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Abstract
We study the difference between the standard seeded model (aTAM) of tile self-assembly, and the
“seedless” two-handed model of tile self-assembly (2HAM). Most of our results suggest that the
two-handed model is more powerful. In particular, we show how to simulate any seeded system
with a two-handed system that is essentially just a constant factor larger. We exhibit finite
shapes with a busy-beaver separation in the number of distinct tiles required by seeded versus
two-handed, and exhibit an infinite shape that can be constructed two-handed but not seeded.
Finally, we show that verifying whether a given system uniquely assembles a desired supertile is
co-NP-complete in the two-handed model, while it was known to be polynomially solvable in the
seeded model.
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1 Introduction

Algorithmic self-assembly is a burgeoning area that studies how to computationally design
geometric systems of simple parts that self-assemble into desired complex shapes or func-
tionalities. The field began with Erik Winfree’s PhD thesis [20] and two STOC papers
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about a decade ago [2,17]. The theoretical models introduced in this work have since been
implemented in real molecular systems using DNA tiles [5, 18]. From a practical perspective,
these systems are exciting because they enable controlled manufacture of precise geometric
objects at nanometer resolution (nanomanufacture). From a theoretical Computer Science
perspective, this area is exciting because it offers a model of computation where the computer
consists of geometric objects, which is challenging to work with because the allowed operations
are highly constrained (simple, local interactions between the objects), yet there are many
results classifying the difficulty of assembling many different shapes.

1.1 A tale of two models.
Most work in algorithmic self-assembly uses the abstract Tile Assembly Model (aTAM ) [2,17,
20]. In this model, the core of a self-assembly system is a set of Wang tiles—unit squares
with up to one glue (label) on each edge, with each type available in infinite supply. One
such tile is marked as a seed (starting point) of a single assembly, and the model defines
how tiles can repeatedly attach to this assembly (according to glue strengths and an overall
temperature—see Section 2.1 for details), which ultimately becomes the (usually single)
output of the system.

In reality, tiles mix in solution according to Brownian motion, and attractive forces cause
them to fuse into larger assemblies. Presumably, the aTAM defines a seed tile to keep track
of a single assembly instead of the many copies assembled in reality (as seen in the atomic
force microscopy images in [5, 18]). However, as a side effect, the aTAM fails to capture
the possibility that multiple assemblies grow (e.g., from multiple copies of the seed) and
attach to each other, potentially making unintended assemblies not predicted by the aTAM.
In addition, the ability to fuse larger assemblies in reality could potentially be exploited to
design more efficient self-assembly systems for a desired shape. These possible discrepancies
between the aTAM and reality are the topic of this paper.

The Two-Handed Tile Assembly Model (2HAM ) [1, 7, 9, 10, 12, 13] (also known as Hierar-
chical Self-Assembly [6]) is essentially an unseeded generalization of the aTAM, in which any
two assemblies (including but not limited to individual tiles) can fuse to each other. Instead
of using seeds, the 2HAM defines the “output” of the system to consist of all assemblies that
cannot be fused with any others possibly produced by the system. (See Section 2.2 for the
definition.) This model captures the possibility of larger assemblies fusing together, although
it remains to be studied whether it accurately models reality.1

1.2 Our results.
The central problem addressed in this paper is to determine the difference in theoretical
power between these two models of self-assembly: the aTAM and the 2HAM. In particular
we show that, up to constant factors, many results in the standard aTAM can be converted
to apply in the 2HAM. On the other hand, we show that the 2HAM enables substantially
more efficient self-assembly systems in some cases than what is possible in the aTAM. We
conclude that two hands are better than one, up to constant factors.

Our main results are the following (see Tables 1, 2, and 3 for additional results):

1 2HAM does not model the “floppiness” of assemblies (i.e. non-rigidity), which may allow bending
that prevents proper alignment of glues or shifting of potentially blocking portions between two larger
assemblies. It also ignores the reduced speed and/or concentration of larger assemblies, which may
substantially impact the time required for assembly.
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aTAM systems Simulating 2HAM systems
τ ∈ {1, 2} τ = 2, scale factor 5(thm. 4.2)
τ = 3 τ = 3, scale factor 5(thm. 4.3)
τ ≥ 4 τ = 4, scale factor 5(thm. 4.1)

Table 1 Summary of results for simulating the aTAM model using the 2HAM model.

Loops Staircases Infinite staircases
τ = 1 τ = 2 τ = 2 Finite assembly Self-assembly

aTAM n+ 5 n+ 3 2n steps: Ω
(

n
logn

)
No No

(thm. 2.2) (thm. 2.2) (thm. 3.2) (thm. 3.6) (thm. 3.6)
2HAM 2n+ 2 ≤ n+ 3 2O(running time of M on x) steps: Yes (τ = 2) Open

(thm. 2.2) (thm. 2.2) O(|Q|+ |x|) (thm. 3.3) (thm. 3.5)
Table 2 Summary of results showing separation between the aTAM and 2HAM with respect

to tile complexity. The value of a cell denotes the tile complexity. Note that some of our results
are asymptotic while others are exact complexities. The term Finite assembly refers to finite
self-assembly, which is defined in Section 2.

Simulation: [Section 4, Table 1]

1. Any aTAM system with temperature τ ≥ 2 can be simulated by a 2HAM system with
the same temperature τ , which produces a 5× 5 scaled version of the same shape plus a
portion of a unit-thickness “coating”.

2. Any aTAM system with temperature τ ≥ 4 can be simulated by a 2HAM system with
a temperature of 4. Thus low-temperature 2HAM is at least as powerful as even high-
temperature aTAM, up to constant-factor scale.

Separation: [Section 3, Table 2]

3. There is a shape that can be assembled in the aTAM at temperature τ = 1 using n+ 5
unique tile types but any 2HAM system in which the shape assembles at the same
temperature requires 2n+ 2 unique tile types. At temperature τ = 2, the same shape can
be assembled in both models using n+ 3 tile types.

4. There is a shape that can be assembled in the 2HAM using n tile types, while the number
of tile types required for any aTAM assembly of the shape is (roughly) exponential in n.
This result can be extended to show that there is a shape that can be built in the 2HAM
using O(n) tile types, but in the aTAM the same shape requires BB(n) tile types, where
BB(n) is the busy beaver function.

5. There is an infinite shape that can self-assemble in the aTAM but not in the 2HAM. Note
that this does not contradict our first simulation result because our simulation scales up
the simulated system by a constant factor.

6. There is an infinite shape that can self-assemble (in a weaker sense) in the 2HAM but not
in the aTAM.

Verification: [Section 5, Table 3]

7. It is co-NP-complete to determine whether a given 2HAM self-assembly system uniquely
assembles a given 3D supertile (the Unique Assembly problem is co-NP-complete in the
2HAM), while the same problem is known to be polynomial time solvable for aTAM [3]2

2 Adleman et. al. [3] actually considered a slight variant of the Unique Assembly problem in which the
input is a shape and the output is whether or not the input system uniquely assembles one supertile
with that shape. Within the aTAM, the complexity of this variant problem is polynomially related
to our problem. In contrast, this is not clearly the case in the 2HAM, making this variant problem
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Producible Unique Assembly Unique Shape
τ = 1 τ = 2 τ = 1 τ = 2 τ = 1 τ = 2

aTAM O(a) O(a2 + at) [3] co-NPC co-NPC [7]
(thm. 4.6)

2HAM O(at) O(a4) [11] O(ta2 + at2) co-NPC co-NP [7] co-NPC [7]
(thm. 4.2) (thm. 4.5) (thm. 5.1)

Terminal Finite Existence Infinite Existence
τ = 1 τ = 2 τ = 1 τ = 2 τ = 1 τ = 2

aTAM O(at) [3] UC (thm. 4.12) UC (thm. 4.9)
2HAM O(at) UC UC Open UC

(thm. 4.7) (thm. 4.8) (thm. 4.12) (thm. 4.9)
Table 3 Complexities of assembly verification problems for the aTAM and 2HAM. The variable

a denotes the size of an input assembly, and τ and t denote the temperature and tileset size for an
input aTAM or 2HAM system.

(This result is the only one in 3D; all other results are in 2D.) We provide results for the
complexity for five additional verification problems for the aTAM and the 2HAM.

This paper aims to be a first major step toward a thorough “complexity theory” for
self-assembly. Like traditional complexity theory, there are several potential models for
self-assembly, and we need to understand the relative power among these models. Even our
definition of “simulation” is new in that it is the first to also handle the dynamics of systems
such as the 2HAM, and we hope that it forms the foundation for further such results.

2 Preliminaries and notation

We work in the 2-dimensional discrete space Z2. Define the set U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)}
to be the set of all unit vectors in Z2. We also sometimes refer to these vectors by their
cardinal directions N , E, S, W , respectively. All graphs in this paper are undirected. A grid
graph is a graph G = (V,E) in which V ⊆ Z2 and every edge {~a,~b} ∈ E has the property
that ~a−~b ∈ U2.

Intuitively, a tile type t is a unit square that can be translated, but not rotated, having a
well-defined “side ~u” for each ~u ∈ U2. Each side ~u of t has a “glue” with “label” labelt(~u)–a
string over some fixed alphabet–and “strength” strt(~u)–a nonnegative integer–specified by
its type t. Two tiles t and t′ that are placed at the points ~a and ~a+ ~u respectively, bind with
strength strt (~u) if and only if (labelt (~u) , strt (~u)) = (labelt′ (−~u) , strt′ (−~u)).

In the subsequent definitions, given two partial functions f, g, we write f(x) = g(x) if f
and g are both defined and equal on x, or if f and g are both undefined on x.

Fix a finite set T of tile types. A T -assembly, sometimes denoted simply as an assembly
when T is clear from the context, is a partial function α : Z2 99K T defined on at least one
input, with points ~x ∈ Z2 at which α(~x) is undefined interpreted to be empty space, so that
dom α is the set of points with tiles. We write |α| to denote |dom α|, and we say α is finite if
|α| is finite. For assemblies α and α′, we say that α is a subassembly of α′, and write α v α′,
if dom α ⊆ dom α′ and α(~x) = α′(~x) for all x ∈ dom α.

For τ ∈ N, an assembly is τ -stable if every cut of its binding graph has strength at least
τ , where the weight of an edge is the strength of the glue it represents. That is, the supertile
is stable if at least energy τ is required to separate the supertile into two parts.

a potentially interesting direction for future work. Further, [3] call their problem the Unique Shape
problem, which is not the same as our version of the Unique Shape problem in that we do not require
the input system be directed. Our version of the Unique Shape problem was first considered in [7].



S. Cannon, et. al. 5

2.1 Informal description of the abstract tile assembly model (aTAM)
In this section we give an informal description of the aTAM. The reader is encouraged to
see [15,17,20] for a formal development of the model.

In the aTAM, self-assembly begins with a seed assembly σ (typically assumed to be finite
and τ -stable) and proceeds asynchronously and nondeterministically, with tiles adsorbing
one at a time to the existing assembly in any manner that preserves stability at all times.

An aTAM tile assembly system (TAS) is an ordered triple T = (T, σ, τ), where T is a
finite set of tile types, σ is a seed assembly with finite domain, and τ is the temperature. An
assembly sequence in a TAS T = (T, σ, τ) is a (possibly infinite) sequence ~α = (αi | 0 ≤ i < k)
of assemblies in which α0 = σ and each αi+1 is obtained from αi by the “τ -stable” addition
of a single tile. The result of an assembly sequence ~α is the unique assembly res(~α) satisfying
dom res(~α) =

⋃
0≤i<k dom αi and, for each 0 ≤ i < k, αi v res(~α).

We write A[T ] for the set of all producible assemblies of T . An assembly α is terminal,
and we write α ∈ A�[T ], if no tile can be stably added to it. We write A�[T ] for the set
of all terminal assemblies of T . A TAS T is directed, or produces a unique assembly, if it
has exactly one terminal assembly i.e., |A�[T ]| = 1. The reader is cautioned that the term
“directed” has also been used for a different, more specialized notion in self-assembly [4]. We
interpret “directed” to mean “deterministic”, though there are multiple senses in which a
TAS may be deterministic or nondeterministic.

Given a connected shape X ⊆ Z2, we say a TAS T self-assembles X if every producible,
terminal assembly places tiles exactly on those positions in X. (Note that this notion is
equivalent to strict self-assembly as defined in [15].) For an infinite shape X ⊆ Z2, we say
that T finitely self-assembles X if every finite producible assembly of T has a possible way
of growing into an assembly that places tiles exactly on those points in X. Note that if a
shape X self-assembles in T , then X finitely self-assembles in T (but not necessarily vice
versa–see Figure 6 for an example).

2.2 Informal description of two-handed tile assembly model (2HAM)
The 2HAM [1, 7, 9, 10, 12, 13] is a generalization of the aTAM in that it allows for two
assemblies, both possibly consisting of more than one tile, to attach to each other. Since we
must allow that the assemblies might require translation before they can bind, we define a
supertile to be the set of all translations of a τ -stable assembly, and speak of the attachment
of supertiles to each other, modeling that the assemblies attach, if possible, after appropriate
translation. We now give a brief, informal, sketch of the 2HAM.

A supertile (a.k.a., assembly) is a positioning of tiles on the integer lattice Z2. Two
adjacent tiles in a supertile interact if the glues on their abutting sides are equal and have
positive strength. Each supertile induces a binding graph, a grid graph whose vertices are
tiles, with an edge between two tiles if they interact. The supertile is τ -stable if it is τ -stable
in the sense of aTAM. A 2HAM tile assembly system (TAS) is a pair T = (T, τ), where T is
a finite tile set and τ is the temperature, usually 1 or 2. Given a TAS T = (T, τ), a supertile
is producible, written as α ∈ A[T ] if either it is a single tile from T , or it is the τ -stable result
of translating two producible assemblies without overlap.3 A supertile α is terminal, written
as α ∈ A�[T ] if for every producible supertile β, α and β cannot be τ -stably attached. A
TAS is directed if it has only one terminal, producible supertile.

3 The restriction on overlap is our formalization of the physical mechanism of steric protection.
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Given a connected shape X ⊆ Z2, we say a TAS T self-assembles X if it self-assembles
in the sense of aTAM (appropriately translated if necessary). For an infinite shape X ⊆ Z2,
we say that T finitely self-assembles X if it finitely self-assembles in the sense of aTAM
(appropriately translated if necessary).

Since the 2HAM is a relatively new model, we formally define the 2HAM in the appendix
(see Section A.1).

3 Are two hands more (tile) efficient than one?

From a theoretical perspective, is the 2HAM “better” than the aTAM in terms of the
minimum number of tiles required to uniquely produce a target shape? Is it possible to build
certain infinite shapes in one model but not the other? Or perhaps is it possible to build
finite shapes more (tile) efficiently in one model than the other? These are the questions
that motivate this section.

We find, somewhat surprisingly, that it is possible for both models to “win”, in the sense
that there exist shapes that self-assemble more efficiently in the aTAM than the 2HAM,
and vice versa, depending on both the choice of shape as well as temperature value. At
temperature τ = 1, we discover an O(1) separation between the aTAM and 2HAM in favor
of the aTAM winning. At temperature τ > 1, we see a nearly exponential (and beyond)
separation in favor of the 2HAM.

Unfortunately, due to space constraints, our findings related to the complexities of “loops”
appear in Section B (see Table 2 for a summary of results regarding “loops”). In general, all
omitted proofs can be found in the appendix in Section B.

3.1 Finite Shapes
We first examine classes of finite shapes that “separate” the aTAM and the 2HAM with
respect to the tile complexities of the systems that uniquely produce them.

Given a shape X ⊆ Z2, we say that CτaTAM(X) is the tile complexity of X in the aTAM
at temperature τ ∈ N. In other words, CτaTAM(X) = min{|T | | for some σ where |σ| = 1
and X self-assembles in T = (T, σ, τ)}. Intuitively, CτaTAM(X) is the size of the smallest
tile set that produces assemblies that place tiles on–and only on–the target shape X. Let
CaTAM(X) = min {CτaTAM(X)| τ ∈ N}. The quantities Cτ2HAM(X) and C2HAM(X), are defined
similarly.

In this subsection, we study the tile complexity of shapes that resemble “staircases.”
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Figure 1 A staircase with 23 steps with each step of width 3. The black square represents the
point (0, 0).

I Definition 3.1. For each i, k ∈ N, let Bi,k = ({0, . . . , k − 1} × {−k, . . . , 0, . . . , i+ 2}) ∪
{(−1, i+ 1), (k, 0)} and define, Sn =

⋃2n−1
i=0 (Bi,n + ((n+ 1)i, 0)). Intuitively, the set Sn is a

“staircase with 2n steps with each step of width n.” See Figure 1 for an example of S3.

We will use Sn to show a non-trivial (nearly exponential) separation between the aTAM
and the 2HAM.
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I Theorem 3.2. For all n ∈ N, CaTAM (Sn) = Ω
(

n
logn

)
and C2

2HAM (Sn) = O
(

logn
log logn

)
.

We use a counting argument to prove CaTAM (Sn) = Ω
(

n
logn

)
. It is interesting to

note that, if one were to apply the standard, perhaps most obvious information-theoretic
argument to prove the bound, one would only obtain a bound of Ω

(
logn

log logn

)
, which would

not give more than a O(1) separation between the aTAM and the 2HAM.
We get C2

2HAM (Sn) = O
(

logn
log logn

)
because, in 2HAM, we can enforce pairs of connector-

column tiles to attach simultaneously, which is not possible in aTAM constructions. Intuitively,
the construction works as follows. We begin by using a modified version of the optimal square
construction [3] to form the lower n× n square portion of each stair step. We modify the
optimal square construction to allow tiles to nondeterministically attach to the top row of the
square to form a length n binary string. Then we use a binary counter [2, 7] to count from
the nondeterministically chosen value, say x, up to 2n+1 − 1. Finally, consecutive stair steps
come together, in a purely two-handed fashion, via two strength-1 glues that are separated
by a distance proportional to the height of the stair step on which they are present.

We can “iterate” the basic staircase construction using Turing machines to build each
stair step. This gives an even greater separation.

