
Flows

2

1

3

22

1 2

1

3

3

2

2

12

s t

1

1

3

2Source Sink

3

2

2

12

s t

1

1

3

2

A flow of 1

Source Sink

1 1

3

2

2

12

s t

1

1

3

2

A flow of 1

Source Sink

1 1

3

2

2

12

s t

1

1

3

2

A flow of 2

Source Sink

2 2

2

1

3

22

s t

1

1

3

2

2

1

3

22

s t

1

1

3

2

2 2
1

1

2

1

3

22

s t

1

1

3

2

1
22

1

1
1

2

1

3

22

s t

1

1

3

2

2
3

1
1
1

3

1

1 2

Rules of flows

c
fFor each edge, flow on edge is  

less than edge's capacity

For non-source/sink vertices,  
in-flow and out-flow of  

node are equal.

f1

f2

f3

f5

f1 + f2 = f3 + f4 + f5

f ≤ c

Out-flow of source and  
in-flow of sink are equal.

f1

f2

f3

f4

f4

f1 + f2 = f3 + f4

1

s t

3 1

1

23

1

1

1

s t

3 1

1

23

1

1

2 2
1

1 1

2
1

1

Flows in undirected graphs

c
f

c

f1
c

f2

Which direction is flow? Directed equivalent:

if f1 > f2

f1 - f2

if f1 < f2

f2 - f1

if f1 = f2

Three cases of equivalent flows:

Flow Notation

s t

3

2

2

1 3

2

2

1

1
2

1
1
1

2

s t

(1, 2)

(1, 1) (1, 3)

(1, 2) (1, 1) (1, 3)

(1, 2)(1, 2)

Maximum Flows

(0, 2)

(0, 1)
(0, 2)

(0, 1)

v4

(0, 3)

(0, 2)

s

v2

v3

v5

v6

t

(0, 1)

(0, 3)

(0, 2)

(2, 2)

(1, 1)
(1, 2)

(1, 1)

v4

(1, 3)

(1, 2)

s

v2

v3

v5

v6

t

(1, 1)

(2, 3)

(1, 2)

Maximum flow of 3

(0, 1)

(0, 1)(0, 2)

(0, 1)

s
(0, 2)

(0, 1)

(0, 1) t

(0, 2)
(0, 2)

(0, 1)

(0, 1)

(0, 1)

(0, 1) (0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(1, 1)(1, 2)

(1, 1)

s
(2, 2)

(0, 1)

(1, 1) t

Maximum flow of 3

(2, 2)
(1, 2)

(0, 1)

(0, 1)

(0, 1)

(0, 1) (1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(0, 1)

(1, 1)(1, 2)

(1, 1)

s
(2, 2)

(0, 1)

(1, 1) t

Maximum flow of 3

(2, 2)
(1, 2)

(0, 1)

(0, 1)

(0, 1)

(0, 1) (1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(0, 4)

(0, 3)

(0, 1)

(0, 2)

(0, 2)

(0, 8)

(0, 2)
(0, 9)

(0, 5)
(0, 6)

(0, 8)
(0, 2)

(0, 3)

(0, 4)

(0, 1)

(0, 3)

s

t

(4, 4)

(2, 3)

(1, 1)

(1, 2)

(0, 2)

(4, 8)

(2, 2)
(7, 9)

(1, 5)
(4, 6)

(4, 8)
(0, 2)

(2, 3)

(2, 4)

(0, 1)

(2, 3)

s

t

Maximum flow of 7

(4, 4)

(2, 3)

(1, 1)

(1, 2)

(0, 2)

(4, 8)

(2, 2)
(7, 9)

(1, 5)
(4, 6)

(4, 8)
(0, 2)

(2, 3)

(2, 4)

(0, 1)

