
A Hypertext-Based Approach to Computer Science
Education Unifying Programming Principles

WENDY A. L. FOWLER AIiID RICHARD H. FOWLER
Department of Mathematics and Computer Science

University of Texas-Pan American, Edinburg, TX 78539-2999, USA

INTRODUCTION

Introductory computer science courses must provide students with both
a theoretical foundation for study of the discipline and more concrete skills
necessary to begin implementing programs. To achieve these goals, stu-
dents must learn general problem solving skills, algorithm design, and an
implementation language. Additionally, softrrare engineering and program
design techniques should be learned from the outset, and the begrnning
student must learn the basic softrvare tools for progamming and design.
ldaintaining a balance and perspective nmong these somewhat disparate
skills is one of the principal challenges of the introductory courses.

A number of studies have investigated novice progamming in general
and the more specific issues of teaching programming in a computer sci-
ence curriculum @aile, 1991; Soloway & Spohrer, 1989; KoffmarU Mller
& Wardle, 1984). The Association for Computing Machinery's Computing
Curricula 1991 (fucker, 1990) points out that programming encompasses
all of the activities involved in the description, development and im-
plementation of algorithmic solutions to problems. The inherent difficulty
in teaching progam and algorithm design at the same time as program
implementation is central to the iszues of teaching programming. This dif-
ficulty is exacerbated by introductory computer science courses and texts
that structure the presentation of design and programming principles
around the introduction of a particular programming language. It is diffi-
cult to avoid this structuring, but for the student learning his or her first
programming language there is an understandable tendency to loose sight
of abstract concepts when tryrng to implement an atgorithm in a particular
language.

The challenge of teaching programming in the introductory courses
lies in simultaneously teacting 1) general problem solving skills, 2) al-
gorithm desigrr, 3) program design" 4) a programming language in which
to implement algorithms as programs, and 5) software tool use that sup-
ports design and implementation. Attempts to separate the teaching of
these skills have typically focused on separating program design from the
other facets. In general, this has resulted in students' acquiring better de-
sign skills (Baile, l99l).

The separation of prognm design and description from im-
plementation is one of goals of computer aided softrrare engineering
(CASE) (Boehn, l98l). This suggests that commercially available CASE
tools might play a role in the introductory computer science courses (Sid-
bury, Plistrka & Beidler, 1989). Yet commercially available CASE tools
have some potential drawbacks: complexity of the CASE environment, an
interaction style possibly different from other elements of the programming
environment, documentation that is not appropriate for introductory stu-
dents (Mynatt & Leventhal, 1990), and expense for both the software itself
and the supporting hardware (Kiper, Lutz&Etlinger, 1992).

Student oriented software tools have been implemented that overcome
some of these drawbacks. In a system designed for the begrnning student
the implicit enforcement of design methodology characteristic of CASE
systems can be more closely matched to the needs of the student. Car-
rasquel, Roberts, and Pane (1989) describe a visually based system de-
signed for students in introductory courses. The system allows students to
enter and edit a structured design that specifies data and control flow
:rmong modules. The system can also interact with other programs for data
display and code entry. Schweitzer and Teel (1989) developed a system for
teaching structured design that automates several aspects of design and
code generation. The SODA system (Hohmann, Guzdial, & Soloway,
1992) closely ties students to a computer aided design model of program
design and development. Programs that support student's design and im-
plementation tasks in the introductory courses are a natural extension of a
tool based approach automating some aspects of programming.

AN ENVIRONMENT INTEGRATING DESIGN, PROGRAMMING LANGUAGE,
AND HYPERTEXT

The environment we are using for our introductory programming
cours€s provides students with a closely integrated suite of pedagogically

oriented progrirms. The programs and the interrelationships among pro-
grams are designed to zupport the independent development of each of the
skills necess:try for programming, while keeping more abstract concepts of
computer science in sight. The environment integrates design and pro-
gramming tools with a hypertext of lecture material and laboratory exercis-
es.

Figure I below shows the principal components of the environment.
Design Tool, in the upper left corner, is a student oriented CASE tool
focusing on visually based structured prograrn design. It serves as a vehicle
to dwelop skills in problem solving by problem decomposition and
incorporates a pseudocode language designed for the beginning shrdent.

The hypertext notebook is shown in the lower right of the screen. It in-
cludes all material presented in classroom lectures organized as hypertext.
The notebook is used concurrently with Design Tool and the programming
language environment and incorporates the materials used in student
laboratory exercises. Each student has his or her olvn copy that can be an-
notated. The Pascal programming environment is shown in the upper
right. Information can be easily transfened among each component of the
environment.