I Theorem 3.3 (“Busy Beaver” staircase). Let M = (Q, {0, 1}, 0, {0, 1}, δ, q0, F ) be a Turing
machine and x ∈ {0, 1}∗ such that M halts on x. Then C2

2HAM
(
S2t(x)+|x|+2

)
= O(|Q|+ |x|),

where t(x) denotes the running time of M on input x.

Theorem 3.3 says that, at temperature τ = 2, the 2HAM can be used to build certain
shapes much (much much...) more efficiently than in the aTAM, which requires some number
of tile types nearly exponential in the number of time steps of a busy beaver Turing machine!

3.2 Infinite Shapes
In this subsection, we examine a class of infinite (staircase-like) shapes that finitely self-
assemble in 2HAM but do not self-assemble in aTAM.

We first note that it is easy to exhibit a class of infinite shapes that self-assemble in
the aTAM but do not self-assemble in the 2HAM. Simply take any finite shape X ⊂ Z2

and union it with a one-way infinite line to get a kind of “blob with an infinite tail” (See
Figure 2 for an example of such a shape). Such shapes do not self-assemble in the 2HAM
via a straightforward pumping lemma argument on the infinite tail portion of the shape.
However, we note that it is easy to take any such blob+tail shape and exhibit an aTAM TAS

Figure 2 A blob with an infinite tail.

in which that shape self-assembles. To see this, simply create hard-coded tile types for the
finite blob portion (with the seed tile placed at some location in the blob) and then have a
single tile type that repeats infinitely in one direction for the tail portion. This construction
also testifies to the finite self-assembly of a blob+tail shape in the 2HAM.

I Definition 3.4. For each i ∈ N, let Bi = ({0, . . . , i+ 2} × {0, . . . , i+ 2}) ∪ {(−1, i +
1), (i, 0)} and S∞ =

⋃∞
i=0

(
Bi +

((
i(i+7)

2

)
, 0
))

. Intuitively, the set S∞ is essentially a
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succession of larger and larger squares that are connected by pairs of tiles positioned at the
top right and bottom right of each square. See Figure 3 for an example.
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Figure 3 A finite portion of the infinite staircase, denoted as S∞. The black square represents
the origin.

We now show how to finitely self-assemble infinite staircases in the 2HAM.

I Theorem 3.5. The infinite staircase S∞ finitely self-assembles in the 2HAM.

Intuitively, our construction for Theorem 3.5 proceeds as follows. We first assemble
horizontal lines using three tile types: one to start the line, one to keep it going and one
to stop the line. The tile that stops the line may attach non-deterministically at any step,
whence lines of every length are able to form. Each line of length k ultimately grows into a
k × k square. Connector-tiles that attach to the left and right of each square ensure that
only a (k − 1)× (k − 1) square may attach to the left of a k × k square.

I Theorem 3.6. The infinite staircase S∞ does not finitely self-assemble in the aTAM.

Intuitively, the proof for Theorem 3.6 is the “infinite” version of Theorem 2.12 in which
there are infinitely many identical and cooperating pairs of connector tiles, and we can
use really “tall” cooperating connector-columns to force “shorter” versions of identical
connector-columns to grow outside of S∞.

I Corollary 3.7. The infinite staircase S∞ does not self-assemble in the aTAM.

Proof. The result follows by the contrapositive of the following assertion: self-assembly
implies finite self-assembly. J

4 Simulating aTAM with 2HAM

This section describes how to simulate an aTAM system by a 2HAM system, which suggests
that anything the aTAM can do, the 2HAM can do (at least as good as, if not) better.
A key property of our constructions is that they not only simulate the produced shapes
assembled by the aTAM system, but also simulate the incremental assembly process, where
single tiles aggregate on a larger seed assembly. The notion of simulate is defined precisely
in Section A.2. Full construction details can be found in Appendix C.

4.1 Simulating aTAM at τ ≥ 4 with 2HAM τ = 4
It is possible to simulate the aTAM at temperature τ ≥ 4 using the 2HAM at temperature 4
with a constant scale factor of 5. Given any aTAM system, each tile t in the aTAM system
is represented by 25 tiles forming a 5 × 5 macrotile assembly in the 2HAM system. The
macrotile in the 2HAM system consists of a 3× 3 center brick assembly, surrounded on all
sides by a mortar one tile thick. These tiles are designed such that bricks and certain mortar
pieces can assemble independently, but bricks cannot attach to mortar pieces or other bricks
unless additional tiles are present.
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Simulating 2HAM, τ = 4

Simulated aTAM, τ = 4

Brick

Mortar rectangle

Mortar tile

Macrotile

Figure 4 The simulation of an assembly in an aTAM system simulated using a 2HAM system.
The filled and unfilled arrows represent glues of strength 2 and 1 respectively in the 2HAM system,
while the dashes each represent a bond of strength 1 in the aTAM system (i.e. 4 dashes on the
North side of a tile is a glue of strength 4).

We mimic the seeded nature of aTAM systems by allowing the mortar to assemble around
a seed brick corresponding to the seed tile in the aTAM system by strengthening the glues
at this seed macrotile. Once any brick has its complete set of mortar pieces attached to it,
mortar pieces for adjacent tiles can attach to the assembly; new bricks can then attach to this
partially built assembly only once their mortar is partially constructed. In this way, we ensure
that bricks can only attach to partially built assemblies containing a seed brick, mimicking
the seeded nature of an aTAM system. Additionally, we divide instances of glues into inward
and outward glue sets, such that an outward glue g can only attach to an inward glue of
the same type. Throughout the assembly process, the invariant that all exposed glues in
any assembly containing a seed brick are outward glues is maintained; this prevents partially
built seeded assemblies from attaching to each other. An example of the construction in
which 3× 3 bricks, 3× 1 mortar rectangles, and individual mortar tiles attach to form 5× 5
supertiles can be seen in Figure 4.

I Theorem 4.1. Any aTAM system at τ ≥ 4 can be simulated by a 2HAM system at τ = 4.

4.2 Simulating aTAM at τ ∈ {1, 2} with 2HAM τ = 2

The construction described in the previous section can be modified to also enable simulating
aTAM systems at τ = {1, 2} with the 2HAM at τ = 2 with scale factor 5.

I Theorem 4.2. Any aTAM system at τ ∈ {1, 2} can be simulated by a 2HAM system at
τ = 2.
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4.3 Simulating aTAM at τ = 3 with 2HAM τ = 3
The construction used to simulate the τ ≥ 4 aTAM model with the τ = 4 2HAM model can
also be modified to simulate the τ = 3 aTAM model with the τ = 3 2HAM model. The
construction given also simulates the aTAM model under the restriction of planarity (tiles
can only attach at locations on the exterior of the assembly).

I Theorem 4.3. Any aTAM system at τ = 3 can be simulated by a 2HAM system at τ = 3.

5 Verification algorithms for aTAM and 2HAM

In this section, as well as in the appendix (see Section D), we explore the algorithmic
complexities of verifying certain properties of a given (2HAM or aTAM) tile assembly system.
Sections 3 and 4 suggest that the 2HAM is at least as (if not perhaps strictly more) powerful
than the aTAM. In this section, we show that verifying properties of self-assembly systems
in the 2HAM is at least as (if not perhaps strictly more) difficult than verifying properties of
aTAM systems.

5.1 Unique assembly verification
A fundamental computational problem in self-assembly is that of deciding whether a given
self-assembly system uniquely produces a given assembly. We refer to this problem as the
Unique Assembly Verification problem (UAV). The aTAM has enjoyed a polynomial time
solution [3] to this problem reaching back to 2002. Fast verification within the aTAM has
been of tremendous assistance for self-assembly system designers by allowing for simulators
that can quickly spot bugs in tile systems. In contrast, the complexity of UAV for 2HAM
systems has been a core open problem since the Palaeolithic era. The results of this paper,
thus far, seem to suggest “aTAM = O(2HAM)”, i.e., the 2HAM is, in general, at least as
powerful as the aTAM. Thus, it should not be difficult for one to believe that, in general,
verifying 2HAM systems should be at least as difficult as verifying aTAM systems. In this
section, we show that a general fast verification algorithm is unlikely to exist by showing
that the UAV is co-NP-complete.

Our UAV co-NP-complete result applies to temperature τ = 2 systems that utilize at
most one step into the third dimension4. This result resolves the general question of whether
efficient unique assembly verification algorithms exist, but leaves open the possibility of a
fast algorithm for the important class of 2D 2HAM self-assembly systems. Further, this
result is potentially useful for optimistic algorithm designers in search of such 2D efficient
systems in that it points out that any such solution will need to make fundamental use of
the planarity of self-assembly to have a chance at working.

Formally, the UAV problem is stated as follows:

Input: An aTAM system T = (T, σ, τ), or a 2HAM system T = (T, τ), and a T -assembly α
Output: Does T uniquely produce α, i.e., is α such that A�[T ] = {α}?

I Theorem 5.1. The UAV problem is co-NP-complete for 3D, temperature τ = 2 2HAM
systems that use only 2 separate planes of the third dimension.

4 We do not formally define the 3D 2HAM because the generalization from the 2D 2HAM is straightforward.
Details of the 3D 2HAM that we use can be found in [8]
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Figure 5 This figure details the tile set for the temperature τ = 2 system used in the polynomial
time reduction of the 3-SAT problem to the Unique Assembly problem. The tiles in this figure are
those derived for the example 3-SAT instance shown in (a). Tiles that are placed within the z = 1
plane appear smaller than those that occur in the z = 0 plane. Strength-1 glues are denoted by single
dashes for north,south,east and west glues, and solid circles for top and bottom glues. Strength-2
glues are denoted by double dashes and triangle inscribed circles for top/bottom glues. Each glue
within this system occurs on exactly two tile faces of opposite orientation. Some tiles are shown as
already bound together for the purpose of implicitly specifying which edges share strength-2 glues.

Proof sketch. Membership in co-NP is proven in Lemma 4.3 and involves observing that
a non-unique producible assembly implies the existence of a small, producible witness to
non-uniqueness that is inconsistent with the input assembly. NP-hardness is shown in detail
by Lemma 4.4. The reduction for the proof is from 3-SAT with the tile system and input
assembly described in Figures 5, 39. The assembly input tile system places clause blocks,
row by row, from bottom to top, with the completion of a given row verifying that a given
clause is satisfied by the variable assignment represented by the attachment of a sequence of
variable loops. The assembly has the property that upon completion of all clause rows, 2
glues are exposed that may permit a final attachment that is inconsistent with the input
assembly. Such a completion is impossible for non-satisfiable formulas without the use of
cheating in which some variable is assigned both true and false values. If cheating occurs,
the true and false variable loops that cheated will restrict the final attachment from growing
further, yielding that the target assembly is uniquely produced if and only if the 3-SAT
formula has no satisfying assignment. J
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A Omitted definitions

A.1 Formal definition of 2HAM

We now formally define the 2HAM.
Two assemblies α and β are disjoint if dom α ∩ dom β = ∅. For two assemblies α and β,

define the union α∪ β to be the assembly defined for all ~x ∈ Z2 by (α∪ β)(~x) = α(~x) if α(~x)
is defined, and (α ∪ β)(~x) = β(~x) otherwise. Say that this union is disjoint if α and β are
disjoint.

The binding graph of an assembly α is the grid graph Gα = (V,E), where V = dom α,
and {~m,~n} ∈ E if and only if (1) ~m − ~n ∈ U2, (2) labelα(~m) (~n− ~m) = labelα(~n) (~m− ~n),
and (3) strα(~m) (~n− ~m) > 0. Given τ ∈ N, an assembly is τ -stable (or simply stable if τ is
understood from context), if it cannot be broken up into smaller assemblies without breaking
bonds of total strength at least τ ; i.e., if every cut of Gα has weight at least τ , where the
weight of an edge is the strength of the glue it represents. In contrast to the model of Wang
tiling, the nonnegativity of the strength function implies that glue mismatches between
adjacent tiles do not prevent a tile from binding to an assembly, so long as sufficient binding
strength is received from the (other) sides of the tile at which the glues match.

For assemblies α, β : Z2 99K T and ~u ∈ Z2, we write α+ ~u to denote the assembly defined
for all ~x ∈ Z2 by (α+~u)(~x) = α(~x−~u), and write α ' β if there exists ~u such that α+~u = β;
i.e., if α is a translation of β. Define the supertile of α to be the set α̃ = { β | α ' β }.
A supertile α̃ is τ -stable (or simply stable) if all of the assemblies it contains are τ -stable;
equivalently, α̃ is stable if it contains a stable assembly, since translation preserves the
property of stability. Note also that the notation |α̃| ≡ |α| is the size of the super tile (i.e.,
number of tile types in the supertile). is well-defined, since translation preserves cardinality
(and note in particular that even though we define α̃ as a set, |α̃| does not denote the
cardinality of this set, which is always ℵ0).

For two supertiles α̃ and β̃, and temperature τ ∈ N, define the combination set Cτ
α̃,β̃

to
be the set of all supertiles γ̃ such that there exist α ∈ α̃ and β ∈ β̃ such that (1) α and β are
disjoint (steric protection), (2) γ ≡ α ∪ β is τ -stable, and (3) γ ∈ γ̃. That is, Cτ

α̃,β̃
is the set

of all τ -stable supertiles that can be obtained by attaching α̃ to β̃ stably, with |Cτ
α̃,β̃
| > 1 if

there is more than one position at which β could attach stably to α.
It is common with seeded assembly to stipulate an infinite number of copies of each tile,

but our definition allows for a finite number of tiles as well. Our definition also allows for
the growth of infinite assemblies and finite assemblies to be captured by a single definition,
similar to the definitions of [15] for seeded assembly.

Given a set of tiles T , define a state S of T to be a multiset of supertiles, or equivalently,
S is a function mapping supertiles of T to N ∪ {∞}, indicating the multiplicity of each
supertile in the state. We therefore write α̃ ∈ S if and only if S(α̃) > 0.

A (two-handed) tile assembly system (TAS) is an ordered triple T = (T, S, τ), where
T is a finite set of tile types, S is the initial state, and τ ∈ N is the temperature. If not
stated otherwise, assume that the initial state S is defined S(α̃) = ∞ for all supertiles α̃
such that |α̃| = 1, and S(β̃) = 0 for all other supertiles β̃. That is, S is the state consisting
of a countably infinite number of copies of each individual tile type from T , and no other
supertiles. In such a case we write T = (T, τ) to indicate that T uses the default initial state.

Given a TAS T = (T, S, τ), define an assembly sequence of T to be a sequence of states
~S = (Si | 0 ≤ i < k) (where k = ∞ if ~S is an infinite assembly sequence), and Si+1 is
constrained based on Si in the following way: There exist supertiles α̃, β̃, γ̃ such that (1)
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γ̃ ∈ Cτ
α̃,β̃

, (2) Si+1(γ̃) = Si(γ̃)+1,5 (3) if α̃ 6= β̃, then Si+1(α̃) = Si(α̃)−1, Si+1(β̃) = Si(β̃)−1,
otherwise if α̃ = β̃, then Si+1(α̃) = Si(α̃)− 2, and (4) Si+1(ω̃) = Si(ω̃) for all ω̃ 6∈ {α̃, β̃, γ̃}.
That is, Si+1 is obtained from Si by picking two supertiles from Si that can attach to each
other, and attaching them, thereby decreasing the count of the two reactant supertiles and
increasing the count of the product supertile. If S0 = S, we say that ~S is nascent.

Given an assembly sequence ~S = (Si | 0 ≤ i < k) of T = (T, S, τ) and a supertile
γ̃ ∈ Si for some i, define the predecessors of γ̃ in ~S to be the multiset pred~S(γ̃) = {α̃, β̃}
if α̃, β̃ ∈ Si−1 and α̃ and β̃ attached to create γ̃ at step i of the assembly sequence, and
define pred~S(γ̃) = {γ̃} otherwise. Define the successor of γ̃ in ~S to be succ~S(γ̃) = α̃ if γ̃
is a predecessor of α̃ in ~S, and define succ~S(γ̃) = γ̃ otherwise. A sequence of supertiles
~̃α = (α̃i | 0 ≤ i < k) is a supertile assembly sequence of T if there is an assembly sequence
~S = (Si | 0 ≤ i < k) of T such that, for all 1 ≤ i < k, succ~S(α̃i−1) = α̃i, and ~̃α is nascent if
~S is nascent.

The result of a supertile assembly sequence ~̃α is the unique supertile res(~̃α) such that
there exist an assembly α ∈ res(~̃α) and, for each 0 ≤ i < k, assemblies αi ∈ α̃i such that
dom α =

⋃
0≤i<k dom αi and, for each 0 ≤ i < k, αi v α. For all supertiles α̃, β̃, we write

α̃→T β̃ (or α̃→ β̃ when T is clear from context) to denote that there is a supertile assembly
sequence ~̃α = (α̃i | 0 ≤ i < k) such that α̃0 = α̃ and res(~̃α) = β̃. It can be shown using
the techniques of [16] for seeded systems that for all two-handed tile assembly systems T
supplying an infinite number of each tile type, →T is a transitive, reflexive relation on
supertiles of T . We write α̃ →1

T β̃ (α̃ →1 β̃) to denote an assembly sequence of length 1
from α̃ to β̃ and α̃→≤1

T β̃ (α̃→≤1 β̃) to denote an assembly sequence of length 1 from α̃ to
β̃ if α̃ 6= β̃ and an assembly sequence of length 0 otherwise.

A supertile α̃ is producible, and we write α̃ ∈ A[T ], if it is the result of a nascent supertile
assembly sequence. A supertile α̃ is terminal if, for all producible supertiles β̃, Cτ

α̃,β̃
= ∅.6

Define A�[T ] ⊆ A[T ] to be the set of terminal and producible supertiles of T . T is directed
(a.k.a., deterministic, confluent) if |A�[T ]| = 1.

