Flows

A flow of 1

A flow of 1

A flow of 2

Rules of flows

For each edge, flow on edge is less than edge's capacity

For non-source/sink vertices, in-flow and out-flow of node are equal.

Out-flow of source and in-flow of sink are equal.

Flows in undirected graphs

Which direction is flow?

Directed equivalent:

Three cases of equivalent flows:

if $f_{1}>f_{2}$

if $f_{1}<f_{2}$

if $f_{1}=f_{2}$

Flow Notation

Maximum Flows

Maximum flow of 3

Maximum flow of 3

Maximum flow of 3

Maximum flow of 7

Maximum flow of 7

Minimum Cuts

Minimum edge cut of 3

Minimum edge cut of 3

Minimum edge cut of 7

For any graph with vertices s and t

Max-flow min-cut theorem

For any graph with vertices s and t

maximum flow from s to t

minimum edge cut separating s from t

Bipartite Perfect Matching

Residual Graphs

Graph (with flow)

Residual graph

Augmenting path
(path from s to t along >0-weight edges)

Graph (with flow)

Residual graph

Augmenting path
(path from s to t along >0-weight edges)

Graph (with flow)

Residual graph

Graph (with flow)

Residual graph

Augmenting path (path from s to t along >0-weight edges)

Graph (with flow)

Residual graph

Augmenting path
(path from s to t along >0-weight edges)

Graph (with flow)

Residual graph

Graph (with flow)

Residual graph

No augmenting path (flow is maximum)

Edges (with flow)

Residual edges

Net flow $f(a, b)=f$ $f(b, a)=-f$

Net flow $f(a, b)=f_{1}-f_{2}$

$$
f(b, a)=f_{2}-f_{1}
$$

Edges (with flow)

Residual edges

Net flow $f(a, b)=0$ $f(b, a)=0$

Net flow $f(a, b)=0$ $f(b, a)=0$

$$
1(0, a)=0
$$

$0-0=0$

Edges (with flow)

Residual edges

Net flow $f(a, b)=1$ $f(b, a)=-1$

Net flow $f(a, b)=0$ $f(b, a)=0$

$$
1(0, a)=0
$$

$0-(-1)=1$

Edges (with flow)

Residual edges

Net flow $f(a, b)=2$ $f(b, a)=-2$

Net flow $f(a, b)=0$ $f(b, a)=0$

$0-(-2)=2$

$$
1(0, a)=0
$$

Edges (with flow)

Residual edges

Net flow $f(a, b)=2$

$$
f(b, a)=-2
$$

Net flow $f(\mathrm{a}, \mathrm{b})=2$

$$
f(b, a)=-2
$$

Edges (with flow)

Residual edges

Net flow $f(a, b)=2$

$$
f(b, a)=-2
$$

Net flow $f(a, b)=3$

$$
f(b, a)=-3
$$

$0-(-2)=2$

Edges (with flow)

Net flow $f(a, b)=2$

$$
f(b, a)=-2
$$

Net flow $f(a, b)=-1$

$$
f(b, a)=1
$$

Residual edges

$0-(-2)=2$

Ford-Fulkerson Maximum Flow
 Algorithm

Residual graph:

Residual graph:

Ford-Fulkerson Algorithm (for a graph $G=(V, E)$, source s, sink $t)$

Create an empty map F.
for (every edge ($\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$) in E):
if $\left(\left(v_{j}, v_{i}\right)\right.$ is not in $\left.E\right)$:
Add $\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{i}}\right)$ to E with capacity 0.
$F\left[\left(v_{i}, v_{j}\right)\right]=0 ;$
while (true):
Let $\mathrm{p}=$ an augmenting path in residual of G .
If no p exists, break;
$f_{m}=$ minimum weight of edge in p.
Update flow along edges of p by f_{m}.

Increase flow via aug. paths

Ford-Fulkerson Running Time

Ford-Fulkerson Algorithm (for a graph $G=(V, E)$, source s, sink t)

Create an empty map F.
for (every edge $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ in E$)$:

$$
\begin{aligned}
& \text { if }\left(\left(v_{j}, v_{i}\right) \text { is not in } E\right) \text { : } \\
& \qquad \text { Add }\left(v_{j}, v_{i}\right) \text { to } E \text { with capacity } 0 . \\
& F\left[\left(v_{i}, v_{j}\right)\right]=0 ;
\end{aligned}
$$

while (true):
Let $\mathrm{p}=\mathrm{an}$ augmenting path in residual of G .
If no p exists, break;

Ford-Fulkerson Algorithm
 (for a graph G = (V, E), source s, sink t)

and max flow $f_{\text {max }}$
Create an empty map F
for (every edge $\left(v_{i}, v_{j}\right)$ in $\left.E\right)$:

Add $\left(V_{j}, v_{i}\right)$ to E with capacity 0.

$$
\mathrm{O}\left(\mathrm{f}_{\max }{ }^{\star}(\mathrm{n}+\mathrm{m})\right) \text { time }
$$

Let $p=$ an augmenting path in residual of G.

