A Hypertext-Based Approach to Computer Science
Education Unifying Programming Principles

WENDY A. L. FOWLER AND RICHARD H. FOWLER
Department of Mathematics and Computer Science
University of Texas-Pan American, Edinburg, TX 78539-2999, USA

INTRODUCTION

Introductory computer science courses must provide students with both
a theoretical foundation for study of the discipline and more concrete skills
necessary to begin implementing programs. To achieve these goals, stu-
dents must learn general problem solving skills, algorithm design, and an
implementation language. Additionally, software engineering and program
design techniques should be learned from the outset, and the beginning
student must learn the basic software tools for programming and design.
Maintaining a balance and perspective among these somewhat disparate
skills is one of the principal challenges of the introductory courses.

A number of studies have investigated novice programming in general
and the more specific issues of teaching programming in a computer sci-
ence curriculum (Baile, 1991; Soloway & Spohrer, 1989; Koffman, Miller
& Wardle, 1984). The Association for Computing Machinery’s Computing
Curricula 1991 (Tucker, 1990) points out that programming encompasses
all of the activities involved in the description, development, and im-
plementation of algorithmic solutions to problems. The inherent difficulty
in teaching program and algorithm design at the same time as program
implementation is central to the issues of teaching programming. This dif-
ficulty is exacerbated by introductory computer science courses and texts
that structure the presentation of design and programming principles
around the introduction of a particular programming language. It is diffi-
cult to avoid this structuring, but for the student learning his or her first
programming language there is an understandable tendency to loose sight
of abstract concepts when trying to implement an algorithm in a particular

language.

The challenge of teaching programming in the introductory courses
lies in simultaneously teaching 1) general problem solving skills, 2) al-
gorithm design, 3) program design, 4) a programming language in which
to implement algorithms as programs, and 5) software tool use that sup-
ports design and implementation. Attempts to separate the teaching of
these skills have typically focused on separating program design from the
other facets. In general, this has resulted in students’ acquiring better de-
sign skills (Baile, 1991).

The separation of program design and description from im-
plementation is one of goals of computer aided software engineering
(CASE) (Bochm, 1981). This suggests that commercially available CASE
tools might play a role in the introductory computer science courses (Sid-
bury, Plishka & Beidler, 1989). Yet, commercially available CASE tools
have some potential drawbacks: complexity of the CASE environment, an
interaction style possibly different from other elements of the programming
environment, documentation that is not appropriate for introductory stu-
dents (Mynatt & Leventhal, 1990), and expense for both the software itself
and the supporting hardware (Kiper, Lutz & Etlinger, 1992).

Student oriented software tools have been implemented that overcome
some of these drawbacks. In a system designed for the beginning student
the implicit enforcement of design methodology characteristic of CASE
systems can be more closely matched to the needs of the student. Car-
rasquel, Roberts, and Pane (1989) describe a visually based system de-
signed for students in introductory courses. The system allows students to
enter and edit a structured design that specifies data and control flow
among modules. The system can also interact with other programs for data
display and code entry. Schweitzer and Teel (1989) developed a system for
teaching structured design that automates several aspects of design and
code generation. The SODA system (Hohmann, Guzdial, & Soloway,
1992) closely ties students to a computer aided design model of program
design and development. Programs that support student’s design and im-
plementation tasks in the introductory courses are a natural extension of a
tool based approach automating some aspects of programming.

AN ENVIRONMENT INTEGRATING DESIGN, PROGRAMMING LANGUAGE,
AND HYPERTEXT

The environment we are using for our introductory programming
courses provides students with a closely integrated suite of pedagogically

oriented programs. The programs and the interrelationships -among pro-
grams are designed to support the independent development of each of the
skills necessary for programming, while keeping more abstract concepts of
computer science in sight. The environment integrates design and pro-
gramming tools with a hypertext of lecture material and laboratory exercis-
es.

Figure 1 below shows the principal components of the environment.
Design Tool, in the upper left corner, is a student oriented CASE tool
focusing on visually based structured program design. It serves as a vehicle
to develop skills in problem solving by problem decomposition and
incorporates a pseudocode language designed for the beginning student.

The hypertext notebook is shown in the lower right of the screen. It in-
cludes all material presented in classroom lectures organized as hypertext.
The notebook is used concurrently with Design Tool and the programming
language environment and incorporates the materials used in student
laboratory exercises. Each student has his or her own copy that can be an-
notated. The Pascal programming environment is shown in the upper
right. Information can be easily transferred among each component of the
environment.

Design Tool

Design Tool provides a visually based system for problem solving us-
ing problem decomposition, program design via structure charts, data flow
checking, Pascal code generation, and report production. To facilitate sepa-
rating the tasks students must master in learning to program, students’ first
experiences with the laboratory’s environment consist of a series of exer-
cises using Design Tool in problem decomposition. In completing design
exercises, students are introduced to the diagramming and report writing
facilities of Design Tool, as well as the general windowing and editing
environment, before learning the Pascal language facilities.