(2, 3)

s

t

Maximum flow of 7

Minimum Cuts

2

1 2

1

v4

3

2

s

v2

v3

v5

v6

t

1

3

2

2

1 2

1

v4

3

2

s

v2

v3

v5

v6

t

1

3

2

Minimum edge cut of 3

1

1

1

1

2

1

1

1

1

1

1

2

1

s 2 1 1

1 1 1

1 1 2 t

1

1

1

1

1

1

1

2

1

1

1

1

1

1

2

1

s 2 1 1

1 1 1

1 1 2 t

Minimum edge cut of 3

4

1

2
3

2

2

8
9

5
6

8
2

3

4

1

3

s

t

4

1

2
3

2

2

8 4

1

2
9

5
6

8
2

3

4

1

3

s

t

Minimum edge cut of 7

For any graph with vertices s and t

maximum flow 
from s to t

minimum edge cut  
separating s from t=

Max-flow min-cut theorem
For any graph with vertices s and t

maximum flow 
from s to t

minimum edge cut  
separating s from t=

Bipartite
Perfect Matching

Bipartite graph

Perfect Matching

Perfect Matching

s t

1
1

1

1

1

1

1 1
1

1
1

1
1

1

1

1
1

1

1

1

1

s t

1
1

1

1

1

1

1 1
1

1
1

1
1

1

1

1
1

1

1

1

1

s t

Residual Graphs

s t

(0, 2)

(0, 1) (0, 3)

(0, 3)

s t

1

Graph (with flow) Residual graph

0
(0, 1)

0
0

2 3

3

0
1

0

s t

(0, 2)

(0, 1) (0, 3)

(0, 3)

s t

1

Graph (with flow) Residual graph

0
(0, 1)

0
0

2 3

3

0
1

0

s t

(1, 2)

(0, 1) (0, 3)

(1, 3)

Graph (with flow) Residual graph

(0, 1) s

1

0

0
0

2 3

3

0
1

0
t

s t

(1, 2)

(0, 1) (0, 3)

(1, 3)

s t

1

Graph (with flow) Residual graph

0
(0, 1)

1
0

1 2

3

0
1

1

s t

(1, 2)

(0, 1) (0, 3)

(1, 3)

s t

1

Graph (with flow) Residual graph

0
(0, 1)

1
0

1 2

3

0
1

1

Augmenting path
(path from s to t along  

>0-weight edges)

s t

1

Graph (with flow) Residual graph

0

1
0

1 2

3

0
1

1
s t

(2, 2)

(0, 1) (1, 3)

(1, 3)

(1, 1)

Augmenting path
(path from s to t along  

>0-weight edges)

s t

(2, 2)

(0, 1) (1, 3)

(1, 3)

s t

1

Graph (with flow) Residual graph

0
(1, 1)

2
1

0 2

2

1
0

1

s t

(2, 2)

(0, 1) (1, 3)

(1, 3)

s t

1

Graph (with flow) Residual graph

0
(1, 1)

2
1

0 2

2

1
0

1

Augmenting path
(path from s to t along  

>0-weight edges)

s t

1

Graph (with flow) Residual graph

0

2
1

0 2

2

1
0

1
s t

(2, 2)

(1, 1) (1, 3)

(2, 3)

(0, 1)

Augmenting path
(path from s to t along  

>0-weight edges)

s t

(2, 2)

(1, 1) (1, 3)

(2, 3)

s t

0

Graph (with flow) Residual graph

1
(0, 1)

2
0

0 1

2

1
1

2

s t

(2, 2)

(1, 1) (1, 3)

(2, 3)

s t

0

Graph (with flow) Residual graph

1
(0, 1)

2
0

0 1

2

1
1

2

No augmenting path
(flow is maximum)

(f, c)
c - f

0 - (-f) = f

(f2, c2)

(f1, c1)

Edges (with flow) Residual edges

c1 - (f1 - f2)

Net flow f(a, b) = f

a b

f(b, a) = -f

Net flow f(a, b) = f1 - f2

a b

a ba b

f(b, a) = f2 - f1

c2 - (f2 - f1)

(0, 2)
2 - 0 = 2

0 - 0 = 0

(0, 1)

(0, 3)

Edges (with flow) Residual edges

3 - 0 = 3

Net flow f(a, b) = 0

a b

f(b, a) = 0

Net flow f(a, b) = 0

a b

a ba b

1 - 0 = 1

f(b, a) = 0

(1, 2)

(0, 1)

(0, 3)

Edges (with flow) Residual edges

Net flow f(a, b) = 1

a b

f(b, a) = -1

a b

a ba b

2 - 1 = 1

0 - (-1) = 1

Net flow f(a, b) = 0
f(b, a) = 0

3 - 0 = 3

1 - 0 = 1

(2, 2)