Let X ⊆ Z2 be a shape. We say X self-assembles in T if, for each α̃ ∈ A�[T ], there
exists α ∈ α̃ such that dom α = X; i.e., T uniquely assembles into the shape X. For an
infinite shape X ⊆ Z2, we say that X finitely self-assembles in T if, for each finite α̃ ∈ A[T ],
there exists α ∈ α̃ such that dom α ⊂ X and α̃→T α̃′ where α′ ∈ α̃′ and dom α′ = X. We
can further extend the definitions of self-assembly of shapes and finite self-assembly of shapes
to deal with sets of shapes as follows. Let X be a set of shapes. We say that X self-assembles
in T if, for each α̃ ∈ A�[T ], there exists α ∈ α̃ and X ∈ X such that dom α = X, and for
each X ∈ X , there exists α̃ ∈ A�[T ] and α ∈ α̃ such that dom α = X. Now let X be a set
of infinite shapes. We say that X finitely self-assembles in T if, for each finite α̃ ∈ A[T ],
there exists α ∈ α̃ and X ∈ X such that dom α ⊂ X and α̃ →T α̃′ for some α̃′ ∈ A�[T ],
where there exists α′ ∈ α̃′ and dom α′ = X, and furthermore, for each X ∈ X , there exists
α̃ ∈ A�[T ] and α ∈ α̃ such that dom α = X.

Self-assembly of a shape implies finite self-assembly of that shape (i.e. given a shape
X ⊆ Z2 and a TAS T , X self-assembles in T ⇒ X finitely self-assembles in T ). This holds

5 with the convention that ∞ =∞+ 1 =∞− 1
6 Note that a supertile α̃ could be non-terminal in the sense that there is a producible supertile β̃ such
that Cτ

α̃,β̃
6= ∅, yet it may not be possible to produce α̃ and β̃ simultaneously if some tile types are

given finite initial counts, implying that α̃ cannot be “grown” despite being non-terminal. If the count
of each tile type in the initial state is ∞, then all producible supertiles are producible from any state,
and the concept of terminal becomes synonymous with “not able to grow”, since it would always be
possible to use the abundant supply of tiles to assemble β̃ alongside α̃ and then attach them.
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for both the aTAM and 2HAM. However, the opposite does not hold, and Figure 6 shows an
example shape and tile set to demonstrate this point. Given the shape X shown in Figure 6a,
which is an infinite line of height 2, and the tile set T shown in Figure 6b, define a TAS
in the aTAM T = (T, (S, (0, 0)), 2) (whose seed is the S tile at location (0, 0)). T does not
self-assemble X because there is a terminal producible assembly α consisting of the seed
tile with an infinite series of A tiles attached to the right of S. Since α does not contain an
instance of tile B, the second row can never be initiated. Clearly, α is does not have shape
X and thus T does not self-assemble X. However, any finite producible assembly of T , even
if it doesn’t contain a B tile, has the potential to attach a B tile to its right and thus initiate
growth of the second row, and therefore can always grow into exactly shape X. Thus, X
finitely self-assembles in T .

Similarly, we can consider the 2HAM by defining the 2HAM TAS T = (T, 2). Since the
supertile consisting of a single S tile with an infinite series of A tiles attached to its right is
producible and terminal, T does not self-assemble X. Additionally, any finite producible
supertile in T can, in a way similar to that previously described, grow into shape X, so X
does finitely self-assemble in T .

(a) Height 2 infinite line.

s A B

D C

(b) Tile set, with all strength 1
glues as the same glue type, and
all strength 2 glues as the same
glue type.

Figure 6 Self-assembly of a shape vs. finite self-assembly of a shape.

It is important to note that the previously described example is only mean to illustrate
the difference between self-assembly and finite self-assembly with respect to a particular tile
set (both notions of self-assembly actually apply to shapes as opposed to tile sets). After all,
it is easy to see that the example shape X (i.e., an infinite, horizontal, double-thick line)
does in fact self-assemble in the aTAM but only in some other tile set than the one given in
Figure 6b.

A.2 Simulation definition: simulate an aTAM (or 2HAM) system with
another 2HAM (or aTAM) system

In this subsection, we formally define what it means for one 2HAM TAS to “simulate” another
2HAM (or aTAM) TAS. For a tileset T , let AT and ÃT denote the set of all assemblies over
T and all supertiles over T respectively.

Anm-block assembly over tile set S is a partial function γ : Z2
m 99K S. Let BSm be the set of

all m-block assemblies over S. The m-block with no domain is said to be empty. For a general
assembly α ∈ AS define αmx,y to be the m-block defined by αmx,y(i, j) = α(mx+ i,my + j) for
0 ≤ i, j < m.

For a partial function R : BSm 99K T , define the assembly replacement function R∗ : AS →
AT such that R∗(α) = β if and only if β(x, y) = R(αmx,y) for all x, y ∈ Z2. Further, α is said
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to map cleanly to β under R∗ if for all non empty blocks αmx,y, either 1) (x+u, y+v) ∈ dom β

for some u, v ∈ {−1, 0, 1}, or 2) α has at most one non-empty m-block αmx,y.
For a given assembly replacement function R∗, define the supertile replacement function

R̃ : ÃS → P(AT ) such that R̃(α̃) = {R∗(α)|α ∈ α̃}. α̃ is said to map cleanly to R̃(α̃) if
R̃(α̃) ∈ ÃT and α maps cleanly to R∗(α) for all α ∈ α̃.

Consider an aTAM or 2HAM system S with tileset S, and an aTAM or 2HAM system
T with tile set T . S simulates T at scale factor m if there exists an m-block replacement
R : BSm → T satisfying the following conditions.

1. Equivalent Production:
a.
{
R̃(α)|α ∈ A[S]

}
= A[T ].

b. For all α ∈ A[S], α maps cleanly to R̃(α)
2. Equivalent Dynamics:

a. For any α, α′ ∈ A[S] such that α→1
S′ α

′, then R̃(α)→≤1
T R̃(α′).

b. For any β, β′ ∈ A[T ] such that β →1
T β
′, then for all α such that R̃(α) = β, there exists

an α′′ such that R̃(α′′) = β, α→S α′′, and α′′ →1
S α
′ for some α′ with R̃(α′) = β′.

B Omitted Proofs for Section 3: Are two hands more (tile) efficient
than one?

B.1 Finite Shapes
B.1.1 Loops
In this subsection, we study the tile complexity of simple loop structures in the aTAM and
2HAM.

I Definition 2.1. For any n ∈ N such that n > 2, define Ln = ({0} × {0, . . . , n− 1}) ∪
(({0} × {0, . . . , n− 1}) + (2, 0)) ∪ {(1, 0), (1, n− 1)}. Intuitively, the set Ln is a “loop of size
n.” See Figure 7 for an example.

Figure 7 A loop of size 12.

The first question that we study is: can 2HAM tile assembly systems uniquely produce
loops more efficiently than aTAM tile assembly systems? The answer is “no” if the “experi-
menter” gets to choose the temperature, and “maybe” otherwise. Throughout this subsection,
we do not assume that the single seed tile is placed at the origin, nor do we assume that any
tile assembly system is directed!

I Theorem 2.2. For all n ∈ N such that n > 2, the following hold.

1. (The aTAM is better than the 2HAM) C1
aTAM(Ln) = n+ 5 < 2n+ 2 = C1

2HAM(Ln)
2. (Or is it?) C2

2HAM(Ln) ≤ n+ 3 ≤ C2
aTAM(Ln)

We will prove Theorem 2.2 in Lemmas 2.3, 2.8, 2.9, 2.10 and 2.11.
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I Lemma 2.3. For all n ∈ N such that n > 2, C1
aTAM(Ln) ≤ n+ 5.

Proof. To see that C1
aTAM(Ln) ≤ n+ 5, define the TAS Tn = (Tn, σ, 1), where Tn consists

of the tile types given in Figure 8a. It is easy to see that Tn uniquely produces the set Ln.
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(b) A loop of size 6.

Figure 8 Construction for C1
aTAM(Ln) ≤ n+ 5.

Intuitively, starting from the seed ‘S’, the bottom, right side, and top of the loop assemble
from n+ 4 tile types. Then, since ‘S’ as the bottom left corner of the loop is guaranteed to
already be in place, the left side assembles from a repetition of tile type ‘e’, namely n− 2
copies of it, until the downward growing column “runs into” ‘S’ and further copies of ‘e’ are
thus blocked from attaching, making the assembly (uniquely) terminal. J

Before we prove a matching lower bound, we need some additional machinery to simplify
reasoning about the self-assembly of loops.

I Observation 2.4. Let n ∈ N such that n > 2. If Ln self-assembles in T = (T, σ, 1), then
the tiles that T places at the positions C = {(0, 0), (1, 0), (2, 0), (0, n−1), (1, n−1), (2, n−1)}
are unique for all terminal assemblies α of T . That is, for any given α ∈ A�[T ], for every
~x ∈ C, |{~y ∈ dom α | α(~y) = α(~x)}| = 1.

We call the sets of positions {(0, 0), (1, 0), (2, 0)} and {(0, n− 1), (1, n− 1), (2, n− 1)} the
top and bottom caps of Ln, respectively. Observation 2.4 follows by a straightforward case
analysis. Note that, as shown in Figure 9a, Observation 2.4 does not hold at temperature
τ = 2.

I Observation 2.5. For all n ∈ N such that n > 2 and all τ ∈ N, if Ln self-assembles in
T = (T, σ, τ), then the seed tile only appears once in any terminal assembly α of T .

Observation 2.5 follows by a straightforward case analysis. In some of our subsequent
proofs, it will be convenient to reason about tile systems that grow from a single seed placed
at the origin.

I Lemma 2.6. Let n ∈ N such that n > 2. For every T = (T, σ, 1) in which Ln self-assembles,
there exists T ′ = (T ′, σ′, 1) in which Ln self-assembles, |T ′| ≤ |T | and σ′ consists of a single
tile placed at the origin.

Intuitively, we can transform any TAS T that is not seeded at the origin into a TAS T ′
that is seeded at the origin by simply allowing the seed tile and the lower left tile to “swap”
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roles. Doing this transformation is safe because the seed and any cap tiles only appear once
in any given assembly.

Proof. Let T = (T, σ, 1) be a TAS in which Ln self-assembles but σ places the single seed
tile at a point other than the origin. It suffices to convert T to a TAS T ′ = (T ′, σ′, 1) such
that |T ′| ≤ |T | but σ′ places the single seed tile at one of the corners of Ln. First note that
Observation 2.5, with τ = 1, tells us that the seed tile may appear only once in any terminal
assembly α of T . Thus, by Observation 2.4, we can safely change the glues of the seed tile
to be the same as the glues of the tile that T places at the origin, and vice versa, without
changing any other tile type in T , thus creating a new tile set T ′ with |T ′| ≤ |T |. J

Lemma 2.6 simply says that, from this point on, if Ln self-assembles in a TAS T , then
we may reason as though the single seed tile of T is placed at the origin. Lemma 2.6 makes
it easy(ier) to realize the following.

I Observation 2.7. For any n ∈ N such that n > 2, if T = (T, σ, τ) is a TAS in which Ln
self-assembles, then the first n+ 5 tiles that T places (counting the seed tile) must be unique.

Although doing so is not necessary to establish a separation between the 2HAM and
aTAM, for the sake of completeness, we now give a matching lower bound for Lemma 2.3.

I Lemma 2.8. For all n ∈ N such that n > 2, C1
aTAM(Ln) ≥ n+ 5.

Intuitively, if any TAS in which Ln self-assembles has fewer than n+ 5 unique tile types,
then as assembly proceeds away from the (single) seed (placed at the origin), tile types must
be repeated. Of course, such tile type repetitions need not appear in the same assembly
path leading away from the seed, but in every case, it is always possible to use such tile type
repetitions to cause erroneous growth “outside” of Ln causing a contradiction.

Proof. To see that C1
aTAM(Ln) ≥ n+5, assume for the sake of contradiction that C1

aTAM(Ln) <
n+ 5. Let T = (T, σ, 1) be any TAS in which Ln self-assembles with |T | < n+ 5. Let α be
a terminal assembly of T and let P0 be the longest simple path of tiles that T can grow
starting from the seed tile at temperature 1. Since |T | < n+ 5, Observation 2.7 tells us that
|P0| ≤ n+4. If |P0| ≤ n+4, then there exists a path P1 that can be built independent of (i.e.,
does not interact with) P0. Assume that |P0| > |P1| and P0 can only turn counterclockwise.
Then Observation 2.4 implies that there exist indices 3 ≤ i < n+ 1 and 1 ≤ j < n such that
P0(i) = P1(j) = t. Let P ′0 be the portion of P0 that starts at P0(i) and ends with P0(|P0|−1)
and P ′1 be the portion of P1 that starts at P1(j) and ends with P1(|P1| − 1). By Lemma 2.6,
we may assume that T grows from the origin, whence either P ′0 or P ′1 must turn exactly
once. If P ′0 turns, then T can build a new path where P ′0 is appended to P1(j − 1), which
is a contradiction as there can be only one path that turns counterclockwise. We can use
similar reasoning to derive a contradiction if P ′0 does not turn but P ′1 does. J

We now prove our first tile complexity separation result.

I Lemma 2.9. For all n ∈ N such that n > 2, C1
2HAM(Ln) = 2n+ 2.

Intuitively, since |Ln| = 2n+ 2, if a TAS in which Ln self-assembles has fewer than this
many unique tile types, then there must be an assembly path along which there is a tile type
repetition. Since in the 2HAM, any tile type may act as the seed tile type, you can use the
tile type that must be repeated as a seed tile to which you can attach two assembly paths
that each turn in opposite directions, which causes erroneous growth outside of Ln.
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Proof. It is easy to see that C1
2HAM(Ln) ≤ 2n+ 2 as one can simply define a unique tile type

for each point in Ln.
We will now show that C1

2HAM(Ln) ≥ 2n+2. For this, assume for the sake of contradiction
that C1

2HAM(Ln) < 2n + 2. Let T = (T, 1) be any 2HAM TAS in which Ln self-assembles
with |T | < 2n+ 2 and suppose that α is a terminal assembly of T . Since |T | < |Ln| = 2n+ 2,
it must be the case that there exist two non-cap locations in α, say (a, b) and (c, d), such that
α(a, b) = α(c, d) = t. If (a, b) and (c, d) are on the same side of Ln, then it would be possible
to build an infinite line of tiles. Therefore, assume that (a, b) and (c, d) are on opposite sides
of Ln.

Assume that t = α(a, b) binds with both α ((a, b)± (0, 1)). It is worthy of note that,
since α is stable, t must bind on two sides at both (a, b) and (c, d). Let P0 be the unique
longest simple path in α from (a, b), in the direction (0, 1), that does not go through (c, d).
Likewise, let P ′0 be the unique longest simple path in α from (a, b), in the direction (0,−1),
that does not go through (c, d). Define P1 and P ′1 similarly but starting from (c, d). If both
P0 and P ′1 do not turn clockwise at least once, then α would not place a tile at every point
in Ln, whence it must be the case that either P0 turns clockwise at least once or P ′1 turns
clockwise at least once. Denote this clockwise turning path as Pcw. Similarly, it must be the
case that either P1 turns counterclockwise at least once or P ′0 turns counterclockwise at least
once. Denote this counterclockwise turning path as Pccw. Now we form a new assembly by
attaching the tiles of Pccw to the north side of t and attach the tiles of Pcw to the south side
of t. This gives a producible assembly α′ that contains a simple path of tiles that turns at
least once each (in opposite directions). Such an assembly sequence cannot be consistent
with the shape Ln and is therefore its existence is a contradiction. J

Lemmas 2.3 and 2.9 tell us that there exists a shape (e.g., Ln) along with a temperature
value (e.g., τ = 1) such that Ln can be assembled more (tile) efficiently in the aTAM than in
the 2HAM. But, as we will see shortly, if the experimenter gets to choose the temperature,
then the tile complexity separation between the aTAM and 2HAM given by Lemma 2.8
no longer exists. In other words, we will prove that there exists a shape (e.g., Ln) and
temperature values τ1 and τ2 such that the aTAM can do no better (with respect to tile
complexity) than the 2HAM in terms of building the shape.

I Lemma 2.10. For all n ∈ N such that n > 2, C2
2HAM(Ln) ≤ n+ 3.

Proof. To see that C2
2HAM(Ln) ≤ n+ 3, define the TAS Tn = (Tn, 2), where Tn consists of

the tile types given in Figure 9a. It is easy to see that Tn uniquely produces Ln by building
a ‘U’ shape to which the ‘x’ tile may attach and close the loop giving Ln. J

The following Lemma says that, at temperature 2, loop structures do not yield any tile
complexity separation between aTAM and 2HAM.

I Lemma 2.11. For all n ∈ N such that n > 2, C2
aTAM(Ln) ≥ n+ 3.

Intuitively, we take any aTAM TAS T in which Ln self-assembles (at temperature τ = 2)
and convert it into an aTAM TAS T ′ in which Ln self-assembles except that in T ′, every
tile initially binds via a single strength-2 bond. To build T ′, we perform a transformation on
every α ∈ A�[T ], where we “remove” exactly two tile types that we later “add” back–along
with the remaining unmodified tile types. After doing this, we have T ′ that uses no more tile
types than T to build Ln. Then we take T ′ and convert it into a temperature τ = 1 TAS
T ′′ where no tile types are added or removed but all strength-2 bonds on every tile type are
converted to strength-1 bonds and all other bonds are converted to strength-0 bonds. Then
we note that T ′′ has less than n+ 3 unique tile types, which contradicts Lemma 2.8.
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Figure 9 Construction for C2
{aTAM,2HAM}(Ln) ≤ n+ 3. Note that this construction works in both

the aTAM (with the ‘a’ tile as the seed) and the 2HAM at temperature 2.

Proof. To see that C2
aTAM(Ln) ≥ n+3, assume for the sake of contradiction that C2

aTAM(Ln) <
n+ 3. Let T = (T, σ, 2) be any TAS in which Ln self-assembles with |T | < n+ 3 such that
every glue on every t ∈ T has strength either 1 or 2.