Design Tool provides general tree display facilities for module creation
and deletion, reordering and repositioning of modules, collapsing and ex-
panding subtrees and windows, and various layouts of the tree structure. As
shown in Figure 1, an overview diagram of the entire structure is always in
view orienting the displayed modules to the complete program design. The
overview also provides navigation facilities for moving within the module
structure. The display facilities for panning, using the overview, and zoom-
ing in and out on parts of the structure are designed to facilitate the stu-
dent’s keeping track of the overall design during development.

Design Tools - [GIDT\CHECKBK.DT]

Turbo Pascal C [—}

[i

file Edit Module Ylew Code Information Help

Ble Edit Search Run Complle Qptions Window

Overview 2

[=

|7 nuﬂummauammmumummummmumm

CALC_NEW_BALANCE

cMpwicheckbk pas ﬁ

NPUT: Trans_Type:
NPUT/QUTPUT: Balance : Real
OUTPUT (SCREEN): Balance:Real

e user's cholce from the menu Is used lo determine I
ow the balance Is updaled. For checks and deposits, the m
sser must type In an amount. Affer the new balance has
een calculaled It Is displayed to the user.

Char

rnoczwnt C€EX_VULE (Amout ! Reeli Ver OX 1 Boolesn)t

o Check to see 17 the svount Is) .09, and sot OX TRE

| £f it is. or FALSE if it Iz not. #)
|
1| BECIN

TRE
i LT OX - FRLSES
| o1

W PROPT_PND_CET (UMt Amourt | Peal)

r
GET_VALUE
is module will be called when the user has
ndicated a check or d
o get further information from the user about
e amount of the check or deposit.

O«K_TRANS_TYPE

UTPUT: Amount Real

IL N is then B

—
PROMPT_AND_GET

Display a message lo the user lo type in the

famount. and read In the user's input.

[OUTPUT: Amount : Real
NPUT (KEYBOARD): Amount: Real

PASCAL
PROCEDURE PROMPT_AND_GET (VAR: Amount :
eal)

= Display a message to the user o type In lhe amount,
d read in lhe user’s inpul. «)

EGIN
Write (‘Enter the dofRar amount (with no §): " |
Readin (Amount |
ND;
[= (]
THes
IS ﬂﬁ iy et
230 Y]
Mansgs Hag

0

CHECK_VALUE

PASCAL

| Ked ﬂ'lJlly s wwssage te the user to type in the ewount.
i in the user’s Input. =)

TN
Write (‘Eter the colle- smcuw (with ro $31 °)3
I 04 Reedln (Aecurt)1

Il ProceDUwE CET_URLLE WA Amoure 1 Resl s
| o This woile will be ;n“d when the user hes Indiceted
heck or deoosit

. I lch-n necessery to get further
e the sroint oF the cheth

ERLN TR THAR] T T AR

e
[F
it

= : l’méram?eslbﬁ&G—D’r&gré}lmﬁng Ilcralion‘ ''''''
QUICK LOOK: WHILE

The while foop is the most general of Pascal's fferative control structures and may be
used lo wrile both event controffed and count controlled foops. Termination of the loop
is based on evaluation of a termination condition The state of the condition is lested
prior to execution of e body of the loop If the condition is true the loop is execuled and
the state of the condilion is reevatuated However, if the condition is fafse, the specified
process is skipped and the nexi program stalement is execuled When using & while loop,
you are repsonsible for irtiakzing and updaling the appropriste variables lo assure loop
lermination as desired

EXAMPLES

Oevent-Controlled

(* Converl degrees Fatwenheil lo Celsius until user opts to terminate *)
terminate = N.
WHILE terminete <> Y' DO
BEGIN
wrilein(Enter degrees in Fahrenheil),
readin{F ahrenheit),
celsius := (5 W9 0) * (Fatwerheil - 32);
Writeln{Fatreheit, ‘degrees fetwenheil is *, Celsius,' degrees Celsius’),
Writeln{'Again? Y or N').
Rmc?n(lcfmnnle)

--IEIMI’.'I---

¥

=%

Figure 1. A typical screen showing the components of the student environment.” The upper left window is the
student oriented program design and problem solving tool showing an overview of the complete design and the
student’s arrangement of the design and code. The upper right window is the Pascal editor with code transferred
from Design Tool. The hypertext in the lower right is opened to a section giving a tutorial overview of a pro-

grammmg construct.

