAM) and allow multiple tile types to attach at any position.

1.2. Motivation. A particular challenge in DNA nanoscience is to form linear assemblies or rulers of a
specified length from unit sized square tiles. These rulers can then be used as a component for construction
of other complex structures. One can use these structures as nanoscale beams and struts (See Fig.1.1).

Fig. 1.1: Possible nanostructures using rulers as substructures.

Linear assemblies can also serve as boundaries as demonstrated by Schulman et al. (2004) and as nucle-
ation sites for more complex nanostructures. Note that due to the inherently flexible nature of linear nanos-
tructures, most complex nanostructures will generally tolerate small deviations from the intended lengths of

1This is a valid assumption when implementing Wang tiles in the laboratory using DNA due to the complementary nature
of DNA strand binding.
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these substructures. In TAM, rulers of length N can be trivially constructed by deterministic assembly of N
distinct tile types. This is also the matching linear lower bound for size of tile sets in deterministic TAM, as
shown in Section 4. Thus, it is impractical to form large linear structures using the deterministic techniques of
TAM. Long thin rectangles (which are approximations of linear assemblies) can be formed using Θ( logN

log logN )
tile types but they suffer errors due to co-operative tile binding. In contrast, the number of tile types to form

an N × N square is only Θ
(

logN
log logN

)
as proved by Adleman et al. (2001a), which is exponentially better

than the lower bound for linear assemblies. This bound for squares is asymptotically tight for almost all N
as dictated by information theory (see Rothemund and Winfree (2000)) while the one for linear assemblies is

not. This begs the question: why are we not able to reach the information theoretic limit of Θ
(

logN
log logN

)
in

linear structures using TAM? Is this lower bound tight? What is the longest (finite) linear assembly one can
assemble with a set of n tile types in realistic tiling models? What changes to TAM will give us the power
to specify the linear systems using a smaller tile set? While square assemblies have been extensively studied
(see Rothemund and Winfree (2000); Adleman et al. (2001a); Kao and Schweller (2008); Doty (2010)), many
questions remain about linear assemblies, which are simpler constructs yet are fundamental building blocks
at the nanoscale. We answer a number of these questions and show novel, interesting results using techniques
that differ considerably from existing ones. While there have been numerous variations on TAM in recent
years, their impact on laboratory techniques in DNA self-assembly are minimal. At the same time, design
principles used in DNA self-assembly do not fully leverage the programmability and stochasticity inherent
to self-assembly. Hence, our goal is to develop a simple model that directs design principles of experimental
DNA self-assembly by taking advantage of the inherent stochasticity of self-assembly. It is noteworthy that
the techniques for designing and analyzing these simple constructs under our simple model are non-trivial
and theoretically rich.

1.3. Related Work in Self-Assembly using Probabilistic and Randomized Models. Non-
deterministic tilings were studied by Lagoudakis and LaBean (1998) for implementing an algorithm for
SAT. Becker et al. (2006) describe probabilistic tile systems that yield squares, rectangles and diamonds in
expectation using O(1) tile types. This work was extended by Kao and Schweller (2008) to yield arbitrarily
close approximations to squares with arbitrarily high probability using O(1) tile types. Doty (2010) improved
the techniques developed by Kao and Schweller (2008) to get squares with arbitrarily high probability using
O(1) tile types. These works require precise arbitrary relative concentrations of tile types with no cost
incurred in tile complexity.

In the laboratory, achieving precise arbitrary relative concentrations between tiles is infeasible. Also,
the descriptional complexity of tile systems in such models include not just the descriptional complexity
of the tile set, but also the descriptional complexity of the concentration function. Thus, the size of the
tile set producing an assembly is not a true indicator of its descriptional complexity. In PTAM, the set of
tiles is a multi-set that implicity defines relative concentrations and thus imposes a charge for specifying
relative concentrations. Therefore, the size of the tile set producing an assembly is a true indicator of its
descriptional complexity.

Demaine et al. (2008) discuss staged self-assembly to get various shapes using O(1) pad types. Aggarwal
et al. (2005) introduce various extensions to TAM and study the impact of these extension on both running
time and the number of tile types. Compared to the above, PTAM is a simple extension to TAM that
requires no laboratory techniques beyond those used to implement TAM.

The Kinetic Tile Assembly Model (kTAM) proposed by Winfree (1998b) models kinetics and thermo-
dynamics of DNA hybridization reactions. Schulman et al. (2004) used the DNA based DX tiles, originally
designed by Winfree et al. (1998), to create one dimensional boundaries within the nanoscale. Adleman
(2000) proposed a mathematical theory of self-assembly which is used to investigate linear assemblies. While
many fundamental theoretical questions arise in these models, the question of tile complexity of linear as-
semblies is uninteresting due the existence of the trivial lower bound mentioned in Section 1.2. Thus, the
questions about linear self-assemblies examined in this article are original and the constructions presented
are novel.

1.4. Main Results. We describe a natural extension to TAM in Section 3 to allow stochastic, non-
deterministic assembly, called the Probabilistic Tile Assembly Model (PTAM). A restriction of the model to
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diagonal, haltable, uni-seeded, and east-growing systems (defined in Section 3), which we call the standard
PTAM is considered in this article. Prior work in DNA self-assembly strongly suggests that standard PTAM
constructs can be realized in the laboratory. We show various non-trivial probabilistic constructions in PTAM
for forming linear assemblies with small tile sets in Section 4, using techniques that differ considerably from
existing assembly techniques. In Section 4.2, for any given N , we demonstrate linear assemblies of expected
length N with tile set of cardinality Θ(logN) using one pad per side of each tile. In Section 5 we demonstrate
how linear assemblies can be modified to produce assemblies with sharp tail bounds on distribution of lengths
by concatenating various assemblies together. In particular, in Section 5.2.3, we show that for infinitely many
N we can get linear assemblies with exponentially dropping tail distributions using O(log3N) tile types. We
derive a lower bound of Ω(logN) on the tile complexity of linear assemblies of any given expected length
N in standard PTAM systems using one pad per side of each tile in Section 6. This lower bound, which

holds for all N , is tight and stronger than the information theoretic lower bound of Ω
(

logN
log logN

)
which holds

only for almost all N . We also propose a simple extension to PTAM in Section 7 called κ-pad systems in
which we associate κ pads with each side of a tile, allowing abutting tiles to bind when at least one pair of
corresponding pads match. This gives linear assemblies of expected length N with a 2-pad (two pads per side

of each tile) tile set of cardinality Θ
(

logN
log logN

)
tile types for infinitely many N as proved in Section 7.3. We

show in Section 7.4 that we cannot achieve smaller tile complexity by proving a lower bound of Ω
(

logN
log logN

)
for each N on the cardinality of the κ-pad (κ pads per side of each tile) tile multiset required to form linear
assemblies of expected length N in standard κ-pad PTAM systems for any constant κ. The techniques used
for deriving these lower bounds are notable as they are stronger and differ from traditional Kolmogorov
complexity based information theoretic methods used for lower bounds on tile complexity. Kolmogorov
complexity based lower bounds do not preclude the possibility of achieving assemblies of very small tile
multiset cardinality for infinitely many N while our lower bounds do, as they hold for every N .

