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Rules of flows

c
fFor each edge, flow on edge is  

less than edge's capacity 

For non-source/sink vertices,  
in-flow and out-flow of  

node are equal.

f1

f2

f3

f5

f1 + f2 = f3 + f4 + f5

f ≤ c

Out-flow of source and  
in-flow of sink are equal. 

f1

f2

f3

f4

f4

f1 + f2 = f3 + f4
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Flows in undirected graphs

c
f

c

f1
c

f2

Which direction is flow? Directed equivalent:

if f1 > f2

f1 - f2

if f1 < f2

f2 - f1

if f1 = f2

Three cases of equivalent flows:
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For any graph with vertices s and t

maximum flow 
from s to t

minimum edge cut  
separating s from t=



Max-flow min-cut theorem
For any graph with vertices s and t

maximum flow 
from s to t

minimum edge cut  
separating s from t=



Bipartite  
Perfect Matching
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Residual Graphs
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Ford-Fulkerson 
Maximum Flow 

Algorithm
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Create an empty map F. 
for (every edge (vi, vj) in E):  
    if ((vj, vi) is not in E): 
        Add (vj, vi) to E with capacity 0. 
    F[(vi, vj)] = 0; 
while (true): 
    Let p = an augmenting path in residual of G. 
    If no p exists, break; 

    fm = minimum weight of edge in p. 
    Update flow along edges of p by fm.

Ford-Fulkerson Algorithm  
(for a graph G = (V, E), source s, sink t)

Setup

Increase flow 
via aug. paths



Ford-Fulkerson 
Running Time



Ford-Fulkerson Algorithm  
(for a graph G = (V, E), source s, sink t)

ϴ(n) 

ϴ(n+m) 

ϴ(m) 

O(fmax*(n+m)) 
total

Create an empty map F. 

for (every edge (vi, vj) in E):  

    if ((vj, vi) is not in E): 

        Add (vj, vi) to E with capacity 0. 

    F[(vi, vj)] = 0; 

while (true): 

    Let p = an augmenting path in residual of G. 

    If no p exists, break; 

    faug = minimum weight of edge in p. 

    Update flow along edges of p by faug.
ϴ(n) 

, and max flow fmax



Ford-Fulkerson Algorithm  
(for a graph G = (V, E), source s, sink t)

ϴ(n) 

ϴ(n+m) 

ϴ(m) 

O(fmax*(n+m)) 
total

Create an empty map F. 

for (every edge (vi, vj) in E):  

    if ((vj, vi) is not in E): 

        Add (vj, vi) to E with capacity 0. 

    F[(vi, vj)] = 0; 

while (true): 

    Let p = an augmenting path in residual of G. 

    If no p exists, break; 

    faug = minimum weight of edge in p. 

    Update flow along edges of p by faug.
ϴ(n) 

, and max flow fmax

O(fmax*(n + m)) time
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Now repeat 194 more times... 
for a total of 200 = max-flow iterations.



Modifying Ford-Fulkerson 
(Edmonds-Karp)



Create an empty map F. 
for (every edge (vi, vj) in E):  
    if ((vj, vi) is not in E): 
        Add (vj, vi) to E with capacity 0. 
    F[(vi, vj)] = 0; 
while (true): 
    Let p = an augmenting path in residual of G. 
    If no p exists, break; 

    fm = minimum weight of edge in p. 
    Update flow along edges of p by fm.

Ford-Fulkerson Algorithm  
(for a graph G = (V, E), source s, sink t)

Can be any augmenting path.



Create an empty map F. 
for (every edge (vi, vj) in E):  
    if ((vj, vi) is not in E): 
        Add (vj, vi) to E with capacity 0. 
    F[(vi, vj)] = 0; 
while (true): 
    Let p = an (edge-length-)shortest augmenting path  
    in residual of G. 
    If no p exists, break; 
    fm = minimum weight of edge in p. 
    Update flow along edges of p by fm.

Edmonds-Karp Algorithm  
(for a graph G = (V, E), source s, sink t)

Find via BFS
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Only 2 iterations.



Edmonds-Karp 
Running Time



Create an empty map F. 

for (every edge (vi, vj) in E):  

    if ((vj, vi) is not in E): 

        Add (vj, vi) to E with capacity 0. 

    F[(vi, vj)] = 0; 

while (true): 

    Let p = an (edge-length-)shortest augmenting path  
    in residual of G. 

    If no p exists, break; 

    fm = minimum weight of edge in p. 

    Update flow along edges of p by fm.

Edmonds-Karp Algorithm  
(for a graph G = (V, E), source s, sink t)

How many 
iterations?



Progress in Augmenting Paths
Lemma: each time the flow is increased,  
an edge reaches capacity.
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Progress in Augmenting Paths
Lemma: each time the flow is increased,  
an edge reaches capacity.

Lemma: each time an edge (vi, vj) reaches capacity,  
the augmenting path from s to (vi, vj) is longer.



Progress in Augmenting Paths
Lemma: each time the flow is increased,  
an edge reaches capacity.

Lemma: each time an edge (vi, vj) reaches capacity,  
the augmenting path from s to (vi, vj) is longer.

So each edge reaches capacity ≤ n times.

So in total, edges reach capacity ≤ nm times.

So ≤ nm iterations.



Create an empty map F. 

for (every edge (vi, vj) in E):  

    if ((vj, vi) is not in E): 

        Add (vj, vi) to E with capacity 0. 

    F[(vi, vj)] = 0; 

while (true): 

    Let p = an (edge-length-)shortest augmenting path  
    in residual of G. 

    If no p exists, break; 

    fm = minimum weight of edge in p. 

    Update flow along edges of p by fm.

Edmonds-Karp Algorithm  
(for a graph G = (V, E), source s, sink t)

ϴ(n) 

ϴ(n + m) 

ϴ(m) 

O(nm2 + n2m) 
total

ϴ(n) 



Create an empty map F. 

for (every edge (vi, vj) in E):  

    if ((vj, vi) is not in E): 

        Add (vj, vi) to E with capacity 0. 

    F[(vi, vj)] = 0; 

while (true): 

    Let p = an (edge-length-)shortest augmenting path  
    in residual of G. 

    If no p exists, break; 

    fm = minimum weight of edge in p. 

    Update flow along edges of p by fm.

Edmonds-Karp Algorithm  
(for a graph G = (V, E), source s, sink t)

ϴ(n) 

ϴ(n + m) 

ϴ(m) 

O(nm2 + n2m) 
total

ϴ(n) 

O((n + m)nm) time


