
Efficient Text Content Extraction and Browsing of WWW Documents
using the Abstract Text Viewer

Richard H. Fowler1, Yavuz Tor, David Navarro, and Laura M. Grabowski

Department of Computer Science
University of Texas – Pan American

Edinburg, TX 78539
1fowler@panam.edu

Abstract

The Abstract Text Viewer (ATV) is an integrated

suite of text reading tools for electronic documents
designed to increase efficiency and effectiveness of
content extraction. ATV reads a HTML formatted doc-
ument to create more abstract representations, such as
a heading structure for overviews. The system uses
both well-known techniques for text representation and
novel display and content extraction techniques. In-
itially, documents are displayed with an overview +
detail model. The detail window displays the entire
document text, possibly highlighting keywords, and an
overview window displays document’s headings to-
gether with a semantic summary of each section based
on keyword extraction. The system provides additional
methods to improve readability, such as fish-eye view,
zooming, and highlighting.

1. Introduction

Reading electronically presented text has become as

ubiquitous as the computer itself in research and the
workplace. Electronic documents are easy to distribute
by the support of Internet technology and are increa-
singly widely used to replace paper documents. Elec-
tronic documents facilitate management in terms of
classification, reference, indexing, and searching.
Searching, in particular, can be improved dramatically
with appropriate indexing and retrieval method enabl-
ing users to reach the information they seek in seconds.

The need for electronic text-reading tools, designed
around principles of usability, gains its importance in
meeting the electronic reading needs of a variety of
readers. Semantics of the document plays a significant
role in this regard, since the interface should represent
well and be consistent with the semantics of the docu-
ment.

The standard in navigation when working with two-
dimensional data is scroll bars. Having a “thumb” to

represent where the view currently is in relation to the
entire document. In newer operating systems the thumb
itself has also gone to represent the size of view in rela-
tion to the complete text. Though this is intuitive, it
adds to the overhead of navigating in a large document.
This is caused by the users’ lose of orientation in the
complete document when changing focus to manage
the scroll bar. Another problem with this approach is
that in working with the scroll bars themselves in very
long documents, the thumb becomes almost over-
sensitive to any movement. For example, moving the
thumb down a few pixels might cause a large docu-
ment to scroll down several pages.

Another approach in navigation that attempts to al-
low the user to go where he or she needs in a fast and
comfortable way is rate-based scrolling. A problem
with rate-based scrolling is disorientation of the user.
The text blurring at high speeds causes the user to
loose track of where they currently are, making it more
difficult to get to the desired point in the document.

Hornbæk et. al [4] tested three interfaces, linear, fi-
sheye, and overview+detail, for reading electronic doc-
uments. 20 subjects read scientific documents with
each interface and were tested after the end of the read-
ing. In their experiment, Hornbæk et al. compared how
subjects’ reading activity was supported by a linear,
fisheye, and an overview+detail window. They ana-
lyzed usability differences by the grades of the end-of-
reading test, satisfaction and preference data, and by a
log of the subjects’ interaction with the interfaces.
Based on the test results, the overview+detail interface
provided better effectiveness and satisfaction scores,
while the fisheye view was the most efficient. All sub-
jects chose overview+detail interface as their prefe-
rence.

Donskoy and Kaptelinin [5] also compared interface
type for usability. They studied the role of animation in
visualization with scroll bars, zoom, and fisheye view.
Fisheye view with animation yielded better perfor-
mance than without animation, and scrollbars and

zoom view were slower. Subjects preferred the ani-
mated versions of these techniques over the “no anima-
tion” forms.

Zooming can play an important role in readability of
text documents. It widens the information space and
provides better access to details of subject of interest.
Zooming has been used as the fundamental interaction
method in several interfaces ([6],[7]). In their paper,
Hornbæk et al [8] list research prototypes of zoomable
interfaces that include interfaces for storytelling
(Druin et al.[9]), Web browsing (Hightower et al.
[10]), and browsing of images (Combs & Bederson
[11]).

As Hornbæk et al. note, three benefits of over-
view+detail interfaces can be observed. First, Naviga-
tion is more efficient, since the user can navigate by
using the overview window [12]. Second, overview
windows help users keep track of where they are in the
information space [13], and third, the overview gives
the reader a feeling of control [14]. A drawback of
overview+detail interface is mentioned in Hornbæk et
al. in that “spatially indirect relation between overview
and detail windows might strain memory and increase
the time used for visual search.” For this reason, it is
good practice to keep overview and detail windows
tightly coupled. In their experiments, Hornbæk et al.
observed that about 80% of the subjects preferred
overview interface combined with zoomable interface.