Design Tool

Design Tool provides a visually based system for problem solving us-
ing problem decompositioru program design via structure charts, data flow
checking, Pascal code generation, and report production. To faciliate sepa-
rating the tasks students must master in learning to program, students' first
experiences with the laboratory's environment consist of a series of exer-
cises using Design Tool in problem decomposition. In completing design
exercises, students are introduced to the diagramming and report writing
facilities of Design Tool, as well as the general windowing and editing
environment before learning the Pascal language facilities.

Design Tool provides general tree display facilities for module creation
and deletion, reordering and repositioning of modtrles, collapsing and ex-
panding subtrees and windows, and various layouts of the tree stnrcture. As
shown in Figure l, an overview diagram of the entire structure is always in
view orienting the displayed modules to the complete prognm design. The
overview also provides navigation facilities for moving within the module
structure. The display facilities for panning, using the overview, and zoom-
ing in and out on parts of the structure are designed to facilitate the stu-
dent's keeping track of the overall design during development.

file f dlt Uodde ylew C..d€ htormauon llelp

the balance ls updalad. foa chacts ond dcposlls, thc
musl i/pc In il amount Allcr lhe nsbaltnco hrs

ll b dlsplayed lo lhe urer.

ffi ffi-RC (b t k tl l- d I hl.stl

., Or.f (c ... ll ab .@. b , a.n. tal ... d ft/(
il ta lr. t a&fr U l. t, 6a. .)

rG!r
It tqr.) l.lE

l E d r - r u
EE q r- F{SEI

ilt

?mUta |Efl-F.O-lEr oilr hdd t L.trt

l. Ot.Dt.t. -...- a. ab 6e a. aF l^ cb ea.
.d . .d t . .b . . c ' . lea . .)

EN
5l t . I ' h - tb 4 l l - d a - l t6 E l r . ' t t
h - ln I b , t

ilt

iGmC E€l-ql.C (m d I hltt

f. ht. dt rttt b ..rtd tu .b E? t. tdlc..d
. #a a to . ta . I . l . ab 6 . . - r a . Pa fva&
ld-rala 1.- ab 6c tu ab & d ab .ta
- d@. .a . . t

r chcct or dcposlt ll b then
gel twlher htormdlon trom th! user rfioul

moql ot lha ch.cl r dcposlt,

Th. i,filr" ,og is 0E rDd larEd ol pEds ,at OF @tlt!, ttutttt ttd Gy ba
used lo trile bolh .v!rl corfolt d dd cooia @itot d bq[. Tqdndff ol tr lo(D
is basod o dabdim ol a a.nt n abD @ndLbtr ltE slato ot ltE codtm ls leded
p.ir lo erocdim ol !E body ol llE l@O ll !E cqrdbm ls 116 !E loa ls @rlgd md
tF stale of 0E csdls is .owdudcd HM. ll !f, cqldlim ls fdsa. lho soacifod
p,coss is slipped md ltF nei p.ogm slalo@l ls ffiLled WlEfl udng ! r{ih loo9.
yw 60 ,epscible tq i.tirlrirlg dd upda0ng fE rpp.oprirt! vtl$hs lo 6sa brp
lstrinslid 6 d€drod

EJ(A''€LES:

OEr.nt{ooirol.d

(' Cffil do9.e6 Fdro.*Eil lo Cdd6 qlil |ff ods lo lqdnde 'l

lerd.rdo := N.
\rvHlLE lrrlncb <> Y OO

EGIN
w{ofl€.ttr do![€os ln Fltrerffi '}.

r!!*{FdrqtEltl.
66s ;r 1J oti 0l' tFrardrd - 32t:
vl,.itot{FdrotEit. '&oroos lsardtFit ls '. Celsl6,' dogrsG CsbluCl:
wrilet{'/q0ain? Y tr M):
Rerdft{tqrirBle).

Dlsplriy ! m?ssagc to ih! 6d lo l)?e h lhr most
h lh! 6q'3lDut rl

w'ltr ('tnte. lhc dolr rtwl twilh no lF 'r

R€adn (Anqnl l

Figure 1. a typical screen showing the components of the student environment.''The upper left window is the
student oriented program design and problem solving tool showing an overview of the complete design and the
student's alrangement of the design and code. The upper right window is the Pascal editor with code transferred
from Design Tool. The hypertext in the lower right is opened to a section giving a tutorial overview of a pro-
gramming construct.