2. The Tile Assembly Model for Linear Assemblies. This section describes the Tile Assembly
Model (TAM) by Winfree for special case linear (1D) assemblies (henceforth referred to as LTAM). For a
complete and formal description of the general model see Rothemund and Winfree (2000). The next section
extends the model by introducing stochasticity and non-determinism. This article considers only a one-
dimensional grid of integers Z which simplifies the definitions of the model. The directions D = {East,West}
are functions from Z to Z, with East(x) = x+ 1 and West(x) = x− 1. We say that x and x′ are neighbors
if x′ ∈ {West(x),East(x)}. Note that East−1 = West and vice versa. N is the set of natural numbers.

A Wang tile over the finite set of distinct pads Σ is a unit square where two opposite sides have pads
from the set Σ2. Formally, a tile t is an ordered pair of pads (Wt, Et) ∈ Σ2 indicating pad types on the
West and East sides respectively. Thus, a tile cannot be reflected. For each tile t, we define padEast(t) = Et

and padWest(t) = Wt. Σ contains a special null pad, denoted by ϕ. The empty tile (ϕ, ϕ) represents the
absence of any tile. Pads determine when two tiles attach. A function g : Σ × Σ → {0, 1} is a binary pad
strength function if it satisfies ∀x, y ∈ Σ, g(x, y) = g(y, x) and g(ϕ, x) = 0. Linear assemblies do not have
co-operative tile binding, i.e, interactions of more than one pair of pads during an attachment step. Hence
the temperature parameter used in TAM is redundant in linear assemblies where tiles have only one pad per
side. Throughout this article we assume only a binary pad strength function. In this model each tile has
only a single pad on each of its sides (West and East) whereas in Section 7 we allow multiple pads per side
for each tile.

A linear tiling system, T, is a tuple ⟨T, S, g⟩ where T containing the empty tile is the finite set of
tiles, S ⊂ T is the set of seed tiles and g is the binary pad strength function. A configuration of T is a
function A : Z → T with A(0) = s for some s ∈ S. For D ∈ D we say the tiles at x and D(x) attach if
g(padD(A(x)), padD−1(A(D(x)))) = 1. Self-assembly is defined by a relation between configurations, A→ B,
if there exists a tile t ∈ T , a direction D ∈ D and an empty position x such that t attaches to A(D(x)). We

define A
∗−→ B as the reflexive transitive closure of → and say B is derived from A. For all s ∈ S a start

configuration starts is given by starts(0) = s and ∀x ̸= 0 : starts(x) = empty. A configuration B is produced

2In general, for two dimensional assemblies, tiles have pads on all four sides. However, we do not use any pads on the North
and South sides in this article and hence omit them. Also, we allow for multiple pads on the sides of a tile in Section 7.
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if starts
∗−→ B for some s ∈ S. A configuration is terminal if it is produced from starts for some s ∈ S and

no other configuration can be derived from it. Term(T) is the set of terminal configurations of T. In TAM,
a terminal configuration is thought of as the output of a tiling system given a seed tile s ∈ S. TAM requires
that there be a unique terminal configuration for each seed. Note that it allows different attachment orders
as long as they produce the same terminal configuration. This unique terminal configuration requirement
means that given any non-terminal configuration A, at most one t ∈ T can attach at any given position. In
this sense, TAM is deterministic. In the next section we will explore the effect of relaxing this condition.

DNA nanostructures can physically realize TAM as shown by Winfree et al. (1998) with the DX tile and
Mao et al. (2000) with the TX tile. Like the square tile in TAM, the DX and TX have pads that specify their
interaction with other tiles. The pads are DNA sequences that attach via hybridization of complimentary
nucleotides. Mao et al. (2000) performed a laboratory demonstration of computation via tile assembly using
TX tiles. Yan et al. (2003) performed parallel XOR computation in the test-tube using DX tiles. Other
simple computations have also been demonstrated. However, larger and more complex computations are
beset by errors and correction of these errors remains a challenge towards general computing using DNA
tiles. Winfree and Bekbolatov (2003); Chen and Goel (2004); Reif et al. (2004); Chen et al. (2007) design
basic error correction protocols. See Section 8 for a further discussion.

3. The Probabilistic Tile Assembly Model. In TAM, the output of a tile system is said to be a
shape of given fixed size (for example, square of side N , linear assemblies of length N) if the tile system
uniquely produces it. In this article, we consider some implications of relaxing this requirement. Instead of
asking that a set of tiles produce a unique shape, we allow the set of terminal assemblies to contain more
than one shape by designing tile systems which admit multiple tile attachment at certain positions in a
configuration. Note that we do not allow pad mismatch errors (see Section 8 for details). We also associate
a probability of formation with each terminal assembly. These extensions and modifications to TAM are
formalized for linear assemblies. Note that the definitions given below can be easily extended to assemblies
in two-dimensions by introducing pads on the North and South sides of tiles and including a temperature
parameter τ as defined by Rothemund and Winfree (2000) for co-operative binding effects.

3.1. The Probabilistic Tile Assembly Model (PTAM) for Linear Assemblies. A probabilistic
linear tiling system T is given by the tuple ⟨T, S, g⟩, where T is a (finite) multiset of tile, S ⊂ T is the multiset
of seed tiles and g is the binary pad strength function. The set of pad types Σ, tiles and configurations for
T are defined as in Section 2. The multiplicity M : T → N of a tile is the number of times it occurs in T .
T contains the empty tile type with M(empty) = 1. Multiplicity models concentration. We assume a well-
mixed reaction environment in which, at each step, some member of T is copied (chosen with replacement)
with uniform probability. If the tile thus obtained can attach to the produced configuration, it does so, else
we re-sample from T with uniform probability in the next step. This continues till either a match is found
or none exists, in which case the system halts. Note that this is a Gillespie simulation (see Gillespie (1977))
with a seed serving as a nucleation site. A system with only one seed, S = {s}, is called uni-seeded. We
consider only uni-seeded systems in this article. The function type(t), type : T → Σ × Σ, returns the tile
type for any t ∈ T .

Self-assembly of a linear tiling system T is defined by a relation between the set of positive probabilities
and a pair of configurations A and B as: A→p

T B (read as A gives B with probability p) if there exists a tile
t ∈ T , a direction D ∈ D and an empty position x such that t attaches to A(D(x)) with positive probability
p to give B where p = M(type(t))/

∑
j∈∆ M(type(j)) where ∆ = {j| type(j) attaches to A(D(x))}. The

closure of →p
T, denoted by

∗−→
p̂

T (read as ‘derives’), is defined by the following transitive law: if A →p1

T B

and B →p2

T C then A →p1p2

T C. A configuration B is produced with positive probability p if starts
∗−→

p

T B.
A configuration is terminal if it is produced from starts and no other configuration can be derived from
it with positive probability. Term(T) is the set of terminal configurations of T. We associate a probability
of formation, P (A) to each produced configuration A recursively, as follows: P (starts) = 1 and P (B) =∑

Γ pkP (Ak) where Γ = {k|Ak →pk

T B}. Length of a produced configuration A, written as |A|, is the number
of non-empty tiles in it.

A configuration A is called a linear assembly of length N if it is terminal and |A| = N . Following
terminology developed by Rothemund and Winfree (2000), a linear tiling system is defined to be diagonal
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iff g(x, y) = 0 for all x, y with x ̸= y and g(x, x) = 1 for all x ̸= ϕ. A tile t is reachable in T if it is part of
some produced configuration. A tile t ∈ T is a capping tile if t is reachable and there exists D ∈ D such that
g(padD(t), padD−1(t′)) = 0 for each t′ ∈ T . For D = East the tile is called East capping and for D = West
it is called West capping. A capping tile halts growth in either the East or West direction. Note that a
tile other than the seed cannot be both East and West capping. A linear probabilistic tiling system T is

haltable iff for each produced configuration A, there exists a terminal configuration B such that A
∗−→

p

T B
with positive probability p. Each terminal configuration has a probability of formation associated with it. If
T is haltable, some terminal configuration occurs with certainty, as stated below.