(0, 1)

(0, 3)

Edges (with flow) Residual edges

Net flow f(a, b) = 2

a b

f(b, a) = -2

a b

a ba b

2 - 2 = 0

0 - (-2) = 2

Net flow f(a, b) = 0
f(b, a) = 0

3 - 0 = 3

1 - 0 = 1

(2, 2)

(0, 1)

(2, 3)

Edges (with flow) Residual edges

Net flow f(a, b) = 2

a b

f(b, a) = -2

a b

a ba b

2 - 2 = 0

0 - (-2) = 2

Net flow f(a, b) = 2
f(b, a) = -2

3 - 2 = 1

1 - -2 = 3

(2, 2)

(0, 1)

(3, 3)

Edges (with flow) Residual edges

Net flow f(a, b) = 2

a b

f(b, a) = -2

a b

a ba b

2 - 2 = 0

0 - (-2) = 2

Net flow f(a, b) = 3
f(b, a) = -3

3 - 3 = 0

1 - -3 = 4

(2, 2)

(1, 1)

(0, 3)

Edges (with flow) Residual edges

Net flow f(a, b) = 2

a b

f(b, a) = -2

a b

a ba b

2 - 2 = 0

0 - (-2) = 2

Net flow f(a, b) = -1
f(b, a) = 1

3 - -1 = 4

1 - 1 = 0

Ford-Fulkerson 
Maximum Flow 

Algorithm

s t

s t

1 20

3

(0, 2)

(0, 1)

(0, 3)

(0, 1)

(0, 1)

(0, 2)

(0, 2)

2

0

3

0

0

0

1

0

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

1 20

3

(0, 2)

(0, 1)

(0, 3)

(0, 1)

(0, 1)

(0, 2)

(0, 2)

2

0

3

0

0

0

1

0

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

1 20

3

(1, 2)

(0, 1)

(1, 3)

(1, 1)

(0, 1)

(1, 2)

(1, 2)

2

0

3

0

0

0

1

0

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

1 11

3

(1, 2)

(0, 1)

(1, 3)

(1, 1)

(0, 1)

(1, 2)

(1, 2)

1

1

2

0

0

1

0

1

1
1

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

1 11

3

(1, 2)

(0, 1)

(1, 3)

(1, 1)

(0, 1)

(1, 2)

(1, 2)

1

1

2

0

0

1

0

1

1
1

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

1 11

3

(1, 2)

(1, 1)

(1, 3)

(1, 1)

(0, 1)

(2, 2)

(0, 2)

1

1

2

0

0

1

0

1

1
1

Input graph:

Residual graph: 1

(1, 1)

00 1

(0, 1)

s t

s t

0 01

3

(1, 2)

(1, 1)

(1, 3)

(1, 1)

(0, 1)

(2, 2)

(0, 2)

1

1

2

1

0

2

0

1

0
2

Input graph:

Residual graph: 0

(1, 1)

10 1

(0, 1)

s t

s t

0 01

3

(1, 2)

(1, 1)

(1, 3)

(1, 1)

(0, 1)

(2, 2)

(0, 2)

1

1

2

1

0

2

0

1

0
2

Input graph:

Residual graph: 0

(1, 1)

10 1

(0, 1)

s t

s t

0 01

3

(2, 2)

(1, 1)

(2, 3)

(1, 1)

(1, 1)

(2, 2)

(0, 2)

1

1

2

1

0

2

0

1

0
2

Input graph:

Residual graph: 0

(0, 1)

10 1

(1, 1)

s t

s t

0 02

2

(2, 2)

(1, 1)

(2, 3)

(1, 1)

(1, 1)

(2, 2)

(0, 2)

0

2

1

1

1

2

0

1

0
2

Input graph:

Residual graph: 1

(0, 1)

01 0

(1, 1)

Create an empty map F.
for (every edge (vi, vj) in E):
 if ((vj, vi) is not in E):
 Add (vj, vi) to E with capacity 0.
 F[(vi, vj)] = 0;
while (true):
 Let p = an augmenting path in residual of G.
 If no p exists, break;

 fm = minimum weight of edge in p.
 Update flow along edges of p by fm.