A student oriented pseudocode language, centering on data flow and
consistency, is available in Design Tool. A complete Pascal program mod-
ule can be generated automatically from the pseudocode. Default values for
language elements allow the student to design moderately complex prob-
lem solutions and generate most of the Pascal code very early. These early
exercises serve to reinforce the lesson that programming focuses on prob-
lem solution and design and not the particular programming language or
hardware. CASE software is typically designed to tie its user, more or less
rigidly, to a particular design methodology (Vessey, Jarvenpaa & Tractin-
sky, 1992). In Design Tool several constraint and consistency checking op-
tions can be used to enforce a particular methodology. For example, during
the early weeks of the course, modules can only be created using a top
down methodology. The student is required to start at the top of the module
hierarchy, only adding modules directly below existing modules. Relaxing
various constraints enforced by the system, regarding the availability and
consistency of data, gives the user more freedom in the design of programs.
With no module creation or data flow constraints, the system can be used
as a sketchpad in creating and connecting modules. Data flow and consis-
tency for module sets can be checked at the request of the user. Finally, the
student’s design created in Design Tool can be printed and used as his or
her written design document. Subsequently, the design is used as the basis
of the implementation. The information in each module can be copied di-
rectly into the program file when code is generated, serving as documenta-
tion and a guide for the developing program.

Hypertext Notebook

The hypertext serves to integrate concepts introduced in the classroom
and text with the design and programming environment. The notebook
contains the course lecture material and supplements: course syllabus,
schedule, laboratory exercises, programming assignments, and a large set
of designs and example programs. The system in which the hypertext is
implemented allows the direct transfer of information to both Design Tool
and the programming environment. Laboratory exercises are based on
transferring programs and designs from the notebook to the programming
environment. Students are required to exploit the integrated nature of the
learning environment using Design Tool to interactively examine program
structure by executing example programs. Students are also encouraged to
annotate their copies of the hypertext for study.

The hypertext is structured to reflect the sequence and scope of lec-
tures. General lecture topics serve to organize the text as units. Within
units, main lecture topics serve as organization points from which students
can explore concepts in greater detail. Each unit provides numerous exam-
ples illustrating newly introduced concepts that build on previous examples
and concepts. Students can experiment with the programs by copying them
directly into the programming environment, and then compiling and exe-
cuting the code. All examples used in the lecture are in the hypertext so
that during lecture students can focus on a program’s explanation and
discussion and later use the hypertext to review and annotate code. One el-
ement of the hypertext is the Quick Look screen, as shown in Figure 1. A
Quick Look provides a brief explication of a concept introduced in class
and the text. The hypertext includes a series of these screens for the control
and data structures presented in the course. These screens provide a readily
available and easy to use help facility for programming language semantics
and data structure concepts analogous to the programming language syntax
help facilities included in most programming language environments. The
screens can be displayed together with corresponding laboratory exercises
to help students gain a greater understanding of the implementation of con-
cepts. Key concepts on the Quick Look screens are linked to more detailed
information in the hypertext.

The development of the hypertext was in part motivated by a curricu-
lum restructuring following the suggestions of the Association for Comput-
ing Machinery’s Curricula ‘91. During the course of authoring the hyper-
text, frequent referral to Curricula ‘91 suggested that for our own use it
might be useful to have that document on-line. To meet this need, the
printed document was scanned and converted to hypertext. We maintain a
separate instructor’s copy of the course hypertext that incorporates links to
the Curricula ‘91 hypertext.

DISCUSSION

The structure of our introductory courses, based on an environment us-
ing a hypertext to integrate skills, is designed to address the challenges
faced by beginning computer science students in developing programming
expertise. The goal of the environment is to facilitate a pedagogy that al-
lows instruction to focus on each of a set of somewhat disparate skills. The
early introduction of program development tools as an integral part of pro-
gram implementation serves as a foundation for a tool based approach used

in more complex software development environments.

Design Tool is the first program students interact with, and the first
weeks of the course focus on developing problem solving skills using prob-
lem decomposition. The use of this visually based environment for problem
solving together with the hypertext is typically greeted with an enthusiasm
that can help overcome some of the natural frustrations in learning any
new software system. The repository of program designs in the hypertext
notebook provides examples of complete designs for study in the early
weeks. The first exposure to the programming language facilities entails
transferring and executing programs from the student’s hypertext note-
book. This is designed to attenuate some of the difficulty in developing
skills using the language facility, a “training wheels” approach.

The code generation facilities of Design Tool are designed to allow
students to focus on algorithm development. Much of the potential for er-
rors in data flow among modules is eliminated by constraint checking in
Design Tool before moving to the implementation facilities. As students
progress to the development of more complex designs, the strictly top down
constraints of problem solving and module development are relaxed. This
allows a design methodology reflecting both top-down and bottom-up pro-
gram development appropriate for module reuse and a different design
methodology. Finally, the hypertext notebook serves to physically and con-
ceptually relate the more abstract concepts introduced in the course to the
details of the design and implementation environment.