Lemma 1. If T is a haltable probabilistic linear tiling system, then
∑

A∈Term(T)

P (A) = 1.

Proof. Consider the directed weighted graph G whose nodes are produced configurations. Designate the
node corresponding to the start configuration starts as the start node of G. An edge exists from a node A
to node B with probability of transition p iff A →p

T B. Note that G might have infinite number of nodes.
Let the nodes of G with outdegree 0 be called leaf nodes. Term(T) is in one-to-one correspondence with the
leaf nodes of this tree. The probability of formation for any produced configuration can be read out from its
corresponding node by summing the product of transition probabilities over all paths from the start to that
node. We will show a conservation law for the probability of formation which will inductively imply that the
sum of probabilities of formation of leaf nodes equals the probability of formation of the start node, which is
P (starts) = 1. Let us partition the set of nodes of G into levels corresponding to the breadth-first traversal
of G from the start node. Level 0 contains only the start node. Level i contains all nodes that are i hops
away from the start node. Note that each node at level i corresponds to a configuration having exactly i+1
non-empty tiles. Since a configuration having i+ 1 non-empty tiles can only be formed by attachment of a
single tile to a configuration having i tiles, each edge of G is across consecutive levels. The conservation law
is, sum of probabilities of formation of non-leaf nodes at level i equals sum of probabilities of formation of
nodes at level i+ 1, which follows directly from the recursive definition of the probability of formation and
the above described special structure of G. Thus, if T is haltable, this conservation law guarantees that sum

of probabilities of formation of leaf nodes is P (seeds) = 1. Thus
∑

A∈Term(T)

P (A) = 1.

A linear tiling system is called east-growing if the West pad of the seed tile is ϕ. A simulation of a
probabilistic linear tile system T by a probabilistic linear tile system Q is a bijection f between terminal
configurations that preserves lengths and probabilities of formation of assemblies, i.e. f : Term(T) →
Term(Q) satisfying |A| = |f(A)| and P (A) = P (f(A)) for each A ∈ Term(T). Any probabilistic linear tiling
system T can be simulated by an east-growing probabilistic linear tiling system Q using no more than twice
the number of tile types of T, in the following manner. For the seed s = (Ws, Es) of T, let s′ = (ϕ,E′

s) be
the seed of Q and for each East-capping tile c = (Wc, ϕ) of T let Q contain tile c′ = (W ′

c,W
′′
s ). For all other

tiles t = (Wt, Et) of T, let Q contain tiles tr = (W ′
t , E

′
t) and tl = (E′′

t ,W
′′
t ). The reader may verify that this

is a simulation. Hence, we consider only east-growing tile systems in this report. A probabilistic linear tiling
system is equimolar if ∀t ∈ T : M(t) = 1. Thus, for an equimolar tile system, the cardinality of T equals the
number of tile types in it. A probabilistic linear tiling system is two-way branching if at most two tile types
can attach at any given position for any given configuration. A probabilistic linear tiling system is standard
if it is diagonal, haltable, uni-seeded and east-growing.

Fig. 3.1: Diagonal tiles: Colors indicate pad type. Green pads are implemented using complementary DNA.
Strands for other pads arenot shown.

Diagonal tile systems were suggested by Rothemund and Winfree (2000). These systems are imple-
mentable using DNA tiles. Matching pads are implemented as perfect Watson-Crick complementary DNA
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sequences (see Fig.3.1). Non-diagonal tile systems are implementable using κ-pad systems with diagonal glue
strength functions. For tile systems producing linear assemblies that are not haltable, the expected length
of the assembly diverges. For linear assemblies, no advantage in tile complexity or tail bounds on length
of assemblies results from using multiple seeds. Thus, we consider only standard systems in this article.
Achieving arbitrary concentration vectors is infeasible in laboratory implementations using molecules. In
contrast, equimolar systems, or close approximations to them, are frequently achieved by chemists for various
reactions. We demonstrate an equimolar standard linear tiling system whose tile complexity matches the
more general lower bound of Ω(logN) applicable to all standard linear tiling systems.

3.2. Complexity Measures for Tile Systems. Recall that the tile complexity of a shape is defined
as the number of different tile types in the smallest tile set that realizes the shape. While in TAM the
shape is realized deterministically, in PTAM we drop the requirement that a shape be obtained uniquely and
instead ask that it be approximated by our probabilistic tile systems. The tile complexity in TAM is closely
related to the size of the smallest Turing machine describing the shape (see Soloveichik and Winfree (2007)
for results connecting scale-free tile complexity and Kolmogorov complexity of that shape). However there
exist modifications of TAM (see Aggarwal et al. (2004); Kao and Schweller (2006); Demaine et al. (2007);
Becker et al. (2006)) where the number of tile types do not correspond to the descriptional complexity of the
shape. These systems encode the complexity elsewhere, like in the concentration, temperature, mechanism
etc. In contrast, the standard systems of PTAM encode all the description of the shape in the tile multiset.
Thus, the (probabilistic) descriptional complexity of shapes corresponds to the cardinality of the tile multiset
which we call tile complexity. Note that the multiplicity of tiles in the multiset count distinctly towards tile
complexity.

What is the effect of the probabilistic model on tile complexity? We demonstrate linear assemblies of
fixed expected length N using a tile set of small cardinality. In general, we are asking if there is any benefit in
sacrificing the exact description of a shape for a probabilistic description. For linear assemblies, the answer
is yes, as we show in the next section.

4. Constructing Linear Assemblies of Expected Length N . In the standard TAM, the tile com-
plexity for a linear assembly of length N is N . This is because if a tile type occurs at more than one position
in the assembly, the sub-unit between these two positions can repeat infinitely many times. This does not
produce a linear assembly of length N . The PTAM does not suffer from this drawback. By making longer
and longer chains less likely, we ensure that most chains are of length close to N . We focus on the expected
lengths of linear assemblies in this section. In Section 5 we discuss methods to achieve a sharp distribution
around the expectation. All of our constructions for linear assemblies of expected length N ∈ N in this
section are standard, equimolar and two-way branching. The random variable L always denotes the length
of the assembly. Specific tiles systems in the rest of this section are illustrated using tile binding diagrams.
Each tile type is represented by a square, with labels distinguishing different tile types. All possible in-
teractions among tiles are denoted via arrows that originate at the West side of some tile and terminate
on the East side of some tile, indicating pad strengths of 1 between these tiles along these sides. Absence
of arrows indicate that no possible attachment can occur, i.e. pad strength is 0, except when otherwise
indicated. All our systems are temperature 1 assemblies which are more resilient to errors than assemblies at
greater temperatures. The latter suffer errors due to co-operative tile binding (see Winfree and Bekbolatov
(2003); Chen and Goel (2004)). Moreover, temperature 1 systems are easier to implement in the laboratory
than higher temperature systems. Since we consider only equimolar systems for the rest of this section, the
cardinality of our tile multisets equals the number of tile types. We use these terms interchangeably for
equimolar systems.