Ford-Fulkerson Algorithm  
(for a graph G = (V, E), source s, sink t)

Setup

Increase flow
via aug. paths

Ford-Fulkerson 
Running Time

Ford-Fulkerson Algorithm  
(for a graph G = (V, E), source s, sink t)

ϴ(n)

ϴ(n+m)

ϴ(m)

O(fmax*(n+m))
total

Create an empty map F.

for (every edge (vi, vj) in E):

 if ((vj, vi) is not in E):

 Add (vj, vi) to E with capacity 0.

 F[(vi, vj)] = 0;

while (true):

 Let p = an augmenting path in residual of G.

 If no p exists, break;

 faug = minimum weight of edge in p.

 Update flow along edges of p by faug.
ϴ(n)

, and max flow fmax

Ford-Fulkerson Algorithm  
(for a graph G = (V, E), source s, sink t)

ϴ(n)

ϴ(n+m)

ϴ(m)

O(fmax*(n+m))
total

Create an empty map F.

for (every edge (vi, vj) in E):

 if ((vj, vi) is not in E):

 Add (vj, vi) to E with capacity 0.

 F[(vi, vj)] = 0;

while (true):

 Let p = an augmenting path in residual of G.

 If no p exists, break;

 faug = minimum weight of edge in p.

 Update flow along edges of p by faug.
ϴ(n)

, and max flow fmax

O(fmax*(n + m)) time

s t

(0, 100)

(0, 100) (0, 100)

(0, 100)

s t

100

Graph (with flow) Residual graph

0
(0, 1)

0
0

100 100

100

0
1

0

s t

(0, 100)

(0, 100) (0, 100)

(0, 100)

s t

100

Graph (with flow) Residual graph

0
(0, 1)

0
0

100 100

100

0
1

0

s t

(1, 100)

(0, 100) (1, 100)

(0, 100)

Graph (with flow) Residual graph

(1, 1) s t

100

0

0
0

100 100

100

0
1

0

s t

(1, 100)

(0, 100) (1, 100)

(0, 100)

s t

100

Graph (with flow) Residual graph

0
(1, 1)

1
1

99 100

99

1
0

0

s t

(1, 100)

(0, 100) (1, 100)

(0, 100)

s t

100

Graph (with flow) Residual graph

0
(1, 1)

1
1

99 100

99

1
0

0

s t

(1, 100)

(1, 100) (1, 100)

(1, 100)

s t

100

Graph (with flow) Residual graph

0
(0, 1)

1
1

99 100

99

1
0

0

s t

(1, 100)

(1, 100) (1, 100)

(1, 100)

s t

99

Graph (with flow) Residual graph

1
(0, 1)

1
0

99 99

99

1
1

1

s t

(1, 100)

(1, 100) (1, 100)

(1, 100)

s t

99

Graph (with flow) Residual graph

1
(0, 1)

1
0

99 99

99

1
1

1

s t

(2, 100)

(1, 100) (2, 100)

(1, 100)

s t

99

Graph (with flow) Residual graph

1
(1, 1)

1
0

99 99

99

1
1

1

s t

(2, 100)

(1, 100) (2, 100)

(1, 100)

s t

99

Graph (with flow) Residual graph

1
(1, 1)

2
1

98 99

98

2
0

1

s t

(2, 100)

(1, 100) (2, 100)

(1, 100)

s t

99

Graph (with flow) Residual graph

1
(1, 1)

2
1

98 99

98

2
0

1

s t

(2, 100)

(2, 100) (2, 100)

(2, 100)

s t

99

Graph (with flow) Residual graph

1
(0, 1)

2
1

98 99

98

2
0

1

s t

(2, 100)

(2, 100) (2, 100)

(2, 100)

s t

98

Graph (with flow) Residual graph

2
(0, 1)

2
0

98 98

98

2
1

2

s t

(2, 100)

(2, 100) (2, 100)

(2, 100)

s t

98

Graph (with flow) Residual graph

2
(0, 1)

2
0

98 98

98

2
1

2

s t

(3, 100)

(2, 100) (3, 100)

(2, 100)

s t

98

Graph (with flow) Residual graph

2
(1, 1)