Let α be any terminal assembly of T (there could be more than one as we are only
assuming self-assembly of Ln in T ). We will define the tile set T ′ =

⋃
α∈A�[T ] T

′
α, where, for

each α ∈ A�[T ], the tile set T ′α is defined according to the following two cases.
Case 1. If there exists a location ~x ∈ dom α and a unit vector ~u1 ∈ {(0, 1), (−1, 0)}

such that strα(~x) (~u1) = 1, then let t0 = α (~x) and t1 = α (~x+ ~u1). In this case, there must
be a unit vector ~u2 ∈ U2 − {~u1} such that ~x+ ~u2 ∈ dom α. Let t2 = α (~x+ ~u2). Let t′0 be
the tile type satisfying for all ~u1 6= ~u ∈ U2,

(
labelt′0 (~u) , strt′0 (~u)

)
= (labelt0 (~u) , strt0 (~u))

and
(
labelt′0 (~u) , strt′0 (~u1)

)
= (labelt0 (~u1) , 2). Let t′1 be the tile type satisfying for all

~u2 6= ~u ∈ U2,
(
labelt′1 (~u) , strt′1 (~u)

)
= (labelt1 (~u) , strt1 (~u)) and

(
labelt′1 (~u2) , strt′1 (~u2)

)
=

(labelt1 (~u2) , 2). Let T ′α = ({α (~y) | ~y ∈ dom α}− {t0, t1})∪ {t′0, t′1}. Intuitively, this (case 1)
transformation is simply modifying the tile types t0 and t1 so that the former binds with the
latter via a strength-2 bond.

A case 1 transformation is safe in the following sense: it does not modify any other tiles
in α except for the tiles that α places at ~x and ~x+ ~u1. To see this, consider the fact that if
t1 is to the left and above of t2 (see Figure 10b) or t1 is directly above t2 (see Figure 10a),
then neither t1 nor t2 may appear anywhere else in α because t1 and t2 must each initially
bind via a strength-2 bond but leave a strength-1 bond exposed–to which t0 ultimately binds.
Furthermore, t0 cannot have any exposed strength-2 bonds (it only has its two strength-1
bonds), which implies that t0 may also not appear anywhere else in α. The only other case
to consider, which we will dismiss, is if t1 is directly east (west) of t2. That is, if ~u1 = (−1, 0)
and strα(~x) (1, 0) = 1 (this is exactly the case illustrated in Figure 9a), then it must be the
case that t2 = α (~x+ (1, 0)) and we can derive a contradiction as follows. In this case, t1
and t2 are part of either the top or bottom cap of Ln. Without loss of generality, assume
that t1 and t2 are part of the top cap, the bar of n − 1 tiles that sits below t0 is the set
{0} × {0, . . . , n− 2} and the seed is not placed at any point in this set. Since |T | < n+ 3,
there must be two points in the set {0}×{0, . . . , n− 2}∪{(1, 0), (2, 0)} that receive the same
tile type in α. Denote these two points as ~a and ~b with the point ~a appearing closer to the
seed tile in α. If the seed tile is placed at (2, 0) or is simply not present in the bottom cap,
then it is easy to see that the segment of tiles between ~a and ~b can be repeated infinitely, so



S. Cannon, et. al. 21

i

i

c s

$

zz

!

?

! !

!

#

! !

!

?

c

$

cc

s

a

*a

u

*u

bn

n

u

u u

n

*u

*n *n

*n

*u

a

i

11

22

33

44

1

1

1

1

*a

b b

b

r

u

*u

n

*n

u

*u

r

n

*n

u

*u

ru

0

1

1 1

0

*1

*0 *0

*0

*1

0

n – 1

55

i + 1

22

33

44

55

*0

0* 0*

0*

?

a

*u

*u

*u

*u

*u

u

u

u

u

u

r

*a

n

*n

u

*u

b

k

k

2

2

22

2

2

22

1

1

1

1

1

11

#

#

#

# #

# ## #

# #

# #

#

#

#

##
##

#

0*

0*

0*

??
?1

1

0

11

*0

*0

*0
*1

1

*0

0

0

1
1

0

11
0

0

0

0

0

0

111 #

*1

11

0

0

0

1

1

00

0

1

1 1

0

1

0 0

0

1

0

x

x

i

11

22

33

44

n  1–

55

0

0

b

b

a

t2

t2

t0

t1

t0t0

a

0

0 0

0

1

?

r

?

1 ?

r

?

1

1

1

0

0

1

1

1

s

r

b

1

s

r

b

1

0

1i + 1

i + 1

s

c

a

n

0 s

c

a

n

0 s

c

a

n

0 s

c

a

n

0 s

s

*a

*n

0 s

*a

*n

0 s

s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

$

*u

*u

1 s

$

*u

*u

1 s

$

*u

*u

1 s

$

$ $

$ $

$ $

$ $

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0
z

z

n

u

0 z

z

n

u

0 z

z

n

u

0 z

!

?

?

u

1

1 ? ?

u

1

1 ?

! !

!

?

#

*u

*1

1 ?

! !

!

!

?

x

x

x

xx

0

0

a

a

?

*a

*0

0 ?

!

x

x

x

xx

0

0

a

a

e

i

1

e

e n  1–

i + 1

e

d c n  1–

i

0aS

d c

0a

e

e

e

e

e

e

e

e

e

e

e

e

e

d d

d

c cd

c

5

5c

1

2

1

2

3

2

3

4

3

4

5

4

0

1

00

a

a 0aS a

z

c

u

a

1 z

c

u

a

1 z

c

u

a

1 z

c

u

a

1 z

$

r

$

r

$

r

$

r

$

z

*u

*a

1 z

*u

*a

1 z

*u

*a

1 z

c

c *n

*n

0 c

*n

*n

0 c

c

c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

(a) t0 is directly above t2.

i

i

i

i

c

c

s

s

$

$

z

z

z

z

!

!

?

?

!

!

!

!

!

#

#

!

!

!

!

!

?

?

c

c

$

$

c

c

c

c

s

s

a

a

*a

*a

u

u

*u

*u

b

b

n

n

n

n

u

u

u

u

u

u

n

*u

*u

*n

*n

*n

*n

*n

*u

*u

a

a

i

11

22

33

44

1

1

1

1

*a

*a

b

b

b

b

b

r

r

u

u

*u

*u

n

n

*n

*n

u

u

*u

*u

r

r

n

n

*n

*n

u

u

*u

*u

r

r

u

u

0

0

1

1

1

1

1

1

0

*1

*1

*0

*0

*0

*0

*0

*1

*1

0

0

n – 1

55

i + 1

22

33

44

55

*0

*0

0*

0*

0*

0*

0*

?

?

a

a

*u

*u

*u

*u

*u

*u

*u

*u

u

u

u

u

u

u

u

u

r

r

*a

*a

n

n

*n

*n

u

u

*u

*u

b

b

k

n – 2

n – 2

k

2

2

2

2

2

2 2

2

2

2

2

2 1

1

1

1

1

1

1

1

1

1

1 #

#

#

#

#

#

#

#

#

# #

# #

# #

# # # #

# #

#

#

#

#

#

#

# # #

#

#

#

##

#

#

#

#

#

#

#

0*

0*

0*

1*

1*

?*

?*

?*

?*?????????? ?*?

0*

0*

0*

?

?

??

?

1

1

1

1

0

1

1

1 *0

*0

*0

*0

*0

*1

*1

1

0

*0

*0

*0

*1

*?

*?

0

0

0

0

0 0

? ?

? ?

1 1

1

1

1

1

0

1

1

1 0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

11

1

#

*1

11

0

0

0

#

*0

*?

0

1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

0

0

0

0

0
1

1

0

0

x

x

i

11

22

33

44

n  1–

55

0

0

b

b

a

t2

t2

t0

t1

t1t0

a

0

0

0

0

0

0

0

1

1

?

r

?

1 ?

r

?

1

?

r

?

1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

s

r

b

1

s

r

b

1

0

0

0 0

0

?

0
0

?

0
0

?

0
0

?

0
0

?

0
0

?

0
0

?

0

1 1

?

1

1
?

1

1
?

1

1
?

1

1

1

1

i + 1

i + 1

i + 1

i + 1

s

s

c

a

n

0 s

c

a

n

0 s

c

a

n

0 s

c

a

n

0 s

c

a

n

0 s

c

a

n

0 s

s

s

*a

*n

0 s

*a

*n

0 s

*a

*n

0 s

s

s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

s

$

*u

*u

1 s

$

*u

*u

1 s

$

*u

*u

1 s

$

*u

*u

1 s

$

*u

*u

1 s

$

$

$ $

$ $

$ $

$ $

$ $

$ $

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0
z

z

z

n

u

0 z

z

n

u

0 z

z

n

u

0 z

z

n

u

0 z

z

n

u

0 z

!

!

?

?

?

u

1

1 ? ?

u

1

1 ?

?

u

1

1 ?

!

!

!

!

!

?

?

#

*u

*1

1 ?

!

!

!

!

!

!

!

?

?

x

x

x

xx

0

0

a

a

?

?

*a

*0

0 ?

*a

*0

0 ?

!

!

x

x

x

xx

0

0

a

a

e

i

1

e

e n  1–

i + 1

e

d c n  1–

i

0aS

d c

0a

e

e

e

e

e

e

e

e

e

e

e

e

e

d d

d

c cd

c

5

5c

1

2

1

2

3

2

3

4

3

4

5

4

0

1

00

a

a 0aS a

z

z

c

u

a

1 z

c

u

a

1 z

c

u

a

1 z

c

u

a

1 z

c

u

a

1 z

c

u

a

1 z

$

$

r

$

r

$

r

$

r

$

r

$

r

$

z

z

*u

*a

1 z

*u

*a

1 z

*u

*a

1 z

*u

*a

1 z

*u

*a

1 z

c

c

c

c

*n

*n

0 c

*n

*n

0 c

c

c

c

c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

0 00 01 11 1

1 1

1 11 1
halt

halt ??? ??? ?? ?? ??

q 10

q 01

q 02

q 13

q 11

0

1

0

00

1

1

1

0

0

0

0

0

0

0

0

0

halt

0 00 0

0 000 00

1 11 10 01 1

A

A

A
B

B

B

1 1

1 11

2 2

2

3 3

3 33

4 4

4 44

5 5

7

5
5

6 6

6

7 7
8 8
9 910 1011 11

16 16
14 1413 13

12 1215 15
17 17

5
?

? ?
?

6
6

22

A0

A0

B0 B0

B0

A1

A1

B1

X1

Y1

X0 Y0

S

S

1 12 2
3 3
4 4
5 56 6

7 7
8 8
9 910 1011 11

16 16
14 1413 13

12 1215 15
17 17A0 B0

A1

(b) t0 is above and left of
t2.

Figure 10 If a tile binds cooperatively, then it must do so according to one of these cases (we
omit rotationally symmetric cases).

assume that the seed tile is placed at (2, 0). We can use a case analysis to show that the
seed tile cannot appear more than once in α and the same holds true for the tile placed at
position (0, n− 1) since the latter tile has at most one strength-2 bond. If the tile placed at
the point (2, 0) appears in {0} × {0, . . . , n− 2}, then it is possible to place a tile at a point
not in Ln as it necessarily has a strength-2 bond on its west side to which some tile may
bind. The final case is that ~a and ~b are in {0} × {0, . . . , n− 2}, whence the segment of tiles
between ~a and ~b may be repeated infinitely, which is a contradiction. Therefore, t0 and t1
cannot appear elsewhere in α and a case 1 transformation is safe.

Case 2. If, for all ~x ∈ dom α and for every unit vector ~u ∈ {(0, 1), (−1, 0)}, strα(~x) (~u) >
0⇒ strα(~x) (~u) = 2, then let T ′α = {α (~y) | ~y ∈ dom α}. Intuitively, this (case 2) transforma-
tion leaves all the tile types present in α unchanged.

It is worthy of note that case 2 transformations do not conflict with case 1 transformations
because the latter only modifies (at most two) tile types that interact with (at most one)
strength-1 bond. Such tile types are simply not present in case 2 transformations. Therefore,
case 2 transformations cannot accidentally add tile types that were previously removed in a
case 1 transformation.

If we let T ′ = (T ′, σ, 2), then it is easy to see that |T ′| = |T | and Ln self-assembles in T .
Furthermore, for every α ∈ A[T ], for all ~x ∈ dom α, α (~x) initially binds with strength at
least 2, whence we can perform the following (final) transformation on T ′.

Finally, construct a new tile set T ′′ where T ′′ consists of every tile type t ∈ T ′ with the
strength of every strength-2 glue of t set to 1 and all strength-1 glues set to 0 (all labels remain
unchanged). Then Ln self-assembles in T ′′ = (T ′′, σ, 1) but |T ′′| ≤ |T ′| ≤ |T | < n+3 < n+5,
which contradicts Lemma 2.8. J

It is natural to wonder if a O(1) separation between the aTAM and 2HAM is the best we
can do. We will explore the answer to this question further in the following subsection.

B.1.2 Staircases
I Theorem 3.2. For all n ∈ N, CaTAM (Sn) = Ω

(
n

logn

)
and C2

2HAM (Sn) = O
(

logn
log logn

)
.

I Lemma 2.12. For all n ∈ N, CaTAM (Sn) = Ω
(

n
logn

)
.

Intuitively, the proof idea is as follows. We first observe that Sn is simply a series of
width-n “stair steps” (or vertical rectangles) that are held together by two-tile connector-
columns. Next, we note that the tiles that make up certain connector-columns in Sn must
“communicate” cooperatively with one another in order for assembly of the staircase to
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proceed. We prove that, if |T | < n
2(log 2n+4) , then there must exist two identical connector-

columns, spaced sufficiently far apart, such that the “taller” connector-column is tall enough
so that it could be used to force the “shorter” (identical) connector column to place tiles
either too far above or too far below–in either case growing outside of–Sn.

Proof. Let T = (T, σ, τ) be any singly-seeded TAS in which Sn self-assembles. Assume for
the sake of contradiction that |T | < n

2(log 2n+4) . We will show that it is always possible for T
to place some tile at a location ~x 6∈ Sn.

First, we define some notation. Let C−i = ((n+ 1)i+ n, 0) and C+
i = ((n+ 1)i+ n, i+ 2).

Let Ci =
{
C−i , C

+
i

}
. We refer to the set Ci as the ith connector (column). The length of

the (vertical, one-tile-wide) gap of Ci is defined as g(i) = i+ 1.
If ~x, ~y ∈ dom α such that every path in the binding graph Gα from the seed to ~y goes

through ~x, then we write ~x ≺~α ~y and say that ~y strictly depends on ~x in ~α. Intuitively, if ~y
strictly depends on ~x in ~α, then ~x is a kind of “pinch-point” through which all information
from the seed to ~y must flow (in ~α).

We say that a point ~x ∈ Ci is ambitious in ~α if (1) for all ~y ∈ Ci, ~x 6= ~y ⇒ i~α(~x) < i~α (~y)
(2) there exists a point ~z = (p, q) ∈ Sn such that ~x ≺~α ~z and (3) q =

⌊
g(i)

2

⌋
. In other words,

an ambitious location (at which a connector tile is placed) is one that can unilaterally grow
at least half way “up” (or “down”) toward its “partner” connector tile. It is easy to see that
for every 0 ≤ i < 2n, there exists ~x ∈ Ci such that ~x is ambitious in ~α.

From this point on, let ~α be some assembly sequence in T with result α satisfying
dom α = Sn such that, for all i ∈ N, if C−i is ambitious, then i~α

(
C−i
)
< i~α

(
C+
i

)
. If ~α is an

assembly sequence in T then the ~α-index of ~x in ~α, denoted as i~α (~x), is the assembly step
at which any tile is first placed at location ~x by ~α.

Now consider a sequence of points ~x0 ∈ C20−1, ~x1 ∈ C21−1, ~x2 ∈ C22−1, ~x3 ∈ C23−1, . . . , ~xn−1 ∈
C2n−1−1 such that, for all 0 ≤ i < n, ~xi is ambitious in ~α. Since |T | < n

2(log 2n+4) , it
must be the case that, in the sequence α( ~x0), α( ~x1), . . . , α (~xn−1) of n tiles types, at least
2(log 2n+ 4) + 1 tile types must be the same tile type. Of course, this means that at least
log 2n + 4 of these tiles must be to the east (west) of the seed of T . Of these (at least)
log 2n+ 4 tiles that are east (west) of the seed, consider (the) three tiles such that the points
at which they are placed, say ~xr, ~xs and ~xt, satisfy r ≥ 0 and

r + log 2n+ 3 < s < t < n. (1)

Assume, without loss of generality, that (1) the points ~xr, ~xs and ~xt are east of the seed tile
and (2) ~xr ∈ C−2r , ~xs ∈ C−2s and ~xt ∈ C−2t . Other cases can be handled using similar logic.

Recall that α (~xr) = α (~xs). If ~xs strictly depends on ~xr in ~α, then we could define an
infinite (repeating) assembly sequence ~̂α in T starting from ~xr. Therefore, ~xs cannot strictly
depend on ~xr in ~α (and neither ~xt on ~xs).

Letm ∈ N be the number of tiles that strictly depend on ~xs in ~α and define ~y0, ~y1, . . . , ~ym−1
such that, for all 0 ≤ j < m, ~xs ≺~α ~yj and i~α (~y0) < i~α (~y1) < · · · < i~α (~ym−1). We will now
construct a new assembly sequence ~̂α in T as follows. Let ~̂α be such that ~̂α behaves exactly
like ~α up until ~α places a tile type at ~xr, at which point, for all 0 ≤ j < m, ~̂α places the tile
type α (~yj) at ~yj − (~xs − ~xr) and in order. Note that ~̂α is a valid assembly sequence because
(1) for all 0 ≤ j < m, ~xs ≺~α ~yj (2) α (~xr) = α (~xs) and (3) immediately after ~̂α places the
tile α (~xs) at ~xr, ~̂α has yet to place a tile at any location that is north or east of ~xr (this
condition holds because ~xr is assumed to be ambitious and is therefore the first location in
its column to receive a tile).
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Since ~xs is ambitious, it must be the case that there exists 0 ≤ ĵ < m such that, if
~yĵ = (p, q), then q =

⌊
g(2s−1)

2

⌋
and satisfies

q =
⌊
g (2s − 1)

2

⌋
= 2s−1

> 2r+2+log 2n (by (1))
> 2r+22log 2n

≥ 2r+2 + 2log 2n

> (2r + 3) + 2n.