A student oriented pseudocode language, centering on data flow and
consistency, is available in Design Tool. A complete Pascal program mod-
ule can be generated automatically from the pseudocode. Default values for
language elements allow the student to design moderately complex prob-
lem solutions and generate most of the Pascal code very early. These early
exercises serve to reinforce the lesson that programming focuses on prob-
lem solution and design and not the particular programming language or
hardware. CASE software is typically designed to tie its user, more or less
rigrdly, to a particular design methodolory (Vessey, Jarvenpaa & Tractin-
sky, 1992). In Design Tool several constraint and consistency checking op-
tions can be used to enforce a particular methodology. For example, during
the early wee}s of the course, modules can only be created using a top
down methodolory. The student is required to start at the top of the module
hierarchy, only adding modules directly below existing modules. Relaxing
various constraints enforced by the system, regarding the availability and
consistency of data, gives the user more freedom in the design of programs.
With no module creation or data flow constraints, the system can be used
as a sketchpad in creating and connecting modules. Data flow and consis-
tency for module sets can be checked at the request of the user. Finally, the
student's design created in Design Tool can be printed and used as his or
her wriffen design document. Subsequently, the design is used as the basis
of the implementation. The information in each module can be copied di-
rectly into the progrirm file when code is generated, serving as documenta-
tion and a gurde for the developing program.

Hypertext Notebook

The hypertext serves to integrate concepts introduced in the classroom
and text with the design and programming environment. The notebook
contains the course lecture material and supplements: course syllabus,
schedule, laboratory exercises, programming assignments, and a large set
of designs and example programs. The system in which the hlpertext is
implemented allows the direct transfer of information to both Design Tool
and the programming environment. Laboratory exercises are based on
transferring progams and designs from the notebook to the programming
environment. Students are required to exploit the integrated nature of the
learning environment using Design Tool to interactively examine program
stnrcfure by executing example programs. Students are also encouraged to
annotate their copies of the hypertext for study.

The hlpertext is structured to reflect the sequence and scope of lec-
tures. General lecture topics serve to organize the text as units. Within
units, main lecture topics serve as organization points from which students
can explore concepts in greater detail. Each unit provides numerous exam-
ptes illustrating newly introduced concepts ttnt build on previous examples
and concepts. Students can experiment with the programs by copying them
directly into the programming environment, and then compiling and exe-
cuting the code. All examples used in the lecture are in the hypertext so
that during lecture students can focus on a program's explanation and
discussion and later use the hypertext to review and annotate code. One el-
ement of the hlpertext is the Quick Look screen, as shown in Figure 1. A
Quick Look provides a brief explication of a concept introduced in class
and the text. The hypertext includes a series of these screens for the control
and data structures presented in the course. These screens provide a readily
available and easy to use help facility for programming language semantics
and data structure concepts analogous to the programming language syntax
help facilities included in most programming language environments. The
screens can be diqplayed together with corresponding laboratory exercises
to help students gain a grcater understanding of the implementation of con-
cepts. Key concepts on the Quick Look screens are linked to more detailed
information in the hypertext.

The development of the hypertext was in part motivated by a curricu-
lum restructuring following the suggestions of the Association for Comput-
ing lvlachinery's Cunicula 9/. During the coruse of authoring the hyper-
text, frequent referral to Curricala '91 suggested that for our own use it
might be useful to have that document on-line. To meet this need, the
printed document was scanned and converted to hlpertext. We maintain a
separate instnrctor's copy of the course hypertext that incorporates links to
the Curricula' 9 1 hlpertext.

DlscussloN

The structure of our introductory courses, based on an environment us-
ing a hlpertext to integrate skills, is designed to address the challenges
faced by beginning computer science students in developing programming
expertise. The goal of the environment is to facilitate a pedagory that al-
lows instruction to focus on each of a set of somewhat disparate skills. The
early introduction of progam development tools as an integral part of pro-
gram implementation seryes as a foundation for a tool based approach used

in more complex software development environments.
Design Tool is the first program students interact wittt, and the first

weeks of the coluse focus on deniloping problem solving skills using prob-

lem decomposition. The use of this visually based environment for problem

solving together with the hypertext is tpically geeted with an enthusiasm
that can help overcome some of the natural frustrations in learning any

new software system. The repository of program designs in the hlpertext
notebook provides examples of complete designs for study in the tttly
weeks. The first

"*po*r
to the programming langrrage facilities entails

transferring and executing programs from the student's hlpertext note-

book. This is designed to attenuate some of the difficulty in developing
skills using the language facility, a "training wheels" approach.

The code generation facilities of Design Tool are designed to allow
students to focus on algorithm development. Much of the potential for e1-
rors in data flow among modules is eliminated by constraint checking in
Design Tool before tnorriog to the implementation facilities. As shrdents
progress to the developmeni of more complex designs, the strictly top down
constraints of problem solving and module development are relaxed. This

allows a design methodology reflecting both topdown and bottom-up pro'
gram development appropriate for module regse and a difrerent design
methodolory. Finally, the hlpertext notebook serves to physically and con-
ceptuatly relate the more abstract concepts introduced in the course to the

details of the design and implementation environment.
Over the past year we have used student questionnaires to assess shr-

dent respottse to the tools and attitudes towards design and implementation
conceptJ. Students have also completed pre-test and post-test exercises, and
a standardized series of assignments and exaflrs. Each semester students
are required to complete three design assignments prior to engaging in any
programming. Nine programming assignments are completed, each em-
phasizing specific control and data structures. Each programming assign-
ment must include a preliminary design document. While we have not
completed our evaluatiott" *e present a brief review of our findings to date'