4.1. Linear Assemblies of Expected Length N using O(log2N) Tile Types. In this section we
present a standard linear tiling system that achieves a linear assembly of expected length N for any given N
using O(log2N) tile types. First, we give a construction for powers of two, i.e. for any given N = 2i for some
i ∈ N, we show how to construct linear assemblies of expected length N using Θ(logN) tile types. Then we
extend this construction to all N by expressing N in binary and linking together the chains corresponding
to 1s in the binary representation of N .
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Fig. 4.1: Tile binding diagram for powers of two construction. The labels on arrows indicate pad type. The
arrows for the label gn on tiles Ri are not drawn for the sake of reducing clutter

4.1.1. Powers of Two Construction. Fig.4.1 illustrates the tile set of size 2n, used in a powers of
two construction. Attachment of S1 to Seed is deterministic. The assembly halts only when the sequence
Tn−1, Tn−2, Tn−3, . . . T2, T1 of attachments is achieved. The tiles Ri, i = 1, 2 . . . , n− 1, each have gn as their
East pads and hence act as reset tiles. Each equiprobable choice is between a reset (addition of Ri) and
progress towards completion (addition of Ti).

Lemma 2. Let Xi be the random variable equal to the number of tiles of type Ti in a terminal assembly.

Then E[Xi−1] =
E[Xi]

2 and E[Xi] = 2i−1 for i = 2, 3, . . . , n − 1. Let Yi be the random variable equal to the
number of tiles of type Ri in a final assembly. Then E[Yi] = E[Xi] for i = 1, 2, 3, . . . , n− 1.

Proof. Every time a tile of type Ti appears it is followed immediately after by either a tile of type Ti−1

or Ri−1 each with probability 1/2 for i = 2, 3 . . . n − 1. So E[Yi−1] = E[Xi−1] =
E[Xi]

2 . T1 is the terminal
tile and appears exactly once. Hence its expectation is 1 = 20. Repeated application of the above geometric
decrease property gives E[Xi] = 2i−1 for i = 1, 2, 3, . . . , n− 1.

Lemma 3. Let L be the random variable equal to the length of the assembly for the powers of two
construction (Fig. 4.1). Then E[L] = 2n.

Proof. L = 2 +
n−1∑
i=1

(Xi + Yi). Hence E[L] = 2 + 2
n−1∑
i=1

E[Xi] = 2 + 2
n−1∑
i=1

2i−1 = 2n.

4.1.2. Extension to Arbitrary N . We extend the powers of two construction to all N by expressing
N in binary, denoted by B(N). For the ith bits of B(N) equal to 1, we have a power of two construction
of expected length 2i, using 2i tile types as in Section 4.1.1. We simply append these various constructions
deterministically, and rely on linearity of expectation to achieve a linear assembly of length N in expectation.

Theorem 1. Let L be the random variable equal to the length of the assembly described above. Then,
E[L] = N . Thus, an assembly of expected length N can be constructed using O(log2N) tile types for any
given N ∈ N.

Proof. As before, let B(N) be the binary representation of N . Also, let b(i) be a binary 0, 1 function

which is equal to the ith bit of B(N). Now, N =

⌊logN⌋∑
i=0

b(i)2i. We have a power of two construction described

in Section 4.1.1 of expected length 2i, using 2i tile types, for each i for which b(i) = 1. From linearity of
expectation, the expected length of the full assembly E[L] = N . The number of tile types used is upper

bounded by

⌊logN⌋∑
i=0

b(i)(2i) ≤
⌊logN⌋∑
i=0

2i = O(log2N).

4.2. Linear assemblies of Expected Length N using Θ(logN) Tile Types. In this section we
present a standard linear tiling system that achieves linear assemblies of length N in expectation for any
given N using Θ(logN) tile types. For powers of two, this construction reduces to the one in Section
4.1.1. Our construction for general N is more succinct than the one presented in Section 4.1.2. This new
construction exploits the observation that the expected number of tiles of each type present in the powers of
two construction decrease geometrically. We give an alternate binary encoding (see Li and Vitanyi (1997))
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of non-zero natural numbers using {1, 2} instead of the standard {0, 1} encoding. This encoding will allow
us to exploit the geometric decay property to build succinct constructions. The {1, 2} encoding of a non-
zero natural number N is the N th string in the lexicographic ordering of strings in {1,2}+. An equivalent
characterization is given below.

Lemma 4. {1,2}-Binary Encoding: For all non-zero natural numbers N, ∃bi ∈ {1, 2} : N =
∑n−1

i=0 bi2
i

where n ≤ ⌈logN⌉. Every N has a unique {1,2}-binary encoding.
Now we show how to encode any N using Θ(logN) tile types using the above Lemma. Fig.4.2 is an

example illustrating the construction for N = 92. For any given N , let N ′′ be the greatest even number
less than N . For N ′ = N ′′

2 , let B(N ′) = bn−1bn−2 . . . b0 be its {1,2}-binary encoding of size n. For each
bit bi our construction has a progress tile complex Ti and a corresponding restart tile complex Ri of size bi
tiles each. Complexes Ti and Ri occurs Xi and Yi times respectively. By an argument similar to Lemma 2,
E[Xi] = E[Yi] = 2i−1. For even N , we deterministically prefix a single tile P to the West of the seed tile.
For odd N we omit this prefix tile.

Fig. 4.2: Tile binding diagram: N = 92;N ′′ = 90;N ′ = N ′′

2 = 45 = (12221)alt2. P is the prefix tile.

Theorem 2. The above construction has an expected length E[L] = N and uses Θ(logN) tile types.
Proof. Let Xi be the random variable equal to the number of times the complex Ti appears in the final

assembly. Let Yi be the random variable equal to the number of times the complex Ri appears in the final
assembly. The length of the assembly L is given by

L =
n−2∑
i=0

(Xi+1 + Yi+1)bi + (N + 1 mod 2) + 1

and hence by linearity of expectation and Lemma 2,

E[L] = 2(

n−2∑
i=0

bi2
i) + (N + 1 mod 2) + 1 = 2N ′ + (N + 1 mod 2) + 1 = N

The number of tile types is Θ(n) = Θ(logN).

5. Improving Tail Distributions of Linear Assemblies. In the previous section we achieved a
linear assembly of expected length N using O(logN) tile types for all N ∈ N. However, the tail bounds on
the distribution of lengths achieved by tile sets of this construction is unclear. In this section we look at a
general method to improve the tail distributions of linear assemblies at the expense of a linear factor increase
in the tile complexity. We then give a concrete construction that uses O(log3N) tile types and prove that it
has exponentially dropping tail distribution for infinitely many N .

5.1. Concatenating Independent Assemblies. Linear tile systems that do not give assemblies with
exponential tail bounds on length can be modified by concatenating k independent, distinct versions of the
tile system into a new tile system with tail bounds that drop exponentially with k. We can use the central
limit theorem or Chernoff bounds (see Feller (1968); Motwani and Raghavan (1995)) for bounding the tail
of this new distribution. Both the approaches are discussed below.
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Given a tile multiset T (with single or κ-pads on each side of each tile) for a linear assembly, let L̂ be the

random variable equal to the length of the assembly with mean ⌊N
k ⌋ and variance σ2

k , and let f(⌊N
k ⌋) be the

cardinality of T . Consider k distinct, mutually disjoint versions of T , say T1, T2, . . . , Tk. We deterministically
concatenate the assemblies produced by these tile multisets by introducing pads that allow the East side of
each capping tile of Ti to attach to the West side of the seed tile of Ti+1 for i = 1, 2, . . . , n − 1. We then
add N − k⌊N

k ⌋ ≤ k distinct tiles that deterministically extend the assembly beyond the capping tile of Tk.
Let L be the random variable equal to the length of the assembly produced by this construction. This new
multiset, Tsh of cardinality fsh(N) ≤ kf(⌊N

k ⌋) + k gives linear assemblies of expected length E[L] = N and
variance σ2. k ∈ {1, . . . , N} determines how sharp the overall probability distribution is.