Notice that the height of the stair step immediately east of C2r−1 is exactly g (2r − 1)+n+3
(the additive n term accounts for the n× n square at the base of each stair step). Moreover,
the height of the stair step that is n stair steps east of the stair step immediately east of
C2r−1 is exactly

g (2r − 1 + n) + n+ 3 = 2r + 2n+ 3. (2)

Suppose that there exists 0 ≤ j < m such that ~yj ∈ Cmax{2s+n,2t}−1 but, for all
0 ≤ j′ < j, if ~yj′ = (p, q), then q < 2r + 2n + 3 <

⌊
g(2s−1)

2

⌋
. If 2s + n < 2t, then there

exist indices 0 ≤ j′′ < j′′′ ≤ j′ such that ~yj′′ = C−j′′ , ~yj′′′ = C−j′′′ and α (~yj′′) = α (~yj′′′)
because |T | < n

2(log 2n+4) <
n
2 < n. On the other hand, if 2s + n ≥ 2t, then let j′′ and j′′′

be such that α (~yj′′) = α (~xs) = α (~xt) = α (~yj′′′). In either case, since ~yj′ = (p, q) such that
q < 2r + 2n + 3 <

⌊
g(2s−1)

2

⌋
, it must be the case that ~yj′′ ≺~α ~yj′′′ , which means that we

could define an infinite repeating assembly sequence. Intuitively, this case corresponds to
the situation when ~̂α tries to grow “east” too far, as it mimics ~α, before it grows “up” (or
“down”) to cooperate and since |T | < n, ~̂α cannot grow too far east without cooperating
otherwise it will be possible to infinitely repeat some part of ~̂α.

If there exists 0 ≤ j < m such that ~yj ∈ Cmax{2s+n,2t}−1 and there exists 0 ≤ ĵ < j such
that, if ~yĵ = (p, q) with q satisfying q ≥

⌊
g(2s−1)

2

⌋
> 2r + 2n+ 3 (because ~xs is ambitious in

~α), then ~̂α will place a tile at some point ~yĵ − (~xs − ~xr) 6∈ Sn. In other words, in this case, ~̂α
will grow “up” (or “down”) too far, as it mimics ~α, before it is able to grow far enough “east”
and into a taller stair step.

Therefore, it must be the case that 2s + n < 2t and, for all 0 ≤ j < m, ~yj 6∈ C2s−1+n.
Then there exists 0 ≤ ĵ < m such that, if ~yĵ = (p, q), then q ≥

⌊
g(2s−1)

2

⌋
> 2r + 2n+ 3. But

then 2 ensures that ~̂α will place a tile at some point ~yĵ − (~xs − ~xr) 6∈ Sn. J

As stated in the following Lemma, we achieve a nearly exponential separation in tile
complexity between the aTAM and the 2HAM.

I Lemma 2.13. For all n ∈ N, C2
2HAM (Sn) = O

(
logn

log logn

)
.

Proof sketch. It suffices to show that, for all n ∈ N, there exists a 2HAM TAS Tn = (Tn, 2)
in which Sn self-assembles. We will actually prove a slightly stronger result: there exists
a 2HAM TAS that uniquely produces Sn. Let Tn = (Tn, 2) be a 2HAM TAS, where Tn is
defined as the union of several logical groups of tile types.

To construct the first logical group, we simply modify the optimal square construction of
Adleman, Cheng, Goel, Huang and Moiset de Espanés [2] to work at temperature τ = 2 by
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utilizing the temperature τ = 2 optimal encoding scheme of Soloveichik and Winfree [19].
We further modify the optimal square construction so that the tile types shown in Figure 11
may nondeterministically attach to the topmost row of the uniquely assembled n× n square.
This group of tile types contains O

(
logn

log logn

)
unique tile types.

The remaining logical groups of tile types are shown in Figures 11, 12 and 13.
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Figure 12 The (green) counter tile types implement an optimal binary counter modified so that
only special tile types are allowed to attach along the rightmost edge of the counter, i.e., the tile
types whose north glues are prefixed with ‘*’. The red tile type is hard coded to attach to the left of
the second-to-last row (from the top) of the stair step structure. The red (connector) tile type is also
designed to attach to the right of the topmost row of a stair step structure whose height is exactly
one less than the height of the stair step to which the red tile type attaches via the strength-2 glue.
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Figure 13 The (blue) topmost row tile types “cap” the stair step structure.

See Figure 14a for a high-level example of two “consecutive” stair steps. Note that, in
the 2HAM, individual stair steps may assemble completely and independently of other stair
steps. By the way the purple tile types (see Figure 11) nondeterministically attach to the
topmost row of an n× n square, there is a one-to-one correspondence between stair steps
that are able to form and strings over the set {0, 1}n. Thus, in our construction, we have
2n total stair steps and each stair step has some height h ∈

{
3, . . . , 2h + 2

}
. By the careful

placement of the red tile types (see Figures 11 and 12), a stair step of height h may bind to
the left side of a stair step if and only if the latter has height h+ 1. Similarly, a stair step of
height h may bind to the right side of a stair step if and only if the latter has height h− 1.
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(a) Two consecutive stair steps coming
together.
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(b) A completed stair step with details from the optimal square
construction omitted.

Figure 14 An example of two consecutive stair steps coming together and a completed stair step.
The grey portion represents the modified optimal square construction of [3].
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Thus, Tn = (Tn, 2) uniquely produces Sn. Furthermore, each logical group of tile types
in our construction consists of O(1) unique tile types except for the group that contains the
modified version of the optimal square construction, which consists of O

(
logn

log logn

)
unique

tile types, whence |Tn| = O
(

logn
log logn

)
. J

I Theorem 3.3 (“Busy Beaver” staircase). Let M = (Q, {0, 1}, 0, {0, 1}, δ, q0, F ) be a Turing
machine and x ∈ {0, 1}∗ such that M halts on x. Then C2

2HAM
(
S2t(x)+|x|+2

)
= O(|Q|+ |x|),

where t(x) denotes the running time of M on input x.

Intuitively, our construction for Theorem 3.3 works as follows. We first build a (possibly
really really big) square using a modified version of the “Busy Beaver” Turing machine
simulation construction for Theorem 5 in [17]. We modify this construction so that, to the
top of the completed Turing machine simulation square, tiles that represent either a 0 or a 1
may attach nondeterministically. This topmost row of bits is a seed for for a binary counter,
which counts from the nondeterministically chosen starting value, say x, up to 2n+1 − 1,
where n is the width of the Turing machine simulation square (note that n depends on the
running time of the Turing machine being simulated). The (possibly very thick) stair steps
attach to each other in a two-handed fashion via two connector tile types that are located at
opposite corners of each stair step.

Proof sketch. It suffices to show that, for all n ∈ N, there exists a 2HAM TAS Tn = (Tn, 2)
in which S2t(x)+|x|+2 self-assembles. We will actually sketch a proof of a slightly stronger
result: there exists a 2HAM TAS that uniquely produces S2t(x)+|x|+2.

First, we hard code the initial configuration of some (perhaps very small) Turing machine
M on some input x ∈ {0, 1}∗ so that it uniquely self-assembles into a row of tiles (the three
tiles labeled with ‘–’, ‘q0’ and ‘–’ respectively in the center of Figure 15a). Then we use
a standard aTAM Turing machine simulation (a modified version of the construction for
Theorem 5 in [17]) to build a seed “square.”

Once the Turing machine simulation completes, we use special (purple) “seed row” tile
types (see Figure 11 for detailed tile type definitions) that attach nondeterministically to the
final halting row of the Turing machine simulation. In doing so, they encode an arbitrary
binary string w ∈ {0, 1}2t(x)+|x|+2 along the top of the seed square (see Figure 15a). Finally,
we can use the tile types shown in Figures 12 and 13 to build the rest of the stair step directly
on top of the row of purple seed row tiles (see Figure 15b). Consecutive stair steps bind in
exactly the same fashion as they do in the construction for Theorem 2.13. J

B.2 Infinite Shapes
I Theorem 3.5. The infinite staircase S∞ finitely self-assembles in the 2HAM.

Proof sketch. Our proof is by construction, i.e., we will describe a 2HAM TAS T = (T, 2)
in which S∞ finitely self-assembles. Our tile set T simply consists of two logical groups
of tile types, which are shown in Figures 16a and 16a respectively. Intuitively, S∞ finitely
self-assembles in T because if one simply assumes that the yellow seed tiles may only grow
finite rows of tiles, then the construction works exactly the same as the construction for
Theorem 2.13. See Figure 17 for an example of two consecutive square stair step structures
coming together to bind with exactly strength 2. J

Note that S∞ does not self-assemble in T in the 2HAM because the yellow seed row tile
types (see Figure 16a) could produce an assembly which is an infinite horizontal line which



S. Cannon, et. al. 27

# #

?*?????????? ?*?

#

r

?*

1@@

u

?

1@@

u

?

1@@

u

?

1@@

u

?

1 @

n

?

0
u

?

1@@

n

?

0@@

n

?

0@@

n

?

0@@

n

?

0 @@

n

?

0@#

*n

*?

0

halt ??? ??? ?? ?? ??

q 10

q 01

q 02

q 13

q 11

0

1

0

00

1

1

1

0

0

0

0

0

0

0

0

0

(a) Formation of the seed block on top of which an
arbitrary binary string is encoded. In this example,
the input string is λ. We pad the input string to the
left and right with blank characters. We use generic
filler tiles to fill in the dark grey region of the square.

00 00 11 11

1 1

11 11
halt halt

00 00

0 000 00

11 1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1 00 11

(b) Two consecutive (thick) stair steps coming together.

Figure 15 Aside from the formation of the seed blocks, the construction proceeds as it does in
Theorem 2.13.
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Figure 16 The two logical groups of tile types that comprise the entirety of our tile set T .
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Figure 17 An example of two consecutive square stair steps coming together.
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does not contain a yellow tile with a “?” and thus is terminal as a single, infinite row of
tiles. It does not seem obvious whether S∞ self-assembles in the 2HAM (in some other tile
assembly system), but it would be interesting to know the answer to such a question. In any
case, we have the following impossibility result for S∞ in the aTAM.

I Theorem 3.6. The infinite staircase S∞ does not finitely self-assemble in the aTAM.

Proof. Let T = (T, σ, τ) be any aTAM TAS and assume for the sake of contradiction that
S∞ finitely self-assembles in T . We will derive a contradiction by showing that there is some
finite producible assembly α̂ ∈ A[T ] such that dom α̂− S∞ 6= ∅, which violates a condition
of finite self-assembly.

Recall that ambitious, strictly depends on, and the function g are all defined in the
proof of Lemma 2.12. Let C−i =

(
(i+1)(i+8)

2 − 1, 0
)
and C+

i =
(

(i+1)(i+8)
2 − 1, i+ 2

)
. Let

Ci =
{
C−i , C

+
i

}
. Recall that the ~α-index of ~x in ~α, denoted as i~α (~x), is the assembly step

at which any tile is first placed at location ~x by ~α. From this point on, let ~α be some
assembly sequence in T with result α satisfying dom α = S∞ such that, for all i ∈ N, if C−i
is ambitious, then i~α

(
C−i
)
< i~α

(
C+
i

)
.

Choose r, s ∈ N with r > 0 and s > 25 such that the locations ~xr = C−r and ~xs = C−s
are east of the seed tile and satisfy (1) α (~xr) = α (~xs) (2) ~xr and ~xs are ambitious (3)
for every point ~y such that ~xs ≺~α ~y, i~α(~y) < i~α

(
C−s+1

)
and i~α(~y) < i~α

(
C+
s+1
)
, and (4)

g(s) > 5 (g(r) + 3). Intuitively, since S∞ is infinite and |T | <∞, it is easy to see that we can
choose locations ~xr and ~xs that satisfy conditions (1), (2) and (4). Furthermore, condition
(3) says that, at some point, an assembly sequence that is building S∞ must “cooperate”
(within some square) through the points C−i and C+

i before proceeding east to the next
square, because if it did not, or if such an assembly sequence were to “cooperate” like this but
only in finitely many squares, then it would always be possible to define a “rogue” assembly
sequence that places a tile outside of S∞. Note that we may assume that ~xr = C−r and
~xs = C−s (as opposed to C+

r and C+
s ) because those other cases may be handled using similar

logic.
A vague sketch of the proof idea is depicted in Figure 18.
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Figure 18 Proof idea of Theorem 3.6. The black tiles represent the locations ~xr and ~xs respectively.
The red lines represent (ambitious) placements of tiles by some assembly sequence. The rightmost
squiggly red line represents the placement of some tile type at the point ~y as defined in condition (3)
of the criteria for ~xr and ~xs. The leftmost squiggly line is an assembly sequence that mimics the
rightmost squiggly line assembly sequence.

By condition (4) and the fact that, for all x ∈ N, g(x) = x+ 1, it follows that

g(s) > 5 (g(r) + 3)⇔ r <
s− 19

5 . (3)

Let m ∈ N be the number of locations that strictly depend on ~xs and define the locations
~y0, ~y1, . . . , ~ym−1 such that, for all 0 ≤ j < m, ~xs ≺~α ~yj and i~α (~y0) < i~α (~y1) < · · · < i~α (~ym−1)
We will now construct a new assembly sequence ~̂α in T as follows. Let ~̂α be such that ~̂α
behaves exactly like ~α up until ~α places a tile type at ~xr, at which point, for all 0 ≤ j < m,
~̂α places the tile type α (~yj) at ~yj − (~xs − ~xr) and in order. Note that ~̂α is a valid assembly
sequence because (1) for all 0 ≤ j < m, ~xs ≺~α ~yj (2) α (~xr) = α (~xs) and (3) immediately
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after ~̂α places the tile α (~xs) at ~xr, ~̂α has yet to place a tile at any location that is north
or east of ~xr (this condition holds because, by property (2) in the criteria for ~xr and ~xs, ~xr
is assumed to be ambitious and is therefore, by the definition of ~α, the first location in its
column to receive a tile).

Since, for every point ~y such that ~xs ≺~α ~y, it is the case that ~y 6∈ Cs+1, there must be an
index ĵ such that ~yĵ is located in the square immediately east of the column Cs such that, if
~yĵ = (p, q), then

g(r) + 3 +
⌈
g(s) + 3
g(r) + 3

⌉
= r + 4 +

⌈
s+ 4
r + 4

⌉
< r + 4 + s+ 4

r + 4 + 1

<
s− 19

5 + 4 + s+ 4
5 + 5

5 (by (3) and assuming r ≥ 1)

= s+ 1
5 + s+ 9

5 = 2s+ 10
5

<
s+ 1

2 − 1 (for s > 25)

<

⌊
s+ 1

2

⌋
=
⌊
g(s)

2

⌋
< q.

Note that, by the definition of S∞, the height of the square that is
⌈
g(s)+3
g(r)+3

⌉
squares to

the east of ~xr is at most r+ 4 +
⌈
s+4
r+4

⌉
= g(r) + 3 +

⌈
g(s)+3
g(r)+3

⌉
. Therefore, by the above chain

of inequalities, ~̂α will have no choice but to grow too far “up”, i.e., at least to the point (p, q),
and hence out of S∞, even if it tries to grow “east” as far as it possibly can (and into a taller
square) before growing “up” as it mimics ~α. After all, ~α can only grow east from ~xs by at
most s points (because, by condition (3) in the criteria for ~xr and ~xs, it cannot leave the
square immediately east of Cs without first cooperating with C+

s ), which means that the
number of squares through which ~̂α may grow east from ~xr is at most

⌈
s+4
r+4

⌉
. J

C Omitted proofs for section 4: Simulating aTAM with 2HAM

Let T = (T, σ, τ) be an aTAM system, and let S = (T ′, S, 4) be the 2HAM system that
simulates it. Assume that σ is a single tile, called the seed tile s, and that S is the initial
state in which every supertile is a single tile. We now describe the structure of S and how it
is obtained from T .

C.1 Inward and outward glues
In order to prevent unwanted attachment, every instance of a glue g in S is assigned one
of two labels, "inward" or "outward." Inward and outward glues appear as arrows pointing
inward or outward from a tile in the figures throughout this section. We enforce that all
glues in S only bond in complementary inward-outward pairs; for example, an outward west
glue will attach to an inward east glue of the same type but not to an outward east glue.
This can be easily implemented for each glue g in S using four glues corresponding to the
four directions each glue arrow may "point." For instance, an outward glue g on the west
side of a tile is a west-pointing gW glue, while an inward glue of the same type on the north
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Figure 19 The internal gluing pattern for bricks and mortars. Dark arrows represent glues of
strength 4, and light arrows represent glues of strength 2.

side of a tile is a south-pointing gS glue. The following lemma shows that this correctly
implements inward-outward glue pairs.

I Lemma 3.1. Replacing each instance of a glue g in S with one of the four direction-based
glues gS, gN , gE, gW corresponding to the inward/outward pointing direction assigned to the
instance results in exactly inward-outward glue pair bonding.

Proof. Any inward-outward glue pair on opposite sides of two tiles point in the same direction
and so are the same glue, so the direction-based glue system bonds whenever the single-glue
system was able to bond. Any pair of glues not on opposite sides cannot bond by geometry,
while a pair of glues on opposite sides whose inward/outward orientations are the same
point in opposite directions and thus are different glues and also cannot bond. So, the
direction-based system only bonds when the single-glue system was able to. J

Intuitively, in S each piece attaches to a partially completed assembly at its own inward
glues, leaving only exposed outward glues to which more pieces can attach.

C.2 Bricks
For each tile t ∈ T , we can simulate t in S by a set of 3× 3 brick assemblies, one for each
minimal set of glues sufficient for t to attach to an existing assembly. All glues between tiles
within a brick are unique across S. Figure 19 depicts the gluing pattern for the interior of
any brick, which clearly implies the following two lemmas.