We have seen an improvement in modular design. The number of de-
signs submitted has increased and the quality and completeness of each de-
sign has improved. Students using the suite of tools show an increase in the
efticienry of their programming as measured by time to complete pro-
grams. On the nrst iew ptogratni, time spent designing the solution has in-
creased by 2O to 30 minuies, but the time spent programming has de-
creased on average by one hour. For larger progfamming assignments, stu-
dents have again increased their design time by 2O to 30 minutes, but have

decreased the time to complete a program by two to five hours. Design
Tool facilitates the design process and provides the students with a frame-
work to organize their problem solution prior to entering the actual coding
phase.

Student use of the hypertext has increased overall utilization of the
laboratory. Tlrough the time spent in programming has decreased, the time
working in lab and experimenting with programming concepts has in-
creased. Students spend a slightly gteater number of hours in lab each
week, and the distribution of the time on various activities has changed.
Less time is spent on acfual assignments and there is an increase in time
spent investigating the concepts discussed in class, as well as other con-
cepts not yet introduced. It is not unconmon for 107o-20%o of the students
include design or programming concepts not yet introduced in lecture in
their programs. This exploration seems to be facilitated by the hypertext
with its easy access to example programs and concephral information. Stu-
dents have indicated that they Iind the increasing levels of detail in concept
presentation, the multiple examples of each programming concept, and the
executable examples supporting each concept useful. Not only can they
view the text of the progr:Lm, but they can copy the programs into the pro-
gramming environment and observe the results of the execution.

FUTURE DIRECTIONS

To further support students in the mastery of design and implementa-
tion skills, we are developing an algorithm animator which will be inte-
grated with the hypertext, Design Tool, and the Pascal programming envi-
ronment. The animator's visual display of data and control flow will pro-
vide an additional representation of the concepts introduced in the course.
As with the other components of the learning environment, the animator is
designed to supply a bridge between abstract concepts and more concrete
representations.

References

Baile, F.K. (1991). Improving the modularization ability of novice program-
mers. ACM SIGCSE Bulletin, 23(l),277-282.

Boehm, B.W. (1981). Software Engineering Economics. New York: McGraw-
Hill.

Carrasquel, J., Roberts, J., & Pane, J. (1989). The Design Tree: A visual ap-
proach to top-down design and data flow. ACM SIGCSE Bulletin, 2I(l),
t7-2t.

Hohmann, L., Guzdial, M., & Soloway, E. (1992). SODA: A computer-aided
design environment for the doing and learning of software design. Pro-
ceedings of the 4th International Conference, ICCAL '92: Computer As-
s i s te d Le arninS (pp. 307 -3 I 9). Berlin: Springer-Verlag.

Kiper, J., Lutz, M.J., & Etlinger, H.A. (1992). Undergraduate software angi-
neering laboratories: A progress report from two universities. ACM
SICC SE Bulletin, 2 4(l), 57 42.

Koffinan, E.P., Miller,P.L, & Wardle, C.E. (1984). Recommended curriculum
for CSI: A report on the ACM curriculum task force for CSl. Communi-
cations of the ACM, 27(10), 998-1001.

Mynatt, B.T., & Leventhal, L. M. (1990). An evaluation of a CASE-based ap-
proach to teaching undergraduate software engineering. ACM SIGCSE
Bu I Ie tin, 2 2 (l), 48 -52.

Schweitzer,D., & Teel, S.C. (1989). AIDE: An automated tool for teaching
design in an introductory prograrnming course. ACM SIGCSE Bulletin,
2 I (t) ,136-140.

Sidbury, J.R., Plishko, R., & Beidler, J. (1989). CASE and the nndergraduate
curriculum. ACM SIGCSE Bulletin, 2I(l), 127-130.

Soloway, E. & Spohrer, J.C. (Eds.). (1989). Studying the Novice Programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Tucker, A.B. (Ed.). (1990). Comptting Cunicula l99I: Report of the ACM/
IEEE-CS Joint Cuticulum Task Force. New York: ACM Press.

Vessey, I., Jarvanpaa, S.I., & Tractinsky, N. (1992). Evaluation of vendor
products: CASE tools as methodology companions. Communications of
the ACM,35(4), 90-105.

Acknowledgments

Intel Corporation donated equipmant and support for the student laboratory.
The graphic display program used in this work was developed under NASA
grant NAG9-551 to the second author. Thanks to Iris Flores for writing and
testing 210 programs and designs, and to Maybeth Shirah for help in convert-
ing Curricula '91 to hypertext.