5.1.1. Central Limit Theorem Applied to Tail Distributions of Concatenated Assemblies.
The central limit theorem gives:

∀δ ≥ 0 : P (|L−N | ≤ δσ) → Φ(δ) as k → ∞,

where Φ is the probability density function of the standard normal distribution. Let ψ be the cumulative
distribution function of the standard normal distribution. Thus,

P (|L−N | ≥ δσ) → 2(1− Φ(δ)) ≤ 2ψ(δ)/δ ≤
√
2/π(e−δ2/2/δ) as k → ∞.

Thus, we approach an exponentially decaying tail bound for large k, paying only a linear multiplicative
increase in tile complexity.

5.1.2. Chernoff Bounds Applied to Tail Distributions of Concatenated Assemblies. Since
Tsh is the concatenation of independent assemblies Ti, Chernoff bounds for sums of independent random
variables gives

∀δ, t > 0 : P (L > (1 + δ)N) ≤ (M(t)/e(1+δ)⌊N
k ⌋t)k and

∀δ > 0, t < 0 : P (L < (1− δ)N) ≤ (M(t)/e(1−δ)⌊N
k ⌋t)k

where M(t) is the moment generating function of the random variable L̂. If M(t)/e(1+δ)⌊N
k ⌋t < 1 for some

t > 0 and M(t)/e(1−δ)⌊N
k ⌋t < 1 for some t < 0, we get tail bounds dropping exponentially with k.

5.2. Linear assemblies of Expected Length N using O(log3N) tile types with Sharp Tail
Bounds. We obtain a linear assembly of expected length N using O(log3N) tile types for all N ∈ N. As
before, we give a construction valid infinitely often, for N = (n+1)2n+1 for all n ∈ N and then later extend
this to all N ∈ N by encoding N in terms of repeated units of our special construction. Next, we show how
to use this construction to obtain assemblies which have sharp tail bounds on the distribution of lengths for
infinitely many N .

5.2.1. Infinitely Often Construction using O(log2N) Tile Types. Fig.5.1 illustrates the tile set
used to obtain a linear assembly of expected length N = (n + 1)2n + 1 for all n ∈ N. The assembly halts
only when the sequence of tiles T1, T2, . . . Tn+1 attach. Either the West side of tile Ti+1 or one of the unique
restart sequences Bi,i+1, Bi,i+2, . . . Bi,n+1 can attach to the East side of tile Ti for each i. Attachment of
Ti+1 is progress towards completion while the restart sequence sets the process back to step one. The restart
sequences are unique in order to preserve the diagonal nature of the assembly. The process is akin to tossing
a biased coin till a head appears. Each toss adds a linear chunk of n + 1 tiles. A tail chunk is of the form
T1, T2 . . . TiBi,i+1, Bi,i+2, . . . Bi,n+1. A head chunk is of the form T1, T2 . . . Tn+1. Head chunk attaches with
a probability of 1

2n , since each tile addition to the growing head chunk offers two equally likely possibilities
of which exactly one is favorable. This is clearly a geometric process with parameter 1

2n and so the expected
number of chunks is 2n. The size of each chunk n+ 1, giving a total assembly of length N = (n+ 1)2n + 1
including the seed tile. The number of tile types used is O(n2) = O(log2N).
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Fig. 5.1: Infinitely often construction using O(log2N) tile types

Fig. 5.2: Chains of expected length n2i for all i ∈ {0, 1, . . . , n− 1}.

5.2.2. Extension to Arbitrary N . We extend the above infinitely often construction to all N by
the following encoding scheme. First we will show how to construct chains of expected length n2i for all
i ∈ {0, 1, . . . , n − 1}. Then, we express N as chunks of n2i which we put together to obtain an assembly
close to N . The small remainder is constructed using unique tiles.

Fig.5.2 illustrates chains of expected length n2i, excluding the seed tile, for all i ∈ N. The construction
is a small modification of our earlier infinitely often construction. The head and tail chunks are of size n but
the stochastic process involves only the tiles Tn−i to Tn and restart sequences n − i + 1 and beyond. This
leads to a smaller bias of 2i and the expected length of such assemblies is n2i, excluding the seed tile. This
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construction uses O(n2) tile types.
Now let N = a⌈logN⌉+ b where a, b are non-negative integers and b < ⌈logN⌉. By expressing a in its

binary representation, we can achieve constructions of size ⌈logN⌉2i that when put together deterministically,
give a⌈logN⌉ in expectation by the property of linearity. Let B(a) be the binary representation of a.

Let b(i) be a binary function equal to the ith bit of B(a). Then, a =

⌊log a⌋∑
i=0

b(i)2i and so a⌈logN⌉ =

⌊log a⌋∑
i=0

b(i)(⌈logN⌉2i). We create subassemblies of expected length ⌈logN⌉2i for each i such that b(i) = 1

using the construction described above. Putting these assemblies together gives a linear assembly of expected
length a⌈logN⌉. For the remainder b < logN we use unique tiles. Thus the expected length achieved by
this construction is N by linearity of expectation. This length excludes the single seed tile, which can be
adjusted by programming for linear assemblies of length N − 1.

Each of the subassemblies requires ⌈logN⌉ − i + i2

2 tile types. Thus, the total number of tile types to

form a⌈logN⌉ is at most

⌊log a⌋∑
i=0

(
⌈logN⌉ − i+

i2

2

)
= O(log3N). The remainder b uses at most ⌈logN⌉

unique tiles. Thus, the total number of tile types is O(log3N).

5.2.3. Tail Bound for Linear Assemblies of Expected Length N using O(log3N) Tile Types.
Here we show how to obtain linear assemblies with sharp tail bounds on distribution of lengths. Recall the
earlier discussion where the assembly was thought of as a sequence of independent coin tosses, each adding an
n length chunk to the assembly. Assembly process halts when the first head chunk is realized. Unfortunately,
this process results in a geometric random process which does not have a sharp left tail. To obtain good
tail bounds, we repeat the assembly process r times to realize a negative binomial random process. We do
this by deterministically concatenating r distinct versions of the assembly together. This is done by allowing
the West side of the starting tile of the i + 1th version to bind to the East side of the final tile of the ith

version. As earlier, the analysis below excludes the seed tile, which can be adjusted by programming tile
sets to construct linear assemblies of expected length N − 1.

Suppose we are given a target length N = rn2i where r, n, i are positive integers less than ⌈logN⌉. We
build r versions of the assembly described earlier, each with expected length n2i using at most O(rn2) =
O(log3N) tile types. This gives a linear assembly of expected length N . We prove in the theorem below
that such assemblies have exponentially dropping tail bounds.