I Lemma 3.2. If a brick B in S is partially assembled and any two tiles are present, then
the center tile is present as well.

Proof. Clearly follows from Figure 19 . J

I Lemma 3.3. For any partially assembled brick B in S in which the center tile is present,
all exposed glues internal to the brick are outward glues.

Proof. Clearly follows from Figure 19 . J

Lemma 3.2 will be used to ensure the uniqueness of any macrotile; once the center tile of the
brick is present, it completely determines the identity of the macrotile. Lemma 3.3 will be
used to prove that all exposed glues on any partially completed assembly are outward glues.

Given any tile t ∈ T , consider every subset S of glues on t with total strength greater
than τ such that the removal of any glue from S yields a total glue strength less than τ . For
each such minimal glue set S a brick BS in S is created such that all glues on the sides of
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Figure 20 Filled arrows represent glues of strength 2, unfilled arrows represent glues of strength
1. (a) an aTAM tile t ∈ T with minimal glue set S = {a}; (b) the brick BS in S generated by S; (c)
a location where BS could attach to a partially built assembly.
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Figure 21 (a) an aTAM tile t ∈ T with minimal glue set S = {a, b}; (b) the brick BS in S
generated by S; (c) a location where BS could attach to a partially built assembly; note not all
possible attachment points are used.

BS corresponding to glues in S are inward glues while all glues on other sides are outward
glues. For any given tile t ∈ T , there will be at most six such bricks.

The specific types and strengths of external glues on bricks in S are constructed as follows.
Let t ∈ T . For each glue a on one side of t in a minimal glue set S corresponding to BS ,
there are inward glues a8, a9, and a10 in clockwise order on the corresponding side of BS .
All other glues b have outward glues b1 and b2, both with strength 2, with b2 clockwise from
b1. For a minimal glue set {a} of size 1, the glue a8 has strength 2, while a9 and a10 have
strength 1 (see Figure 20). For a minimal glue set {a, b} of size 2, glues a8 and b8 have
strength 2, while glues a9, a10, b9, and b10 have strength 0, i.e. do not exist (see Figure 21).
For a minimal glue set {a, b, c} of size 3, glues a9, b9, c9, and c10 have strength 1, while a8,
a10, b8, b10, and c8 have strength 0 (see Figure 22). For a minimal glue set {a, b, c, d} of size
4, glues a9, b9, c9, and d9 have strength 1, while a8, a10, b8, b10, c8, c10, d8, and d10 have
strength 0 (see Figure 23). See Figure 24 for an example of a tile t ∈ T and the two bricks it
generates in T based upon its two minimal glue sets. In these and all subsequent figures in
this subsection, filled arrows represent glues of strength 2, unfilled arrows represent glues of
strength 1, while glues of strength 0 are not shown.
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Figure 22 (a) an aTAM tile t ∈ T with minimal glue set S = {a, b, c}; (b) the brick BS in S
generated by S; (c) a location where BS could attach to a partially built assembly; note not all
possible attachment points are used.
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Figure 23 (a) an aTAM tile t ∈ T with minimal glue set S = {a, b, c, d}; (b) the brick BS in S
generated by S; (c) a location where BS could attach to a partially built assembly; note not all
possible attachment points are used.
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Figure 24 Ordered pairs denote a glue and its strength. (a) A tile t ∈ T , with minimal glue sets
S1 = {(b, τ)} and S2 = {(a, τ − 1), (c, 1)} (b) Brick B1 in T representing tile t, generated by the
minimal glue set S1 (c) Brick B2 in T representing tile t, generated by the minimal glue set S2
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C.3 Mortar pieces
In any 5×5 macrotile assembly in S representing an aTAM tile t ∈ T , the brick is surrounded
by a mortar one tile thick. This mortar consists of both single-tile mortar tile assemblies
and 3× 1 and 1× 3 mortar rectangle assemblies with internal glues of strength of strength 4.
However, mortar pieces - both tiles and rectangles - cannot attach to each other or to bricks
unless other tiles are present. See Figure 19 for the general structure of the mortar assemblies
around any brick. Any mortar rectangle must attach to an assembly at exactly two glues, and
the following lemma will later be used to prove that even if a partially completed rectangle
attaches to an assembly, all exposed glues are outward glues.

I Lemma 3.4. If two tiles of a mortar rectangle are present, then all exposed glues internal
to the rectangle are outward glues.

The construction for mortar pieces adjacent to a brick with a null glue is shown in part
(a) of Figure 25. Note null glues will never be part of any minimal glue set S, so will always
be represented by outward glues on a brick BS . Outward glue z and its complementary
inward glue are generic glues that appear on many mortar pieces.

The glue structure of adjacent mortar pieces for a glue g of strength k ≥ 1 on the right
face of an aTAM tile t is shown in part (b) of Figure 25 if g is an outward glue on a generated
brick B1, and in part (c) of Figure 25 if g is an inward glue on a generated brick B2. For
glues on other faces of tile t, this construction is simply rotated.

I Lemma 3.5. No pair of brick, mortar rectangle, and mortar tile assemblies either partially
or fully assembled can attach to each other unless one of the assemblies is a proper subassembly
of some larger assembly.

Proof. First consider attachment involved glues on the interior of bricks or mortar rectangles.
All glues on the interior of bricks and mortar rectangles are only shared by other bricks
and mortar rectangles. Moreover, by Lemmas 3.4 and 3.5, all partially assembled bricks
and mortar rectangles have exclusively outward glues. So glues internal to bricks or mortar
rectangles do not bond with any glues found on the interior or exterior of other bricks, mortar
rectangles, or tiles.

Next, consider attachment involving only glues on the exterior of bricks, mortar rectangles,
and mortar tiles. All such glues have strength less than 3. This implies that two matching
glues are necessary for attachment. Consider the 6 possible combinations of assembly pairs:

Between any two mortar rectangles, there is at most one common glue (g5).
Any translations of a mortar rectangle and mortar square has at most one pair of adjacent
tiles, and thus at most one bond.
Any translations of two mortar squares has at most one pair of adjacent tiles, and thus
at most one bond.
Between a brick and a mortar rectangle, there is at most one common glue of strength 2
(∅1, g2, or g8) and one common glue of strength 1 (g9).
Between a brick a a mortar square, there is at most one common glue (∅2, g2, or g10).
An inward (outward) glue on a brick only has a complementary outward (inward) glue on
mortar rectangles and mortar tiles, since the inward glues g1, g2 and the outward glues
g8, g9 only appear on mortar rectangles and mortar tiles. So no translation of a pair of
bricks can have any positive strength bonds.

In any case, there is never a glue set of strength at least 4 between any pair of mortar
squares, mortar rectangles, or bricks. So no pair of these assemblies can attach unless one of
the assemblies is a proper subassembly of some larger assembly. J
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Figure 25 (a) A tile t ∈ T with a null (strength 0) glue on its right face and corresponding brick
and mortar pieces in the 2HAM simulation. (b) A tile t ∈ T with a glue not in the minimal glue
set S on its right face and corresponding brick and mortar pieces in the 2HAM simulation. (c)
A tile t ∈ T with a glue in the minimal glue set S on its right face and corresponding brick and
mortar pieces in the 2HAM simulation. For this example, the minimal glue set is the singleton set
containing g.
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Figure 26 (a) A brick B in S corresponding to tile t ∈ T with mortar completed on its right
side. (b) At this point, a mortar rectangle can attach to the assembly. (c) Next, a mortar square
can attach. (d) At this point, a new center brick could attach with a strength 4 attachment via
glues g8, g9, and g10.

The previous lemma will be used to prove that these macrotile pieces in S can be used to
simulate the seeded assembly process of T .

C.4 The assembly process of S
The seed tile s of T is represented by a brick Bs in S with all outward glues, where outward
glues and adjacent mortar pieces are created as above; there may be multiple copies of this
seed brick. However, this construction is modified slightly so that one glue g1 or g2 is of
strength 4 instead of strength 2. This means that adjacent mortar pieces can attach to Bs
without any other tiles present, and this starts the process of assembling macrotiles.

Once one side of the mortar surrounding a brick is completed, the mortar pieces for the
adjacent brick can attach; see Figure 26. After this process, there are exposed outward glues
available for a new center brick to possibly attach, simulating an exposed glue in T . A brick
will attach precisely when all inward glues (i.e. a complete minimal glue set) on a brick
match the exposed glues on adjacent mortar pieces. Once a brick has attached, all remaining
adjacent mortar pieces can attach in clockwise order, completing the macrotile; see Figure
27. Once one outward side of the macrotile is completed, new adjacent mortar pieces can
then begin to attach, and this process repeats.

Note that if a brick attaches to a partially completed assembly, then it must have attached
at two or more tiles, meaning the center of the brick is also present by Lemma 3.2. This
uniquely determines which macrotile is present at this location in the assembly. Moreover,
if a mortar rectangle attaches to the partially completed assembly, then it must attach at
exactly two of its tiles, including the middle of its three tiles, and the rectangle is uniquely
determined.

C.5 Maintaining invariants in S
I Lemma 3.6. All exposed glues on any assembly containing a seed brick Bs are outward
glues.

Proof. We proceed by induction. The exposed glues on all seed bricks Bs are all outward
glues by construction. Suppose that all exposed glues are oriented outward in some partially
completed assembly containing a seed brick. Any mortar piece or brick that could potentially
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Figure 27 (a) Partially completed mortar attaching to a center brick; (b) additional adjacent
mortar rectangles attach. (c) Next, mortar squares attach; note there may be outward glues that
are blocked by other pieces in the assembly. (d) The macrotile is completed.



38 Two Hands Are Better Than One (up to constant factors)

attach to this assembly must attach at its own inward glues. Inspection shows that the set
of exposed inward glues on any mortar piece or brick is minimal; the removal of any inward
glue from this set results in a total inward glue strength of less that τ . Thus if a mortar
piece or brick attaches to the assembly, it must attach at all of its inward glues, leaving no
inward glues exposed. This means that any glues exposed after this attachment must be
outward glues, maintaining the necessary invariant.

Additionally, if a partially built brick attaches to the assembly, it must attach at two or
more tiles and Lemmas 3.2 and 3.3 imply that all exposed glues are outward glues(see Figure
19). If a partially constructed mortar rectangle attaches to an assembly, then it must attach
at two separate tiles; in this case, Lemma 3.4 implies that any exposed glues internal to the
mortar rectangle will be outward glues (see Figure 19). So, even if a partially completed
version of some piece attaches, this invariant is maintained.

J

I Lemma 3.7. If a mortar piece is attached to a brick or to another mortar piece, then both
pieces are part of a partially built assembly containing a seed brick Bs.

Proof. Lemma 3.5 states that bricks and mortar pieces cannot attach to each other unless
other tiles are present. The only exception is a seed brick, which can attach to one adjacent
mortar piece without any other tiles present. So, every partially completed assembly involving
more than one mortar piece or one brick must include a seed brick Bs. J

I Theorem 4.1. Any aTAM system at τ ≥ 4 can be simulated by a 2HAM system at τ = 4.

Proof. Transform a given aTAM system T into a 2HAM system S at τ = 4 using the
construction described in this subsection. Define a 5-block replacement function R mapping
each supertile in S to the tile in T which generated the center tile of the supertile in the
construction.

By Lemmas 3.7 and 3.6 any assembly containing a combination of more than one brick,
mortar rectangle, or mortar tile contains exactly one seed brick. Thus for assemblies in A[T ]
of size 1, S has equivalent production and dynamics. Now suppose equivalent production
and dynamics hold for all assemblies in A[T ] up to n tiles.

For any assembly α ∈ A[S] with n + 1 tiles, supertiles mapping to empty tiles under
R may have mortar tiles and rectangles attached to adjacent supertiles. However, if the
supertile contains non-empty tiles in the center 3× 3 subassembly then the center tile must
be present by Lemma 3.2. So R∗ maps cleanly for all α. Moreover, any center tile of a
supertile added to an assembly α via R∗ to produce α′′ must be generated from a tile in T
that can attach to R(α′). So R∗(α′) ∈ A[T ]. So R has equivalent production.

Now consider dynamics. As previously stated, if the center 3× 3 subassembly of a 5-block
supertile is non-empty then the center tile of this region is non-empty. Producing a new
tile in an assembly in A[T ] is simulated in S by the addition of an assembly containing the
center block of a 5-block supertile. Define β to be an (n+ 1)-tile assembly in A[T ], a′ to be
an assembly in A[S] guaranteed to exist by the equivalent production of S, and a′′ to be α
with all possible mortar tiles and rectangles added to the 5-block supertile corresponding to
the tile added to α to produce β. Then β′ can be generated by adding a single assembly
containing the center tile of this block. Moreover, for any assemblies α′, β′ ∈ A[S], adding any
assembly to α′ to produce β′ implies adding a mortar tile, mortar rectangle, or subassembly
(not necessarily proper) of a brick. For any such addition, only one 5-block supertile has its
center block modified, so R̃(β′) is producable from R̃(α′) by the addition of at most one tile.
So R has equivalent dynamics. J
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Figure 28 Unfilled arrows represent glues of strength 1. (a) an aTAM tile t with minimal glue
set {a}; (b) the brick B in the 2HAM system generated by this minimal set; (c) a location where B
could attach to a partially built assembly.
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Figure 29 (a) an aTAM tile t with minimal glue set {a, b}; (b) the brick B in the 2HAM system
generated by this minimal set; (c) a location where B could attach to a partially built assembly.

I Theorem 4.2. Any aTAM system at τ ∈ {1, 2} can be simulated by a 2HAM system at
τ = 2.

Since minimal glue sets have at most 2 glues, τ = 2 is sufficient for determining when a
minimal glue set is sufficient to bond two assemblies.

Modifying the construction involves changing all strength 2 and 4 glues to strength 1
and 2 respectively, and modifying how bricks for minimal glue sets are generated. Because
minimal glue sets at τ = 2 contain at most 2 glues there are 2 cases, rather than 4, for
generating a brick based on a minimal glue set. See Figures 28 and 29 for constructing the
bricks in these cases.

We model aTAM systems at τ = 1 with equivalent aTAM systems at τ = 2 where each
glue is strength two instead of strength one, and apply the same construction to simulate
any aTAM system at τ = 1 with a 2HAM system at τ = 2.

The modification only changes the bricks generated for each tile. Since the aTAM system
being simulated is τ = 3, minimal glue sets have size at most 3. The three cases for generating
bricks for minimal glue sets of sizes 1,2, and 3 are seen in Figures 30, 31, 32.

I Theorem 4.3. Any aTAM system at τ = 3 can be simulated by a 2HAM system at τ = 3.
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Figure 30 (a) an aTAM tile t with minimal glue set {a}; (b) the brick B in the 2HAM system
generated by this minimal set; (c) a location where B could attach to a partially built assembly.
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Figure 31 (a) an aTAM tile t with minimal glue set {a, b}; (b) the brick B in the 2HAM system
generated by this minimal set; (c) a location where B could attach to a partially built assembly.

(a) (b) (c)

t a

b

c

d

B a9

d1d2

c9

b9
a8

a9

b9

b8

c9

c8

⇔
b10

a10

c10

Figure 32 (a) an aTAM tile t with minimal glue set {a, b, c}; (b) the brick B in the 2HAM system
generated by this minimal set; (c) a location where B could attach to a partially built assembly.
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D Omitted proofs for Section 5: Verification algorithms for aTAM
and 2HAM

D.1 Producibility verification
We will start out nice and easy:

Input: An aTAM system T = (T, σ, τ), or a 2HAM system T = (T, τ), and a T -assembly α
Output: Is α ∈ A[T ]?

Producibility verification is known to have a straightforward O(|α|) time solution for
aTAM systems. Doty has further shown that producibility verification for 2HAM systems
can be solved in time O

(
|α|4

)
[11]. Doty’s algorithm, at a high level, repeatedly attempts

to merge adjacent subassemblies of α whenever there is a strength-τ connection between
assemblies. If this process ends with the single assembly α, then α ∈ A[T ]. If not, α 6∈ A[T ],
i.e., α cannot be produced.

In the particular case of temperature τ = 1 2HAM systems, we can achieve a substantially
faster algorithm by taking advantage of the following lemma that states that the producible
and terminal assemblies of a 2HAM system are equal to all producible and terminal assemblies
of all corresponding aTAM systems in which each tile type of the 2HAM is considered as a
seed.

I Lemma 4.1. For any 2HAM system T = (T, 1) and s ∈ T , define the corresponding aTAM
system Ts = (T, σs, 1), where σs positions the single tile type s at the origin. The following
hold (up to translation):

1. (Same producibles) A[T ] =
⋃
s∈T A[Ts]

2. (Same terminals) A�[T ] =
⋃
s∈T A�[Ts]

Proof. Proof of part 1: First, note that for any s ∈ T , A[Ts] ⊆ A[T ]. Therefore,⋃
s∈T A[Ts] ⊆ A[T ].
Now consider some α ∈ A[T ]. We know α must be τ = 1-stable, and therefore is an

element of A[Ts] for any s tile type that exists in assembly α. Therefore, A[T ] ⊆
⋃
s∈T A[Ts]

Proof of part 2: Show that A�[T ] =
⋃
s∈T A�[Ts].

We first show that A�[T ] ⊆
⋃
s∈T A�[Ts]. Consider some α ∈ A�[T ]. We know from

part 1 that α ∈ A[Ts] for some s ∈ T . Further, α must be in A�[Ts] because if α could grow
with the attachment of a single tile from T , that same attachment is also valid in the 2HAM,
contradicting the assumption that α ∈ A�[T ].

To show
⋃
s∈T A�[Ts] ⊆ A�[T ], consider some α ∈

⋃
s∈T A�[Ts], with α ∈ A�[Ts] for

some s ∈ T . Since α ∈ A[Ts], we know from part 1 that α ∈ A[T ]. Towards a contradiction,
suppose α /∈ A�[T ]. This implies that α→T Y for some assembly Y . For this to be possible,
there must be a strength-1 attachment somewhere between a tile from α to a tile t from
Y − α. This single tile t alone can therefore attach to α in the aTAM at temperature τ = 1,
implying that α /∈ A�[Ts].