2
0

98 98

98

2
1

2

s t

(3, 100)

(2, 100) (3, 100)

(2, 100)

s t

98

Graph (with flow) Residual graph

2
(1, 1)

3
1

97 98

97

3
0

2

s t

(3, 100)

(2, 100) (3, 100)

(2, 100)

s t

98

Graph (with flow) Residual graph

2
(1, 1)

3
1

97 98

97

3
0

2

s t

(3, 100)

(3, 100) (3, 100)

(3, 100)

s t

98

Graph (with flow) Residual graph

2
(0, 1)

3
1

97 98

97

3
0

2

s t

(3, 100)

(3, 100) (3, 100)

(3, 100)

s t

97

Graph (with flow) Residual graph

3
(0, 1)

3
0

97 97

97

3
1

3

s t

(3, 100)

(3, 100) (3, 100)

(3, 100)

s t

97

Graph (with flow) Residual graph

3
(0, 1)

3
0

97 97

97

3
1

3

Now repeat 194 more times... 
for a total of 200 = max-flow iterations.

Modifying Ford-Fulkerson
(Edmonds-Karp)

Create an empty map F.
for (every edge (vi, vj) in E):
 if ((vj, vi) is not in E):
 Add (vj, vi) to E with capacity 0.
 F[(vi, vj)] = 0;
while (true):
 Let p = an augmenting path in residual of G.
 If no p exists, break;

 fm = minimum weight of edge in p.
 Update flow along edges of p by fm.

Ford-Fulkerson Algorithm  
(for a graph G = (V, E), source s, sink t)

Can be any augmenting path.

Create an empty map F.
for (every edge (vi, vj) in E):
 if ((vj, vi) is not in E):
 Add (vj, vi) to E with capacity 0.
 F[(vi, vj)] = 0;
while (true):
 Let p = an (edge-length-)shortest augmenting path  
 in residual of G.
 If no p exists, break;
 fm = minimum weight of edge in p.
 Update flow along edges of p by fm.

Edmonds-Karp Algorithm  
(for a graph G = (V, E), source s, sink t)

Find via BFS

s t

s t

1 20

3

(0, 2)

(0, 1)

(0, 3)

(0, 1)

(0, 3)

(0, 2)

(0, 2)

2

0

3

0

0

0

1

0

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

1 20

3

(0, 2)

(0, 1)

(0, 3)

(0, 1)

(0, 3)

(0, 2)

(0, 2)

2

0

3

0

0

0

1

0

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

1 20

3

(0, 2)

(1, 1)

(1, 3)

(0, 1)

(0, 3)

(1, 2)

(0, 2)

2

0

3

0

0

0

1

0

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

0 11

3

(0, 2)

(1, 1)

(1, 3)

(0, 1)

(0, 3)

(1, 2)

(0, 2)

2

0

2

1

0

1

1

0

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

0 11

3

(0, 2)

(1, 1)

(1, 3)

(0, 1)

(0, 3)

(1, 2)

(0, 2)

2

0

2

1

0

1

1

0

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

0 11

3

(1, 2)

(1, 1)

(1, 3)

(1, 1)

(1, 3)

(1, 2)

(0, 2)

2

0

2

1

0

1

1

0

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

0 11

2

(1, 2)

(1, 1)

(1, 3)

(1, 1)

(1, 3)

(1, 2)

(0, 2)

1

1

2

1

1

1

0

1

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

0 11

2

(1, 2)

(1, 1)

(1, 3)

(1, 1)

(1, 3)

(1, 2)

(0, 2)

1

1

2

1

1

1

0

1

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(0, 1)

s t

s t

0 11

2

(2, 2)

(1, 1)

(2, 3)

(1, 1)

(1, 3)

(2, 2)

(0, 2)

1

1

2

1

1

1

0

1

0
2

Input graph:

Residual graph: 1

(0, 1)

00 1

(1, 1)

s t

s t

0 02

2

(2, 2)

(1, 1)

(2, 3)

(1, 1)

(1, 3)

(2, 2)

(0, 2)

0

2

1

1

1

2

0

1

0
2

Input graph:

Residual graph: 1

(0, 1)

01 0

(1, 1)

s t

(0, 100)