Theorem 3. Let L be the random variable equal to the length of the above linear assembly, with
E[L] = N . Then for all 0 < α and 0 < β < 1

Pr[L > (1 + α)N ] <

(
1 + α

eα

)r

and Pr[L ≤ (1− β)N ] ≤
(
1− β

e−β

)r

for infinitely many N .
Proof. Let X be the random variable whose value is the number of n-length chunks in the final linear

chain. Then X is negative binomial random variable with parameters r (number of successes) and p = 1
2i

(the probability of success). Note that L = nX and E[L] = nE[X].
Let N (r, p) be a negative binomial random variable with parameters r (number of successes) and p

(probability of a success). Let B(M,p) be a binomial random variable with parameters M (number of
Bernoulli trials) and p (probability of a success). It is well known that

Pr[N (r, p) > M ] = Pr[B(M,p) < r] and Pr[N (r, p) ≤M ] = Pr[B(M,p) ≥ r]

Thus, we can use Chernoff bounds derived for the binomial distribution to obtain tail bounds for the negative
binomial distribution using the aformentioned relationship. Mitzenmacher and Upfal (2005) derive the
following Chernoff bounds for the binomial random variable Y with mean E[Y ] = µ and for δ > 0:

Pr[Y ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ

and Pr[Y < (1− δ)µ] <

(
e−δ

(1− δ)(1−δ)

)µ
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Recall that X is a negative binomial random variable with parameters r (number of successes) and p = 1
2i

(the probability of success). Then E[X] = r
p . By the result stated previously, Pr[X > (1 + α) rp ] = Pr[Y <

r] where Y is a binomial random variable with parameters (1 + α) rp (number of Bernoulli trials) and p

(probability of success). Thus µ = E[Y ] = (1 + α) rpp = (1 + α)r and so r = µ
1+α = (1 − δ)µ where

δ = α
1+α . Thus Pr[Y < r] = Pr[Y < (1 − δ)µ] <

(
e−δ

(1−δ)(1−δ)

)µ

=
(

e−δ

(1−δ)(1−δ)

)(1+α)r

=
(
1+α
eα

)r
. Hence

Pr[X > (1 + α)E[X]] <
(
1+α
eα

)r
and thus Pr[L > (1 + α)N ] <

(
1+α
eα

)r
. Note that by Taylor series, 1+α

eα < 1
for any positive α.

By a similar argument, one gets Pr[L ≤ (1− β)N ] ≤
(

1−β
e−β

)r

.

These tail bounds further drop exponentially with r. Recall that to obtain a tile complexity of O(log3N),
we need to choose some r < ⌈logN⌉. For large N , r becomes large enough to obtain sharp tail bounds on
the length of the linear assemblies.

Thus, we have demonstrated how to obtain linear assemblies with sharp tail bounds on distribution of
lengths for infinitely many N using O(log3N) tile types.

6. Lower Bounds on the Tile Complexity of Linear Assemblies of Expected Length N
in PTAM. In this section we prove that for all N the cardinality of any tile multiset that forms linear
assemblies of expected length N in standard PTAM systems is Ω(logN). The techniques that we use for
deriving these tile complexity lower bounds are notable as they differ from traditional information theoretic
methods used for lower bounds on tile complexity and furthermore our low bound results hold for each N ,
rather than for almost all N .

Any standard PTAM linear tiling multiset with cardinality n that produces linear assemblies of greatest
(finite) expected length is termed n-optimal or simply optimal.

Lemma 5. Optimal linear tiling multisets must contain exactly one capping tile.
Proof. Suppose an optimal multiset has multiple capping tiles term1, . . . , termk. Replacing the East

pads of term1, . . . , termk−1 with the West pad of termk gives a modified tile multiset of same cardinality,
which is still standard, and has a higher finite expected length, which is a contradiction.

The following technical lemma will be needed in Theorem 4.

Lemma 6. Let z, ki ∈ Z>0 for i = 1, 2, . . . , z. If
z∑

i=1

ki = m then the maximum value of
z∏

i=1

(ki + 1) is

2m

Proof. Applying the inequality of arithmetic and geometric means,

z∏
i=1

(ki + 1) ≤


z∑

i=1

(ki + 1)

z


z

=

(
m+ z

z

)z

=
(
1 +

m

z

)z

=

((
1 +

m

z

) z
m

)m

Note that m
z ≥ 1. The function (1 + x)

1
x is strictly decreasing and hence the maximum value of 2m for the

above expression is obtained when m = z. The reader may verify that the maximum value is indeed attained
by substituting ki = 1 for all i.

Fig. 6.1: T split into prefix and intermediates.

Theorem 4. For any N , the cardinality of any tile multiset that forms linear assemblies of expected
length N in standard PTAM systems is Ω(logN).

Proof. We will show that any standard linear PTAM system with tile multiset cardinality n has expected
length of assembly at most O(2n) unless the expected length is infinite. This implies our result via the
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contrapositive. Recall that the multiplicity of tiles in the multiset count distinctly towards tile complexity.
Define Ψn to be the expected length of the assembly produced by an n-optimal linear tiling multiset. We
will prove Ψn = O(2n) by a recursive argument on n.

Let T = ⟨T, {s}, g⟩ be any n-optimal linear tiling multiset with capping tile c. Let L be the random
variable equal to the length of the linear assembly produced by T and so E[L] = Ψn. For every terminal
assembly st1t2 . . . c of T we define a run as the sequence of pad types

padEast(s), padEast(t1), padEast(t2), . . . , padEast(c)

Let λ = padWest(c) be the pad type appearing on the West side of the capping tile. We define Λ =
{c, b1, b2, . . . , bk1−1} ⊂ T as the multiset of k1 tiles with λ as their West pad (0 < k1 < n). Pad type λ might
occur at many positions in a run. The subsequence of a run from padEast(s) to the first occurrence of λ is
termed as the prefix of the run. The subsequence of a run that starts with padEast(bi) and ends in λ with
no occurrence of λ within is termed the ith intermediate of the run (Figure 6.1).

Define the following random variables corresponding to a run: LP equal to the length of the prefix,
Li equal to the length of the ith intermediate and ri equal to number of times the ith intermediate occurs

in the run. By definition, the length of the assembly L = LP +

k1−1∑
i=1

(riLi) + 1. Note that ri and Li are

independent random variables because of the memoryless property of linear assemblies. That is, the length of
an intermediate is independent of the number of times that intermediate occurs in a run. Thus, by linearity
of expectation and independence we get,

Ψn = E[L] = E[LP ] +

k1−1∑
i=1

E[riLi] + 1 = E[LP ] +

k1−1∑
i=1

E[ri]E[Li] + 1

Note that the number of times the ith intermediate occurs in a run equals the number of times tile bi
attaches to the assembly. The tiles in Λ can attach with equal probability 1

k1
to any tile with λ as its East

pad. If the capping tile attaches, the run stops, else it continues. The process is akin to rolling a k1 sided
die till k1 appears and counting the expected number of times a certain roll is achieved and hence E[ri] = 1
for i = 1, 2, . . . , k1 − 1.

We will show that E[LP ] and E[Li] are at most Ψn−k1 by simulating the subassemblies that produce
these subsequences via linear tiling multisets of cardinality at most n − k1. The prefix is simulated by the
linear tiling system TP obtained from T in the following manner. Drop the tiles in Λ from T. Observe that
there is a run of TP for every possible prefix and vice-versa, with the same probabilities of formation. Thus,
the expected length of assembly produced by TP is equal to E[LP ]. Also, the cardinality of tile multiset for
TP is n− k1 and hence E[LP ] ≤ Ψn−k1 by definition. The ith intermediate is simulated by a tile multiset Ti
of cardinality n − k1 obtained from T by (i) dropping the tiles in Λ from T and (ii) replacing the seed tile
s by the tile (ϕ, padEast(bi)). Again, we observe that there is a run of Ti for every possible ith intermediate
and vice-versa, with the same probabilities of formation. Thus E[Li] ≤ Ψn−k1 . Substituting, we get the
inequality,

Ψn = E[LP ] +

k1−1∑
i=1

E[ri]E[Li] + 1 ≤ k1Ψn−k1 + 1 ≤ (k1 + 1)Ψn−k1

In the next level of recursion, we drop k2 > 0 tiles to get Ψn ≤ (k1+1)Ψn−k1 ≤ (k1+1)(k2+1)Ψn−k1−k2 .