J

By leveraging Lemma 4.1 with the known O(|α|) producibility verification algorithm [3],
we achieve the following result.

I Theorem 4.2. The Producibility Verification problem can be solved in O(|α||T |) time in
the temperature τ = 1 2HAM.
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Proof. For an input 2HAM system T = (T, 1) and assembly α, run the O(|α|) time aTAM
producibility algorithm with input α and Ts = (T, σs, 1) for each s ∈ T , for a total run time
of O(|α||T |). If all runs verify that each Ts uniquely produces α, output yes. Otherwise
output no. The correctness of this algorithm follows from Lemma 4.1. J

D.2 Unique assembly verification
I Theorem 5.1. The UAV problem is co-NP-complete for 3D, temperature τ = 2 2HAM
systems that use only 2 separate planes of the third dimension.

Proof. This follows from Lemmas 4.3 and 4.4. J

I Lemma 4.3. The Unique Assembly Verification problem is in co-NP for 2HAM systems.

Proof. It suffices to show that if an instance of the unique producibility verification (UPV)
is false, i.e., if the tile system in the instance does not assemble uniquely into the given
assembly, then there is a short proof of the fact. By definition, a given 2HAM TAS T = (T, τ)
does not uniquely assemble into a given assembly α if and only if one of the following occurs:

Case 1. α 6∈ A[T ], which we can verify in polynomial time [11].
Case 2. There exists α̂ ∈ A�[T ] such that α̂ 6= α. Then α̂, along with the order in

which the tiles join to assemble α̂ would suffice as a proof. In order to check this proof, we
first verify that α̂ ∈ A[T ], which can be accomplished in polynomial time [11]. If α̂ 6∈ A[T ],
then we can reject this instance, so assume that α̂ ∈ A[T ]. Since α̂ 6= α, it must be the case
that α̂ v α because otherwise we could have rejected as we were building α̂. Finally, we call
attention to the fact that, if α̂ v α, then α̂ 6∈ A�[T ] [11], whence we can reject this instance.

Case 3. There exists α̂ ∈ A[T ] such that |α̂| > |α|, i.e., it is possible for T to produce
some assembly that is strictly larger than α. Note that it need not be the case that α̂ ∈ A�[T ]
for our verification to work properly. If α̂ exists, then there exists α̂′ with |α̂′| ≤ 2|α| (in the
worst case, two assemblies of size |α| could come together). Such an assembly α̂′ along with
the order in which assemblies are combined to assemble α̂′ would suffice as a proof, which
we can verify in polynomial time [11]. After we assemble α̂′, we can verify that it is larger
than α.

In every case, the size of the proof is polynomial in the instance size and the verification
always runs in polynomial time in the instance size. J

I Lemma 4.4. The UAV problem is co-NP-hard for 2HAM systems. In particular, the
problem is co-NP-hard for 3D, temperature τ = 2 systems that use only 2 separate planes of
the third dimension.

D.2.1 Proof of Lemma 4.4
To show this we provide an explicit polynomial time reduction from the inverse 3-SAT
problem to the Unique Assembly Verification problem. For a given instance of 3-SAT, we
show that the tile set described in Figure 5 uniquely assembles the assembly in Figure 34 at
temperature τ = 2 if and only if the respective 3-SAT formula is not satisfiable. The tile
system input for this reduction is a 3-dimensional system that makes minimal use of the
third dimension in that all tiles of the system can only be placed either in the z = 0 plane or
the z = 1 plane.

Notation. Figures for this reduction use large tiles to denote tiles that occur in the
z = 0 plane, and smaller tiles to denote tiles that occur within the z = 1 plane. Glues that
occur on the top/bottom of a tile to connect tiles placed within two separate planes are
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Figure 33 This figure details the tile set for the temperature τ = 2 system used in the polynomial
time reduction of the 3-SAT problem to the Unique Assembly problem. The tiles in this figure are
those derived for the example 3-SAT instance shown in (a). Tiles that are placed within the z = 1
plane appear smaller than those that occur in the z = 0 plane. Strength-1 glues are denoted by single
dashes for north,south,east and west glues, and solid circles for top and bottom glues. Strength-2
glues are denoted by double dashes and triangle inscribed circles for top/bottom glues. Each glue
within this system occurs on exactly two tile faces of opposite orientation. Some tiles are shown as
already bound together for the purpose of implicitly specifying which edges share strength-2 glues.

y z

zy

Figure 34 For the 3-SAT formula and corresponding tile set given in Figure 5, the above assembly
is uniquely assembled if and only if the given 3-SAT formula is not satisfiable.
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denoted by circles in the center of the tile. For this proof we will consider some arbitrary
3-SAT instance with m-clauses and n-variables which determines the tile set as described in
Figure 5.

Variable Tiles. For each of the n variables xi of the input 3-SAT formula φ, the tile
set Tφ has a collection of variable tiles described in Figure 5 (b). For each variable xi, the
variable tiles include 2 separate (m+ 2)× 2 blocks of tiles, called variable loops, connected
by strength 2 bonds on north/south borders, with an additional strength-2 bond between
the top 2 tiles of the block connecting their west and east edges, as well as strength-1 glues
on the south edges of the southmost 2 tiles. Additionally, the variable tiles include 2 chains
of m turquoise tiles that contain strength-1 glues on the north, south, top, and west or east
face, with the east/west face glue matching the west/east face of one of the two variable
loops. For each pair of variable loops for a variable xi, denote the right loop as the true loop,
and the left loop as the false loop for varaible xi.

Clause Blocks. For each clause Cj and each variable xi in the given 3-SAT instance
for 1 ≤ j < m, 1 < i < n, the tile set contains 6 tile types that are connected with unique
strength 2 glues to form horizontal length 6 lines as shown in Figure 5(a). Additionally, if
clause Cj contains a true or false instance of variable xj , the left or right respective turquoise
tile contains a strength-1 red glue ri,j on its bottom face. For variable indices i = 1 and
i = n, west or east strength one glues are missing. Blocks for clause indices j = m are
additionally missing a north face glue, and blocks for clause j = m and variables i = 1 and
i = n each attach to a bonus tile with bottom strength one glues of y and z respectively.

Base Tiles. The base tiles of the reduction consist of a length-6n row of strength-2
connected tiles shown in grey in Figure 5(c). The north face of the grey base tiles expose
strength-1 glues of type fi, f ′i , f ′′i , t′′i , t′i and ti for each i from 1 to n. Each pair fi, and
f ′i allows for the attachment of the corresponding complete variable loops representing an
assignment of value “false" to the ith variable xi. The ti and t′i glues allow for the similar
assignment of “true" to xi. Given an attachment of either a “true" or “false" variable loop for
variable xi, the f ′′i or t′′i glue respectively allows for the cooperative attachment of a chain
of the turquoise variable tiles. An example for these types of attachments are depicted in
Figure 35.

Cheat Detection Tiles. The cheat detection tiles are depicted in Figure 5(c) colored
in red, blue, yellow and green. Consider the two tiles among this group with top face glues y
and z. These two tiles can connect to each with a τ = 2 connected path that connects each
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of the 2n blue tile types (1 pair for each variable). Each pair of blue tiles is connected by two
disjoint strength-2 connected paths depicted with yellow and green tiles respectively. Thus,
a stable assembly connecting the tiles with y and z glues requires the inclusion of either a
yellow or green path (or both) connecting each pair of blue tiles. The inclusion of a green
path for a given variable position requires the placement of a bump of green tiles below the
left blue tile for a given pair, and the yellow path requires the placement of a bump of yellow
tiles below the right blue tile for the given pair. Thus, a stable cheat detection assembly
that includes both glues z and y must pick at least one bump position for each variable. An
example bump pattern is shown in Figure 37.

We now show that for an arbitrary 3-SAT formula φ with n-variables and m-clauses, and
temperature-2 tile system Tφ with tile set Tφ derived from φ according to Figure 5, that Tφ
uniquely produces the assembly shown in Figure 34 if an only if φ is not satisfiable.

Satisfiability implies non-unique production. Suppose φ is satisfiable. For some
satisfying truth assignment, let TRUE ⊆ {x1, . . . xn} denote the subset of variables for which
the satisfying assignment assigns a value of true. For each xi ∈ TRUE, consider the valid
assembly sequence which attaches each true loop for each variable xi ∈ TRUE to a single
fully assembled base tile assembly, and attaches each false loop for each xj /∈ TRUE. Given
the attachment of one loop for each variable, consider the producible assembly attained by
the sequential attachment of all turquoise variable tiles for each variable loop.

Now consider clause 1 in φ. There must exist some xi ∈ TRUE or xj /∈ TRUE such
that clause 1 is satisfied by assignment xi = TRUE or xj = FALSE. For this satisfying
variable i, clause block Ci,1 must have a red glue in either the left or right position. By
our placement of variable loops and the corresponding turquoise tiles, this block attains a
strength-1 attachment with the top of a turquoise variable tile. Further, it gains an additional
strength-1 attachment strength from the base tiles, allow for its attachment. The remainder
of the clause 1 block may then attach with or without attachmen In general, upon placement
of all clause blocks for clause i, there must exist a variable loop and corresponding turquoise
tiles to allow placement of a first i+ 1 clause block, which in turn allows the placement of all
i+ 1 clause blocks. Upon placement of all m clause blocks, the assembly now exposes z and
y glues on the bottom face of the top left and top right assembled tiles. Consider now the
producible assembly consisting of cheat detection tiles that contains both the z and y glues
on the top of the bottom left and bottom right tile types shown in Figure 5. Two connect the
z and y glue type tiles, assume the ith choice of a green versus a yellow path is such that the
yellow path is not tiles for all xi ∈ TRUE, and green is not tiles for all xi /∈ TRUE. Note
that in this case, the bumps from the cheat detection assembly occur in positions oppositive
the the upward bumps placed by the variable loops. This allows the cheat detection assembly
to be placed adjacent to the previous assembly with z and y glues lined up for a strength-2
attachment. This producible assembly implies that the assembly in Figure 34 is not unique.

Non-satisfiability implies unique assembly. Suppose φ has no satisfying assignment.
For the derived tile system to assemble an assembly that cannot grow into the assembly
depicted in Figure 34, there must be some producible assembly that is not a subassembly
of Υφ, but can be assembled by the τ -stable attachment of 2 subassemblies of Υφ. Because
each glue in Υφ is unique to some pair of tile faces, and not exposed in the final assembly
with the the exception of glues z and y, any such combination of producible subassemblies of
Υα into a non-subassembly of Υα must utilize both of these glues. Thus, the existence of
a producible non-subassembly of Υα implies that existence of 2 producible subassemblies
α and β, such that α exposes z and y on the top face of two separate tiles, and β exposes
z and y on the bottom face of two separate tiles. The only possibilities for a producible
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assembly α are the cheat detection tiles, which requires the placement of n red or green
bumps. Conversely, β must contain a portion of clause blocks C1,m and Cn,m.

Now we argue the following: For any producible sub-assembly of Υφ that has attached
tiles from clause block Ci,j , it must be the case that j = 1, or that the assembly also contains
tiles from clause block Ck,j−1 for some k.

For a growing assembly that contains tiles from various clause blocks, consider the first
clause block placed for row i. We know from the above observation that no clause blocks for
clauses greater than i can be placed, implying that the first placement requires a cooperative
pair of strength-1 glues bonds coming from a south glue and a red glue. As the red glue from
the turquoise tiles cannot be placed without the placement of the corresponding variable
tile, the first placement of a clause block for clause i verifies a placement of a variable loop
representing a satisfying true assignment for clause i. Thus, the placement of clause blocks
for clause m, in particular clause blocks C1,m and Cn,m, indicates that variable loops have
been attached to the assembly such that each clause has at least one satisfying variable
assignment represented. However, if S is not satisfiable, this can only happen by assigning
both TRUE and FALSE to at least one variable xi, which implies both variable loops
for some variable xi are attached. Thus, as the cheat detection tile assembly with both z
and y glues must pick either a yellow or green path for variable position i, the presence of
both loop bumps guarantees that the cheat detection assembly cannot attach. Thus, the
required presence of both glues z and y in the assemblies A and B implies, in the case of a
non-satisfiable S, that the bump patterns of A and B are incompatible, thus preventing an
attachment.

D.2.2 Unique assembly verification at τ = 1.
In contrast to the hardness of the temperature τ = 2 case, at temperature τ = 1 the 2HAM
UAV problem can be solved in polynomial time.

I Theorem 4.5. The UAV problem can be solved in time O
(
|T ||α|2 + |α||T |2

)
for any

temperature τ = 1 2HAM system (T, 1), and input assembly α.

Proof. From Lemma 4.1 we know that a system (T, 1) uniquely produces α if and only if
each aTAM system Ts = (T, σs, 1) for s ∈ T uniquely produces α. The unique assembly
verification problem has an order O

(
|α|2 + |α||T |

)
time solution [3]. We can therefore solve

the 2HAM version with a unique call to this routine for each s ∈ T , yielding the stated run
time. J

D.3 Unique shape verification
We now ask the question of a given shape (i.e., subset of Z2) uniquely self-assembles in a
given aTAM (or 2HAM) tile system. Note that a tile system in which some target shape
uniquely self-assembles is allowed to produce many (perhaps infinitely many) assemblies so
long as they all place tiles on exactly the same set of points.

Input: An aTAM system T = (T, σ, τ), or a 2HAM system T = (T, τ), and a shape S ⊆ Z2

Output: Does S uniquely self-assemble in T , i.e., does S = dom α, for all α ∈ A�[T ]?

This problem is known to be co-NP-complete in the aTAM at temperature τ = 2 [7].
Further, [7] showed the problem is also co-NP-complete for the multiple tile model, which is
a seeded version of the 2HAM. This particular proof is easily applicable to the 2HAM as
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well, yielding that Unique Shape Verification (USV) is co-NP-complete at temperature τ = 2
for both aTAM and 2HAM.

We improve the aTAM portion of this result to show that the USV problem is co-NP-
complete in aTAM even at temperature τ = 1 in 2D.

I Theorem 4.6. The USV problem is co-NP-complete for temperature τ = 1, 2D aTAM
systems.

Proof. The USV problem is known to be in co-NP [7]. We thus focus on proving co-NP-
hardness by describing a polynomial time reduction from the inverse 3-SAT problem. For
a given 3-SAT formula S with n variables and m clauses, we first consider a temperature
τ = 2 reduction similar to what is used to show NP-hardess at temperature τ = 2 in [7]. We
will then describe how this system can be transformed into a temperature τ = 1 system.

The input shape for the reduction is a (n + 3) × 2m rectangle, and the tile system is
described in Figure 39. The first portion of the tile set, called the mesh assembly and shown
in Figure 39 (a), consists of the seed tile of the system with a west glue that causes the
placement of a mesh of distinct tile types that each share τ = 2 strength bonds. The east
glue of the seed creates a chain of tiles growing to the east to finish the bottommost of the
width-(3 + n) rectangle.

The second portion of the assembly consists of tiles that compute whether or not a given
non-deterministic truth assignment satisfies the input 3-SAT formula, and is sketched in
Figure 39 (b),and (c). This portion of the construction assembles a horizontal length n

row of tiles that non-deterministically place one of two possible tiles at each position which
represents a non-deterministic selection of a truth assignment for the input 3-SAT formula.
Subsequent rows of the assembly verify that each clause of the input formula is satisfied by
one of the true assignments. This can be accomplished at temperature τ = 2 in a zig-zag
fashion (see [8] for a technical definition of zig-zag). The final tile placed in the northwest
corner of the assembly can thus be enforced to denote whether or not the non-deterministic
truth assignment satisfied the input 3-SAT formula. If so, we have that tile place one extra
tile, making the assembled shape not a rectangle.

Now consider the second portion of this temperature τ = 2 reduction. Because it is
a zig-zag system, it can be simulated at temperature-1 as shown in [8] with some added
probability of failure. A high level sketch of how temperature-2 tiles can be simulated by
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a slightly larger temperature-1 tile system is given in Figure 39. The full details of the
conversion are given in [8].

A particular feature of this temperature-1 simulation technique is that a failure to correctly
simulate the placement of a temperature τ = 2 tile causes the assembly to halt. In our case,
with the addition of the mesh assembly, this will cause the assembly of the input rectangle
shape. However, the simulation ensures a non-zero chance of success, implying that if there
exists a satisfying solution, there is an assembly sequence that yields a non-rectangle. J

D.4 Terminality verification
We now state the Terminality Verification (TV) problem, which asks whether a producible
assembly cannot grow further:

Input: An aTAM system T = (T, σ, τ), or a 2HAM system T = (T, τ), and a T -assembly α
Output: Is it the case that α ∈ A�[T ]?

This problem is known to have a polynomial time solution for aTAM systems. We
show the problem is also polynomial time solvable for the temperature τ = 1 2HAM, but
uncomputable for temperature τ ≥ 2 2HAM systems.

I Theorem 4.7. The TV problem can be solved in time O(|α||T |) for any temperature τ = 1
2HAM system.

Proof. For the terminality verification problem, we are given a 2HAM TAS T = (T, 1) and
an assembly α ∈ A[T ] and we must decide whether or not α ∈ A�[T ]. We can accomplish
this task in time O(|α||T |) by performing the following test. Check, for each ~x ∈ dom α and
each t ∈ T , whether or not t can bind to α at location ~x. If any test passes, then we reject
α. Otherwise, if all tests fail, then we can accept α. To see that such a test is sufficient,
consider the fact that, at temperature τ = 1, if α is not terminal, then there must be some
assembly α′ ∈ A[T ] such that it is possible to combine α with α′ to get α′′ ∈ A[T ]. Since
α′′ ∈ A[T ], there must be some position, say ~y ∈ dom α′′ such that ~y ∈ dom α′ and α(~y)
interacts with some tile at position ~z ∈ dom α. This means it would be possible to attach
only the tile type α′′(~y) to α at location ~z since it would bind with positive strength.

Noting that the perimeter of α is O(|α|) yields the desired time bound. J

I Theorem 4.8. The TV problem is uncomputable for τ ≥ 2 2HAM systems.