If no p exists, break;
$f_{\text {aug }}=$ minimum weight of edge in p.

Update flow along edges of p by $f_{\text {aug }}$

Graph (with flow)

Residual graph

Now repeat 194 more times...
for a total of $200=$ max-flow iterations.

Modifying Ford-Fulkerson (Edmonds-Karp)

Ford-Fulkerson Algorithm (for a graph $G=(V, E)$, source s, sink $t)$

Create an empty map F.
for (every edge ($\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$) in E):
if $\left(\left(v_{j}, v_{i}\right)\right.$ is not in $\left.E\right)$:
Add $\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{i}}\right)$ to E with capacity 0.
$F\left[\left(v_{i}, v_{j}\right)\right]=0 ;$
while (true): Can be any augmenting path.
Let $p=$ an augmenting path in residual of G.
If no p exists, break;
$f_{m}=$ minimum weight of edge in p.
Update flow along edges of p by f_{m}.

Edmonds-Karp Algorithm (for a graph $G=(V, E)$, source s, sink t)

Create an empty map F.
for (every edge ($\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$) in E):
if $\left(\left(v_{j}, v_{i}\right)\right.$ is not in $\left.E\right)$:
Add $\left(v_{j}, v_{i}\right)$ to E with capacity 0.
$\mathrm{F}\left[\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right]=0 ;$
while (true):

Find via BFS

Let $p=$ an (edge-length-)shortest augmenting path in residual of G.

If no p exists, break;
$f_{m}=$ minimum weight of edge in p.
Update flow along edges of p by f_{m}.

Residual graph:

Residual graph:

Graph (with flow)

Residual graph

Graph (with flow)
Residual graph

Only 2 iterations.

Edmonds-Karp Running Time

Edmonds-Karp Algorithm (for a graph G = (V, E), source s, sink t)

Create an empty map F.
for (every edge $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ in E):
if $\left(\left(v_{j}, v_{i}\right)\right.$ is not in $\left.E\right)$:
Add $\left(v_{j}, v_{i}\right)$ to E with capacity 0.
$F\left[\left(v_{i}, v_{j}\right)\right]=0 ;$
while (true):
Let p = an (edge-length-)shortest augmenting path in residual of G .

If no p exists, break; iterations?
$f_{m}=$ minimum weight of edge in p.
Update flow along edges of p by f_{m}.

Progress in Augmenting Paths

Lemma: each time the flow is increased, an edge reaches capacity.

Progress in Augmenting Paths

Lemma: each time the flow is increased, an edge reaches capacity.

Lemma: each time an edge ($\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$) reaches capacity, the augmenting path from s to $\left(v_{i}, v_{j}\right)$ is longer.

Progress in Augmenting Paths

Lemma: each time the flow is increased, an edge reaches capacity.

Lemma: each time an edge ($\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$) reaches capacity, the augmenting path from s to $\left(v_{i}, v_{j}\right)$ is longer.

So each edge reaches capacity $\leq n$ times.
So in total, edges reach capacity $\leq n m$ times.
So $\leq n m$ iterations.

Edmonds-Karp Algorithm (for a graph $G=(V, E)$, source s, sink $t)$

Create an empty map F.

$$
I \theta(n)
$$

for (every edge $\left(v_{i}, v_{j}\right)$ in $\left.E\right)$: if $\left(\left(v_{j}, v_{i}\right)\right.$ is not in $\left.E\right)$:

Add ($\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{i}}$) to E with capacity 0 . $\mathrm{F}\left[\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right]=0 ;$
while (true):
Let $\mathrm{p}=$ an (edge-length-)shortest augmenting path in residual of G .

If no p exists, break;
$f_{m}=$ minimum weight of edge in p.
Update flow along edges of p by f_{m}.

$\mathrm{O}\left(\mathrm{nm}^{2}+\mathrm{n}^{2} \mathrm{~m}\right)$ total
$\left.L_{\theta(n+m)}\right]_{\theta(n)}$

Edmonds-Karp Algorithm
 (for a graph G = (V, E), source s, sink t)

Create an empty map F.
for (every edge ($\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}$) in E):
if $\left(\left(v_{j}, v_{i}\right)\right.$ is not in $\left.E\right)$:
Add' (V_{j}, V_{i}) to E with capacity 0 .
$\mathrm{O}((\mathrm{n}+\mathrm{m}) \mathrm{nm})$ time

Let $p=a n$ (edge-length-)shortest augmenting path
in residual of G.
If no p exists, break;
$f_{m}=$ minimum weight of edge in p.
Update flow along edges of p by f_{m}