In general, we drop ki tiles in the ith level of recursion to get Ψn ≤
i∏

j=1

(kj + 1)Ψn−
∑i

j=1 kj
. The base case is

Ψ2 = 2 since the best one can do with a single seed and capping tile is assembly of length 2. Also, let there

be z levels of recursion. Thus Ψn ≤
z∏

i=1

(ki + 1) with
z∑

i=1

ki = n− 2. The product
z∏

i=1

(ki + 1) constrained by

z∑
i=1

ki = n− 2 has a maximum value of 2n−2 (Lemma 6). Hence Ψn ≤ O(2n).
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7. κ-pad Systems for Linear Assembly. In this section we will extend PTAM by modifying each tile
to accommodate multiple pads on each side. Tiles bind when one pair of adjacent pads match (see Fig.7.1).
To ensure that tiles align fully and are not offset, each pad on a side of a tile is drawn from different sets of
pad types. Using such multi-padded tiles, we will show it is possible to reduce the number of tile types to
get linear assemblies of expected length N .

Fig. 7.1: κ-pad tiles A & B.

7.1. Definitions. A κ-pad tile t over the cartesian product Σ = Σ1 × Σ2 × · · · × Σκ is a unit square
whose two opposite sides each have a κ tuple of pads from Σ. Thus, tile t ∈ T is an ordered pair3 (Wt, Et)
where Wt and Et are row vectors of size κ, where the ith component of each vector is from the set Σi. Thus,
the East and West sides of each tile has κ pads. Σ1, . . . ,Σκ are finite, mutually disjoint set of distinct pad
types. A κ-pad linear tiling system T is given by the tuple ⟨T, S, g⟩ where T is the finite multiset of κ-pad
tile types, S ⊂ T is the set of seed tiles and g is the binary pad strength function. Definitions from Section
3 hold with appropriate modifications to incorporate multiple pads on sides of each tile. For each tile t, we
define padEast(t, i) = (Et)i and padWest(t, i) = (Wt)i where (Et)i and (Wt)i denote the ith component of
the respective pad vectors. For D ∈ D we say the tiles at x and D(x) attach if there exists an i such that
g(padD(A(x), i), padD−1(A(D(x)), i)) = 1. (See Fig.7.1).

With these modifications, diagonal, uni-seeded and haltable linear tiling systems and self-assembly of
κ-pad tiles are defined as in Section 2 and Section 3. In particular, probabilities of attachment of tiles is
given by the same formula as in Section 3 and Lemma 1 holds for κ-pad systems. We restrict ourselves to
studying diagonal, uni-seeded and haltable κ-pad linear tiling systems. Note that for assemblies in Section
7.3, adjacent tiles that bind have exactly one match among corresponding pads.

7.2. Implementing κ-pad Systems using DNA Self-Assembly. κ-pad tiles can be feasibly realized
using carefully designed self-assembled DNA motifs. Indeed, the DX motif, developed by Winfree et al.
(1998), which is one of the early demonstrations of DNA motifs that self-assemble into two dimensional
lattices, can serve as a 2-pad tile with slight modifications to ensure that tiles align correctly as they attach.
Other similar motifs that also self-assemble into two dimensional lattices, like the TX developed by Mao
et al. (2000) and the DDX developed by Reishus et al. (2005), can serve as multipad systems with similar
modifications.

These motifs can be easily modified to self-assemble in one dimension, as a linear structure. On a much
larger scale, origami techniques developed by Rothemund (2006) can be used to manufacture tiles with
hundreds of pads. A drawback of such a system would be that the connection between adjacent tiles will
be quite flexible, making a linear assembly behave more as a chain rather than a rigid ruler. However, this
drawback may be somewhat mitigated by letting multiple pads act as a single virtual pad.

7.3. Linear Assemblies of Expected Length N using Θi.o

(
logN

log logN

)
2-pad Tile Types. In this

section we present a standard κ-pad linear tiling system with κ = 2, i.e a 2-pad system, that achieves for any
given N ′ ∈ N, a linear assembly of expected length N > N ′ using Θ( logN

log logN ) 2-pad tiles, i.e., arbitrary long

fixed length assemblies of expected length N using Θ
(

logN
log logN

)
2-pad tiles. Fig.7.2 illustrates the tile set

used in our construction. Q1, Q2, Q3 . . . Qn−1 are tiles with multiplicity 1. R is a tile type with multiplicity
n − 1, drawn as R1, . . . , Rn−1 in Fig.7.2. Qi−1 can attach to Qi’s East side via the upper pad gi−1. For
i ∈ {1, 2, . . . , n − 1}, R1, R2, . . . , Rn−1 can attach to Qi’s East side via the lower pad b. Qn is the capping

3Again, for two dimensional assemblies, tiles have pads on all four sides and the model can be extended to include a
temperature parameter τ for co-operative binding interactions with multiple tiles.
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Fig. 7.2: Pad binding diagram for linear tiling system using Θi.o(
logN

log logN ) 2-pad tile types. Arrows are omitted
to reduce clutter. Absent pads are ϕ.

tile and Seed is the seed tile. The assembly halts iff the consecutive sequence Qn−1, Qn−2, . . . , Q1 occurs.
At each stage, the assembly can restart by the attachment of one of the n− 1 bridge tiles Ri. The number
of tile types is 2(n− 1) + 1 = Θ(n).

Lemma 7. Let Xi be the random variable equal to the number of tiles of type Qi in a final assembly.
Then E[Xi] = nE[Xi−1] for i = 2, 3, . . . , n − 1 and E[Xi] = ni−1 for i = 1, 2, 3, . . . , n − 1. Let Y be the

random variable equal to the number of tiles of type R in a final assembly. Then E[Y ] = (n− 1)
n−1∑
i=1

E[Xi].

Proof. Every time a tile of type Qi appears the probability of a tile of type Qi−1 attaching is 1/n
for i = 2, 3 . . . n − 1. So E[Xi] = nE[Xi−1]. Q1 is the terminal tile and appears exactly once. Hence its
expectation is 1 = 20. Repeated application of the above geometric decrease property gives E[Xi] = ni−1

for i = 1, 2, 3, . . . , n− 1. Also, every time a tile of type Qi appears, one of the bridge tiles R is n− 1 times

as likely to appear as a tile of type Qi−1. Hence E[Y ] = (n− 1)
n−1∑
i=1

E[Xi]

Theorem 5. Let L be the random variable that equals the length of the tile system illustrated in Fig.7.2.

Then E[L] = N = Θ(nn−1) using Θ
(

logN
log logN

)
= Θ(n) 2-pad tile types.