Over the past year we have used student questionnaires to assess stu-
dent response to the tools and attitudes towards design and implementation
concepts. Students have also completed pre-test and post-test exercises, and
a standardized series of assignments and exams. Each semester students
are required to complete three design assignments prior to engaging in any
programming. Nine programming assignments are completed, each em-
phasizing specific control and data structures. Each programming assign-
ment must include a preliminary design document. While we have not
completed our evaluation, we present a brief review of our findings to date.

We have seen an improvement in modular design. The number of de-
signs submitted has increased and the quality and completeness of each de-
sign has improved. Students using the suite of tools show an increase in the
efficiency of their programming as measured by time to complete pro-
grams. On the first few programs, time spent designing the solution has in-
creased by 20 to 30 minutes, but the time spent programming has de-
creased on average by one hour. For larger programming assignments, stu-
dents have again increased their design time by 20 to 30 minutes, but have

decreased the time to complete a program by two to five hours. Design
Tool facilitates the design process and provides the students with a frame-
work to organize their problem solution prior to entering the actual coding
phase.

Student use of the hypertext has increased overall utilization of the
laboratory. Though the time spent in programming has decreased, the time
working in lab and experimenting with programming concepts has in-
creased. Students spend a slightly greater number of hours in lab each
week, and the distribution of the time on various activities has changed.
Less time is spent on actual assignments and there is an increase in time
spent investigating the concepts discussed in class, as well as other con-
cepts not yet introduced. It is not uncommon for 10%-20% of the students
include design or programming concepts not yet introduced in lecture in
their programs. This exploration seems to be facilitated by the hypertext
with its easy access to example programs and conceptual information. Stu-
dents have indicated that they find the increasing levels of detail in concept
presentation, the multiple examples of each programming concept, and the
executable examples supporting each concept useful. Not only can they
view the text of the program, but they can copy the programs into the pro-
gramming environment and observe the results of the execution.

FUTURE DIRECTIONS

To further support students in the mastery of design and implementa-
tion skills, we are developing an algorithm animator which will be inte-
grated with the hypertext, Design Tool, and the Pascal programming envi-
ronment. The animator’s visual display of data and control flow will pro-
vide an additional representation of the concepts introduced in the course.
As with the other components of the learning environment, the animator is
designed to supply a bridge between abstract concepts and more concrete
representations.

References

Baile, F K. (1991). Improving the modularization ability of novice program-
mers. ACM SIGCSE Bulletin, 23(1), 277-282.

Boehm, B.W. (1981). Software Engineering Economics. New York: McGraw-
Hill.

Carrasquel, J., Roberts, J., & Pane, J. (1989). The Design Tree: A visual ap-
proach to top-down design and data flow. ACM SIGCSE Bulletin, 21(1),
17-21.

Hohmann, L., Guzdial, M., & Soloway, E. (1992). SODA: A computer-aided
design environment for the doing and learning of software design. Pro-
ceedings of the 4th International Conference, ICCAL ’92: Computer As-
sisted Learning (pp. 307-319). Berlin: Springer-Verlag.

Kiper, J.,, Lutz, M.J., & Etlinger, H.A. (1992). Undergraduate software engi-
neering laboratories: A progress report from two universities. ACM
SIGCSE Bulletin, 24(1), 57-62.

Koffman, E.P., Miller, P.L, & Wardle, C.E. (1984). Recommended curriculum
for CS1: A report on the ACM curriculum task force for CS1. Communi-
cations of the ACM, 27(10) , 998-1001.

Mynatt, B.T., & Leventhal, L. M. (1990). An evaluation of a CASE-based ap-
proach to teaching undergraduate software engineering. ACM SIGCSE
Bulletin, 22(1), 48-52.

Schweitzer, D., & Teel, S.C. (1989). AIDE: An automated tool for teaching
design in an introductory programming course. ACM SIGCSE Bulletin,
21(1), 136-140.

Sidbury, J.R., Plishka, R., & Beidler, J. (1989). CASE and the undergraduate
curriculum. ACM SIGCSE Bulletin, 21(1), 127-130.

Soloway, E. & Spohrer, J.C. (Eds.). (1989). Studying the Novice Programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Tucker, A.B. (Ed.). (1990). Computing Curricula 1991: Report of the ACM/
IEEE-CS Joint Curriculum Task Force. New York: ACM Press.

Vessey, 1., Jarvenpaa, S.I., & Tractinsky, N. (1992). Evaluation of vendor
products: CASE tools as methodology companions. Communications of
the ACM, 35(4), 90-105.

Acknowledgments

Intel Corporation donated equipment and support for the student laboratory.
The graphic display program used in this work was developed under NASA
grant NAG9-551 to the second author. Thanks to Iris Flores for writing and
testing 210 programs and designs, and to Maybeth Shirah for help in convert-
ing Curricula *91 to hypertext.