Proof. Let H = {M |M halts on input λ}. It suffices to exhibit a many-one reduction from
H to the terminality verification problem for 2HAM at temperature t ≥ 2. Let M be a
Turing machine. The problem of simulating a Turing machine (on some input string) in the
aTAM is a well-studied problem [14,17,20]. Thus, let TM = (TM , σλ, 2) be an aTAM TAS,
which is singly-seeded at the origin, directed, and such that T simulates M on the empty
string λ in the most natural way. Let t̂ ∈ TM be the unique tile type such that t̂ represents
the state of M if/when it ever reaches the halting state.

By Theorem 4.2, there exists a 2HAM TAS S = (S, 2) that simulates T = (T, σ, 2). The
output of our reduction is the assembly α̂ ∈ A[S] such that R (α̂) = t̂, i.e., the assembly in S
that represents the halting tile in TM .

If M ∈ H, then M halts on λ and T will place t̂. This means that in the simulating
system S, the producible assembly α̂ is not terminal. However, if M 6∈ H, then M never
halts and T will never place t̂, whence the assembly α̂ ∈ A�[S].

J
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Figure 40 Simple sketch of the direction of row growth and increasing row size in a zig-zag
Turing machine simulation

D.5 Infinite existence verification
We now state the Infinite Existence Verification (IEV) problem:

Input: An aTAM system T = (T, σ, τ), or a 2HAM system T = (T, τ).
Output: For all n ∈ N such that n ≥ 1, does there exist an α ∈ A[T ] such that |α| ≥ n?

I Theorem 4.9. The IEV problem is uncomputable for temperature τ ≥ 1 aTAM, and for
τ ≥ 2 2HAM.

To prove Theorem 4.9, we prove the following two lemmas.

I Lemma 4.10. The IEV problem is uncomputable for the temperature τ ≥ 1 aTAM.

To prove Lemma 4.10, we will give a construction which probabilistically simulates a
Turing machine M on input w in a τ = 1 aTAM system T in such a way that, there exists
an assembly sequence in T which produces an infinite assembly if and only if M does not
halt on x. Therefore, if it was computable whether or not T produced an infinite assembly,
the halting problem would be computable. Note that this construction is essentially that
of [8], which uses a zig-zag system to probabilistically simulate Turing machines, with slight
alterations made for the purpose of this particular proof.

Proof sketch. LetM = (Q,Σ,Γ, δ, q0, qaccept, qreject) be a Turing machine where Q is the set
of states, Σ = {0, 1} is the input alphabet, Γ = {0, 1, –} is the tape alphabet, and q0, qaccept,
and qreject are the start, accept, and reject states, respectively. Let w ∈ {0, 1}∗. Assume,
without loss of generality, that M is a Turing machine having a one-way infinite-to-the-right
tape such that the tape head of M never attempts to move left while reading the leftmost
tape cell, and M starts in state q0 with its head on the leftmost tape cell. Define an aTAM
system T = (T, σ, 1) as follows.

To construct the tile set T , we will create sets of tiles which are hard-coded to form into
gadgets, all connected by strength-1 glues, like those shown in Figure 41. We talk about
them in terms of complete units, but they assemble only one tile at a time in the aTAM,
growing from the assembly containing the seed, and are only referred to as combining in
complete forms for ease of explanation, typically ignoring the growth of the internal portions
of gadgets. These gadgets combine to form representations of M ’s complete configuration
(tape, head position, and state) at each step of computation with each step represented
as a horizontal row of gadgets where each gadget represents one tape cell (except for the
leftmost of each row which simply mark the end of the tape, and the rightmost of alternating
rows which represent 2 tape cells), and thus will be described in a row by row manner. The
growth of rows will occur in a zig-zag manner in which the first row grows from left to right
(called right growing), the next row (which is above it) grows from right to left (called left
growing), then repeating back and forth. Each left growing row will be extended beyond
the row beneath it by one additional gadget on the right side (see Figure 40 for a high level
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Figure 41 Gadgets used for the various positions and rows of a zig-zag Turing machine simulation

sketch of row growth). Each gadget will dedicate two consecutive horizontal positions to
representing each possible combination of tape cell value from Γ and state from Q ∪ {ω}
(where ω represents the lack of a state). We will use the term symbol-state to refer to such
a combination, and let s = |Γ|(|Q|+ 1) be the number of symbol-states. Intuitively, each
gadget will represent exactly one symbol-state on its bottom by having a 2 tile wide “dent” in
the location corresponding to that symbol-state, and exactly one symbol-state on its top by
having a 2 tile wide “bump” in the location corresponding to that symbol-state. The gadget
representing the tape cell on which the head of the simulated Turing machine currently
resides represents a symbol-state with a state which is non-empty, and all others of that row
represent a symbol-state without a state. The gadgets will be formed by hard-coded tiles
which bind in a single-tile wide, un-branching path.

First, we create the tile types for the gadgets which form the seed row (shown on the
bottom of Figure 41). Note that the set of symbol-states depicted in that figure is {b, c, –}.
Define 2s+ 7 tile types which are hard-coded to form into the shape of gadget (a) (where 4
tiles are used to represent the 2× 2 square on the left, 3 are for the rightmost three positions,
and 2s are for the symbol-state representations. Note the extra positions on the left for a
special symbol ’L’ which represents the left end of the tape (and not actually a tape cell), and
on the right for the symbol ’–∗’ which denotes the right end of the tape. For each character of
w, define a unique gadget of type (b) with the appropriate number of symbol-state positions
and a bump in the location representing that symbol, and one gadget for the symbol-state
which includes the first first symbol of w combined with q0). The final seed row gadget, (c),
is for the rightmost position of the seed row and must similarly be sized to accommodate all
symbol-states while representing a blank tape cell, “–” with its lower bump and the right-end
symbol “–∗” with its top bump. Note that for the seed row, all glues between successive
gadgets are hard-coded so that they must attach in the proper order to represent w from left
to right with q0 represented on the leftmost tape cell.

Gadget (d) is formed so that it has a bump and a dent in the positions for “L” on the
top and bottom, and it has the necessary width for the pairs of columns accommodating
the full set of symbol-states, plus the dark grey connectors which allow them to connect to
additional gadgets. The red tile on its right side allows it to bind to any gadget of the form
(e). The orange tile allows it to attach to the gadget of form (f).

For gadget (e), note that gadgets of left growing rows are connected to each other by
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Figure 42 Example of the formation of portions of two rows of a zig-zag Turing machine simulation
in which the growth of the top row is halted by an incorrect nondeterministic “guess” of the value
“−” for a tape cell whose value is actually “c”

red tiles. These tiles are special because the bonds between pairs of red tiles allow for
nondeterminism. For every symbol-state x = (q, y) representing state q and tape symbol y, if
the transition function δ defines the transition (q, y)→ (q′, z, L) (i.e. if M is in state q and
reading y, it transitions to state q′, writes z, and moves the head left), the red tile at the
left side of the gadget representing symbol-state x can bind only to the gadget representing
symbol-state (q′, z), and vice-versa. Note that the gadget representing (q, y) on its bottom
will represent (ω, z) on its top, where ω represents the lack of a state. The red tiles of gadgets
representing all other symbol-states can bind to those of all other symbol-states, other than
binding to those for each (q, y) on their left and those for each (q′, z) on their right. This
essentially allows a left growing row to grow across the top of the row immediately below it, at
each point between gadgets making a nondeterministic “guess” about what the symbol-state
below it was, and attaching to the gadget corresponding to that guess. If the guess is correct,
the gadget can complete and either copy the value below to above or simulate a left-moving
transition of the head. If that guess is incorrect, the gadgets are designed so that the path
will be unable to complete and blocked from completing any further growth.

Gadgets for right growing rows are formed analogously, with proper transformations
taken to represent transitions in δ which move the head to the right. In such a way, right
growing rows simulate those transitions and perform no operation other than copying the
entire symbol-state set upward if the next transition required by M moves the head left.
Additionally, each right growing row extends its length beyond the row beneath it by one
gadget, or logical tape cell, providing an effectively infinite-to-the-right tape since it would
be impossible for the representation of the tape head to ever reach the rightmost end.

Since there are no transitions in δ which start in qaccept or qreject and move out of that
starting state, there are no gadgets which can connect to their logical “output” sides if they
form (i.e. for those in left growing rows, they don’t have a red tile on their left, and those
in right growing rows don’t have an orange tile on their right), and thus the simulation
effectively halts. Therefore, by forming the tile set T out of the tile types described to make
the necessary gadgets, setting τ = 1, and the seed assembly σ to be unique tile type in the
bottom leftmost position of gadget (a), the aTAM TAS T = (T, σ, 1) is able to simulate
Turing machine M on w, for arbitrary M and w, provided that every nondeterministic
guess of symbol-state values of every row is correct. Furthermore, during the assembly
simulating M(w), if either 1) an incorrect guess is made by some gadget about the value
of the symbol-state beneath it (leading to a blocking situation where the formation of the
gadget and thus the entire assembly cannot continue, as seen in Figure 42), or 2) M halts
and accepts or rejects on w, then a finite terminal assembly is produced. Thus, there exists
an assembly sequence in T which produces an infinite assembly (specifically, that in which
every guess about symbol-states is correct) if and only if M(w) does not halt.
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Therefore, the IEV problem for T is uncomputable for τ = 1 since, if it was computable,
determining whether or not M halts on input w would necessarily be computable. Finally,
in order to show that this holds for all τ ≥ 1, set τ = k for an arbitrary k ≥ 1 and create T
in the same way, but set its τ = k and replace every glue strength (all of which are currently
set to 1) with the value k. This new system clearly performs an identical simulation and
has the same set of producible assemblies, but at the new temperature τ , and thus the IEV
problem is uncomputable for aTAM at τ ≥ 1. J

I Lemma 4.11. The IEV problem is uncomputable for 2HAM at temperature τ ≥ 2.

Proof sketch. To prove Lemma 4.11, we simply combine two previous simulation techniques.
First, let T = (T, σ, 1) be the aTAM system from the proof of Lemma 4.10, which simulates
a Turing machine M on input w. Next, apply the construction from Theorem 4.2 to create
the 2HAM system T ′ = (T ′, 2), which simulates T with a 2HAM system at τ = 2. By the
correctness of Lemma 4.10 and of the simulation provided by T ′, it is uncomputable whether
or not T ′ produces an infinite assembly. J

D.6 Finite existence verification
We now state the Finite Existence Verification (FEV) problem:

Input: An aTAM system T = (T, σ, τ), or a 2HAM system T = (T, τ).
Output: Does there exist α ∈ A�[T ] such that |α| <∞?

We show that this problem is uncomputable for both aTAM and 2HAM systems. Further,
we show that it is uncomputable for all temperature values τ ≥ 1.

I Theorem 4.12. The FEV problem is uncomputable for both aTAM and 2HAM systems
for any temperatures τ ≥ 1.

To prove Theorem 4.12, we prove the following two lemmas.

I Lemma 4.13. The FEV problem is uncomputable for the temperature τ ≥ 1 aTAM.

Proof sketch. To prove Lemma 4.13, we again utilize the aTAM system T = (T, σ, 1) which
was defined in the proof of Lemma 4.10 and which simulates a Turing machine M on input
w. We then make the following simple modifications to T . First, on the west side of the seed
tile type, put a glue which binds to a new tile type t. Tile type t has one additional glue,
which is on its north and allows it to bind to the south side of another new tile type, t′. Let
t′ have the same glue on its north and south (and none on its east and west). In this way it
is possible for t to grow off of the left side of the seed (while the assembly performing the
simulation of M(w) grows from its right), and then attach to a t’ which can form an infinite
path upward composed of an infinite series of t’ tiles. See Figure 43(a), the green row, for an
example.

For the final modification, create a new copy of each gadget for the leftmost and middle
positions of left growing rows. They should get new glues which allow them to attach to
the left of a gadget representing a symbol-state including gaccept or qreject (which must be
modified to have this glue on their leftmost edge since those gadgets previously connected to
no other gadgets on their output sides and thus represented M halting by preventing further
growth of the assembly). These new gadgets should be able to attach across the entire row
to the left (attaching only to these new types of gadgets and assuming that they guess each
symbol correctly) until they reach the leftmost position, where the new leftmost gadget
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Figure 43 High level depiction of the construction used in Lemma 4.13

extends one extra column beyond the left side of all previous rows below it. Additionally,
create a gadget which attaches above those representing gaccept or qreject and which can
attach to those new gadgets which grow to the left. This allows a right growing row which
simulates a halting state to also initiate the growth of a left growing row, immediately above
the halting state.

Figure 44(b) shows one possible situation if M(w) halts (and accepts or rejects). The
green bar represents the potentially infinite path upward, and the yellow represents the new
gadgets which attach to the gadget representing the halting state and grow left until they
extend one tile past the leftmost edge of the other rows in the simulation of M(w). This
results in a race condition in which it is possible for that growth to potentially block the
green path and prevent it from becoming infinitely long.

We now note the following facts:

If at any point during the simulation of M(w), a gadget makes an incorrect guess and
thus prevents further growth of the simulation, then the green path cannot be blocked
and the assembly becomes infinite due to the infinite path.
If at all points during the simulation of M(w), every gadget guesses correctly but M(w)
does not halt, no row of gadgets can grow which will block the green path and thus the
assembly becomes infinite.
If at all points during the simulation of M(w), every gadget guesses correctly and M(w)
does halt, then a left growing path from the halting position can block the green path,
resulting in a finite assembly. Of course, it is not the case that the green path will always
lose the race and get blocked, but there is at least a valid assembly sequence in which
that does occur.

Therefore, there exists a finite terminal assembly in T ⇔ M(w) halts. The uncomputabil-
ity of the halting problem means that FEV is uncomputable for T and thus for τ = 1 aTAM.
Finally, in order to show that this holds for all τ > 1, set τ = k for an arbitrary k ≥ 1 and
create T in the same way, but set its τ = k and replace every glue strength (all of which are
currently set to 1) with the value k. Clearly this new aTAM system performs an identical
simulation with the same set of producible assemblies, but at the new τ , implying the same
uncomputability of FEV for aTAM at τ ≥ 1. J

I Lemma 4.14. The Finite Existence Verification problem is uncomputable for the tempera-
ture τ ≥ 1 2HAM.

Proof sketch. To prove Lemma 4.14, we use the tile set T from Lemma 4.13, with small
modifications, to create a 2HAM system T = (T, 1). The small modifications consist of, for
every south side which doesn’t currently have a glue of every tile in gadgets of type (d), (e),
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(f), and (g), as well as every tile of the gadget of type (h) which isn’t dark grey and which
doesn’t already have a glue on its south, adding the glue matching that on the north and
south side of the tile t′.

M(w) halts

infinite paths form incorrect guess during backward
growth, leads to blocking

nucleation point

Figure 44 High level depiction of the construction used in Lemma 4.14

The proof idea is the same as that for Lemma 4.13, with the following caveat. Since this
verification problem is considering 2HAM systems rather than aTAM, it is possible for the
assembly that is supposed to represent a simulation of M to spontaneously nucleate and
begin the formation of a supertile which represents M in an arbitrary state with its head in
an arbitrary position on an arbitrary tape, since for τ = 1 2HAM systems every tile type
can be thought of as a seed assembly. (A high level example can be seen in Figure 44, with
the nucleation point shown in blue.) It is therefore possible for the simulation to continue
forward from that point and reach a halting state which would allow growth to the left side
of the row (shown in yellow) that could place the tile which blocks the upward growing
infinite path which may begin growing at some point. However, the upward growing infinite
path on the left side could only be present if the simulation is also able to grow in reverse
from the nucleation point - guessing perfectly at all points of nondeterminism - back to the
seed row and then complete that entire row since the structure of the simulation assembly as
a single unbranching path, along with special gadgets on both ends of rows, enforces that
no positions of any row can be skipped to get back to that leftmost position of the “seed
row”. (Note that in the 2HAM, separate portions of the path could form independently
and then attach in larger chunks, but that doesn’t impact the need for all guesses to be
correct due to the geometric nature of the bumps and dents). At that point, the beginning
of the upward growing path could form but it would be blocked by the yellow component.
In this case, the assembly is terminal, and the simulation of M(w) must be complete and
valid and lead to a halting configuration of M . However, if any guess along the path of
reverse growth is incorrect, the assembly will cease along that path, which could also have
led to a finite assembly if the tileset from Lemma 4.13 had not been modified. Since this
condition is independent of the halting of M(w) (because the state that M was in at the
point where the simulation nucleated is arbitrary), our augmentation to the tile set, namely
the ability of tiles in gadgets not in the seed row to initiate infinite rows growing downward,
ensures an infinite assembly. Therefore, if the computation doesn’t validly grow all the way
back through the seed row, there is a way for the downward paths to grow to infinity as
shown in Figure 44. However, if it does manage to grow all the way back through the seed
correctly, always guessing correctly and always “beating” the initiation of the downward
growing green rows, all potential downward growing rows will be blocked (since they cannot
form from the bottom of the seed row). This ensures that the only way for a finite assembly
to be producible is for: 1. the entire computation of M(w) to be simulated - regardless of
where it begins - including the full seed row and every computational step and full tape
configuration including the halting state and growth of the yellow blocking component and
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2. the computation M(w) halts.
Essentially, any assembly which does not contain a complete and correct simulation of

M(w) will be able to grow at least one infinite path from its bottom downward or from it its
left side upward. If a complete and correct simulation of M(w) does assemble, that assembly
can grow into a finite, terminal assembly if and only if M(w) halts and the yellow blocking
row on the top beats the green path on the left and blocks it. Therefore, the uncomputability
of the halting problem means that FEV is uncomputable for T and thus for τ = 1 2HAM.

Finally, in order to show that this holds for all τ > 1, set τ = k for an arbitrary k ≥ 1
and create T in the same way, but set its τ = k and replace every glue strength (all of which
are currently set to 1) with the value k. Clearly this new 2HAM system performs an identical
simulation with the same set of producible assemblies, but at the new τ , implying the same
uncomputability of FEV for the 2HAM at τ ≥ 1.

J
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