(0, 100) (0, 100)

(0, 100)

s t

100

Graph (with flow) Residual graph

0
(0, 1)

0
0

100 100

100

0
1

0

s t

(0, 100)

(0, 100) (0, 100)

(0, 100)

s t

100

Graph (with flow) Residual graph

0
(0, 1)

0
0

100 100

100

0
1

0

s t

(100, 100)

(0, 100) (0, 100)

(100, 100)

s t

100

Graph (with flow) Residual graph

0
(0, 1)

0
0

100 100

100

0
1

0

s t

(100, 100)

(0, 100) (0, 100)

(100, 100)

s t

100

Graph (with flow) Residual graph

0
(0, 1)

100
0

0 0

100

0
1
100

s t

(100, 100)

(0, 100) (0, 100)

(100, 100)

s t

100

Graph (with flow) Residual graph

0
(0, 1)

100
0

0 0

100

0
1
100

s t

(100, 100)

(100, 100) (100, 100)

(100, 100)

Graph (with flow) Residual graph

(0, 1) t

100

0

100
0

0 0

100

0
1
100

s

s t

(100, 100)

(100, 100) (100, 100)

(100, 100)

s t

0

Graph (with flow) Residual graph

100
(0, 1)

100
0

0 0

0

100
1
100

s t

(100, 100)

(100, 100) (100, 100)

(100, 100)

s t

0

Graph (with flow) Residual graph

100
(0, 1)

100
0

0 0

0

100
1
100

Only 2 iterations.

Edmonds-Karp 
Running Time

Create an empty map F.

for (every edge (vi, vj) in E):

 if ((vj, vi) is not in E):

 Add (vj, vi) to E with capacity 0.

 F[(vi, vj)] = 0;

while (true):

 Let p = an (edge-length-)shortest augmenting path  
 in residual of G.

 If no p exists, break;

 fm = minimum weight of edge in p.

 Update flow along edges of p by fm.

Edmonds-Karp Algorithm  
(for a graph G = (V, E), source s, sink t)

How many 
iterations?

Progress in Augmenting Paths
Lemma: each time the flow is increased,  
an edge reaches capacity.

s t

1 20

2(1, 2)

(0, 1)

(0, 3)

(1, 1)

(1, 3)

(0, 2)

(0, 2)

1

1

3

0

1

0

0

1

0
2

1(0, 1) 00 1(0, 1) s t

Progress in Augmenting Paths
Lemma: each time the flow is increased,  
an edge reaches capacity.

Lemma: each time an edge (vi, vj) reaches capacity,  
the augmenting path from s to (vi, vj) is longer.

Progress in Augmenting Paths
Lemma: each time the flow is increased,  
an edge reaches capacity.

Lemma: each time an edge (vi, vj) reaches capacity,  
the augmenting path from s to (vi, vj) is longer.

So each edge reaches capacity ≤ n times.

So in total, edges reach capacity ≤ nm times.

So ≤ nm iterations.

Create an empty map F.

for (every edge (vi, vj) in E):

 if ((vj, vi) is not in E):

 Add (vj, vi) to E with capacity 0.

 F[(vi, vj)] = 0;

while (true):

 Let p = an (edge-length-)shortest augmenting path  
 in residual of G.

 If no p exists, break;

 fm = minimum weight of edge in p.

 Update flow along edges of p by fm.

Edmonds-Karp Algorithm  
(for a graph G = (V, E), source s, sink t)

ϴ(n)

ϴ(n + m)

ϴ(m)

O(nm2 + n2m)
total

ϴ(n)

Create an empty map F.

for (every edge (vi, vj) in E):

 if ((vj, vi) is not in E):

 Add (vj, vi) to E with capacity 0.

 F[(vi, vj)] = 0;

while (true):

 Let p = an (edge-length-)shortest augmenting path  
 in residual of G.

 If no p exists, break;

 fm = minimum weight of edge in p.

 Update flow along edges of p by fm.

Edmonds-Karp Algorithm  
(for a graph G = (V, E), source s, sink t)

ϴ(n)

ϴ(n + m)

ϴ(m)

O(nm2 + n2m)
total

ϴ(n)

O((n + m)nm) time