Proof. L = 1 + Y +
n−1∑
i=1

Xi. Taking expectations and applying Lemma 7,

E[X] = 1 + E[Y ] +
n−1∑
i=1

E[Xi] = 1 + (n− 1)
n−1∑
i=1

ni−1 +
n−1∑
i=1

ni−1 =
nn − 1

n− 1
= Θ(nn−1)

The number of tile types used is Θ(n) = Θ
(

logN
log logN

)
.

7.4. Lower Bounds for κ-pad Systems. In this section we prove for each N that the cardinality of
κ-pad tile multiset required to form linear assemblies of expected length N in standard PTAM systems is

Ω
(

logN
log logN

)
.

Theorem 6. For each N , the cardinality of the smallest κ-pad tile multiset required to form linear

assemblies of expected length N in standard PTAM systems is Ω
(

logN
log logN

)
.

Proof. As in the Theorem 4, we will show that any κ-pad standard PTAM system with tile multiset of
cardinality n has expected length of assembly at most O

(
nn+1

)
(or else infinite) and this implies our result

via the contrapositive.
Any n-optimal κ-pad system T = ⟨T, {s}, g⟩ has exactly one seed and one capping tile, by an argument

similar to the one in Section 6. Let L be the random variable equal to the length of linear assembly produced
by T. For the sake of clarity in the rest of this proof we distinguish each tile in T by a face label that does
not play any role in binding probabilities. Thus if a tile has multiplicity greater than 1 we distinguish the
multiple copies via their distinct face labels.

Consider a non-terminal produced configuration. Suppose the last (East-most) tile attached was v0
(Note: v0 is not the capping tile). Since the assembly is haltable, there exists a finite sequence of tile
additions that halt the assembly and no two tiles in the sequence are identical. Suppose v0, v1, .., vk is some
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such sequence where vk is the capping tile. Note that 1 ≤ k < n since each tile in this sequence is distinct.
There are at most n tiles competing for attachment at any stage of assembly and every possible attachment
(i.e. non-zero probability attachment) is equally likely. Hence each tile attachment in this sequence has a
probability of attachment at least 1

n . Thus, the probability of the assembly halting after k attachments is
at least 1/nk > 1/nn and the number of tiles added is k < n. Thus, the assembly process can be thought
of as a sequence of Bernoulli trials until success is obtained. Each failed trial corresponds to a sequence
of n attachments not containing the capping tile. A successful trial corresponds to a sequence of k < n
attachments ending with the capping tile. The probability of success is at least 1

nn and hence the expected
number of trials till success is at most nn. Each trial adds at most n tiles and so the expectation of the
assembly is upper bounded by n× nn = nn+1.

Thus the expected length of an assembly of any κ-pad standard linear PTAM system with tile multiset

of cardinality n is at most O
(
nn+1

)
which implies a lower bound of Ω

(
logN

log logN

)
.

8. Conclusions and Future Work. Fixed length linear structures are important components for
engineering DNA nanostructures. This work proposes ways to construct linear assemblies in a tiling model
using very few tile types by using stochastic, non-deterministic behavior. We extended TAM to PTAM to take
advantage of inherent probabilistic behavior in many self-assembled systems. A restriction to standard PTAM
was considered in this article. Prior work in DNA self-assembly strongly suggests that standard PTAM can
be realized in the laboratory. We showed various non-trivial probabilistic constructions for forming linear
assemblies in PTAM with tile sets of sub-linear cardinality, using techniques that differ considerably from
existing assembly techniques. In particular, for any given N , we demonstrated linear assemblies of expected
length N with a tile set of cardinality Θ(logN) using one pad per side of each tile. We proved a lower
bound of Ω(logN) for each N on the tile complexity of linear assemblies of expected length N in standard
PTAM systems using one pad per side of each tile. We further demonstrated how linear assemblies can be
modified to produce assemblies with sharp tail bounds on distribution of lengths by concatenating various
assemblies together. In particular, we showed that for infinitely many N we can get linear assemblies with
exponentially dropping tail distributions using O(log3N) tile types.

We also proposed a simple extension to PTAM called κ-pad systems in which we associate κ pads with
each side of a tile. This gives linear assemblies of expected length N with a 2-pad tile set of cardinality
Θ( logN

log logN ) for infinitely many N . We showed that we cannot get smaller tile complexity by proving a

lower bound of Ω( logN
log logN ) for all N on the cardinality of the κ-pad tile multiset required to form linear

assemblies of expected length N in standard κ-pad PTAM systems. The techniques that we used for deriving
these tile complexity lower bounds are notable as they differ from traditional Kolmogorov complexity based
information theoretic methods used for lower bounds on tile complexity. Also, Kolmogorov complexity based
lower bounds do not preclude the possibility of achieving assemblies of very small tile multiset cardinality for
infinitely many N . In contrast, our lower bounds are stronger as they hold for every N . We also answered
the question of what is the longest finite linear assemblies one can construct using given cardinality tile
multisets in PTAM and κ-pad PTAM. Thus, for linear assembly systems, we have shown that stochastic
behavior at the level of tiles can be exploited to get large improvements in tile complexity at a small expense
of precision in length.

Self-assembled DNA systems are error prone (see Winfree and Bekbolatov (2003); Chen and Goel (2004);
Reif et al. (2004)). Two particular kind of errors that affect assemblies in TAM are spurious nucleation and
pad mismatch. The Probabilistic Tile Assembly Model is also affected by these as it is an extension of
TAM and makes some of the same key assumptions, but pad mismatch errors can be modeled with minimal
changes to the PTAM model due to its stochastic nature. An immediate question is how to implement
schemes for error correction, reduction and avoidance in PTAM. In particular, how do we construct robust
linear assemblies in the presence of the aforementioned errors. Can error correction, reduction and avoidance
schemes leverage the stochastic nature of PTAM to produce robust assemblies?

Adleman et al. (2001a) studied the notion of running time of an assembly for TAM, a notion that is
extendable to PTAM. Since PTAM systems encode concentrations in their tile multiset, their running times
are implicitly specified. Note that it takes time Ω(N) to assemble an N length linear assembly in PTAM.
The linear tile multiset of Becker et al. (2006) has an optimal running time of Θ(N) but has suboptimal tile
multiset complexity Ω(N). In comparison, the linear tile system we presented in Section 4.2 has optimal
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tile multiset cardinality of Θ(logN) but suboptimal running time of Ω(N logN) (proof follows directly from
the observation that the system is equimolar). For standard PTAM systems, can a linear assembly obtain
both optimal running time O(N) and optimal tile complexity O(logN) (defined as the cardinality of the tile
multiset)?

A more general model of tiling, as proposed by Aggarwal et al. (2004), allows preformed assemblies
consisting of multiple tiles (called supertiles) to attach to each other and form a larger supertile. The assembly
time in such models has been considered in Chen and Doty (2012) and Adleman et al. (2001b). What is the
appropriate notion of assembly time for PTAM systems that allow attachment of supertiles and how would
the assembly time of the systems described in Section 4 compare to the optimal assembly times under the
supertile attachment assumption? Also, the tail bounds derived in Section 5.2.3 only apply for infinitely many
N and require O(log3N) tile types. Can we obtain tail bounds for all sufficiently large N? Can we reduce
the tile complexity required to below O(log3N)? Finally, it would be interesting to perform experimental
verification of our proposed systems. As experimental demonstration would involve tile concentrations,
PTAM must be expanded to accommodate finite precision concentration programming. In that expanded
setting, tradeoffs between tile complexity and number of bits allowed to specify tile concentrations can be
studied. Doty (2010) has studied a closely related question for assembling squares in the concentration
programming model.
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