2. Abstract Text Viewer

The Abstract Text Viewer (ATV) provides functio-

nalities addressing problems that users of electronic
documents might have in reading and managing text.
ATV’s combination of text viewing and abstraction
tools is unique. The following tools (or functionalities)
are provided in ATV.

Overview + Detail, addresses both tracking and fo-
cusing problems readers might face. This is provided,
as usual, in two windows, one for overview and one for
detail. However, there are slight changes how this me-
thod is applied. First, the overview window is not pro-
vided in a linear structure, but instead the context is
given as headings and paragraphs, as well as structured
in a tree view. Coordinated with the overview window,
the detail window provides a fish-eye view (Furnas[2])
applied such that the parts that are visible in the over-
view window are bigger in size than the ones are not.
Manual operations are also allowed for convenience,
since the reader may want to keep uninteresting parts
smaller.

A second system coordinates hyperlinks to maintain
easy navigation through the documents. This lets read-
ers see the referenced document quickly. However,
readers may also need some mechanism to go back and
forth between those two documents. For this function
ATV provides two tools, Go-Forward and Go-
Backward (as in a browser), to increase the efficiency
of the navigation.

For most cases readers are searching for specific in-
formation. This could be the total information con-
tained by the document or information that is covered
in a small part of the document. For the second case,
readers might need some tools to direct them to the part
that contains the information they are looking for. ATV
provides a highlighting mechanism for this purpose in
which the reader enters the words that might be a part
of the information search. ATV, then, highlights those
words that are entered in the detail window.

Zooming also gains importance for some readers
that have preferences of the character sizes, for exam-
ple some readers might like bigger fonts, while others
prefer smaller. Zooming tools (in and out) are provided
by ATV, to enable readers to change the font size.

A simple mechanism of showing paragraphs that are
most likely representative document content is pro-
vided. While the document is being initially parsed, a
term vector for the document is constructed, later used
to facilitate retrieval of specific information in the doc-
ument. Additionally, a term vector for each paragraph
is constructed. Using the paragraph level information, a
coloring scheme is applied on the detail window based
on the relevancies of those paragraphs to the complete
document content.

2.1 ATV’s Semantic and Visual Structures

The system’s structure can be separated into two

parts: semantic and visual. Semantic structure is
formed by parsing the document and building a term-
vector representation of the document and each of its
paragraphs. Each of the systems specific parsers is
used to parse specific MIME types, and the parser is
chosen at run-time, based on the MIME type of the
requested document.

The document structure, constructed by the parser,
consists of an array of words that occur in the docu-
ment, and a list of paragraphs and links based on the
index positions of words in this word array. Having
this structure constructed, ATV can build the visual
views. There are two views present in ATV: overview
and detail. Overview detail constructs a tree structure

based on the heading types of the Paragraphs, listed in
the Document. Detail window is more complicated,
since most of the provided tools are aimed to work in
this view. ParagraphView is another class constructed
by ATV that encapsulates the viewing information for
the Paragraph.

2.2. ATV Architecture

Initially, ATV loads s the font preferences that were

saved from the last execution. Then a document is se-
lected to open, and the document’s MIME type is de-
termined and an appropriate parser is invoked. The
parser component then loads the document and parses
it based on its MIME type..

ATV sends messages to both overview and detail
views display the document based on the parse struc-
ture, as detailed below. A snapshot of ATV on work, is
given in Figure 1. For the fisheye view in the detail
view, each of the paragraphs, whose appearance is con-
trolled by ParagraphView, has two states of vision:
open or closed. In open state, the paragraph is painted
in normal fonts to enhance the reader’s efficiency,
while the closed state is just painted with small charac-
ter sizes, to provide reader a bird’s eye view of the un-
interesting part. All these states of the paragraphs are
controlled by the overview window that appears on the
left. Overview window shows the titles and headings,
and normal paragraphs in a tree structure, so the reader
can easily see the structure of the document, while
keeping track of his current position in the document.
All the titles or paragraphs that are visible in the over-
view window are in open state in the detail window.
This provides the reader a better control on the docu-
ment and enables him to decide which parts are really
interesting to him. The reader can also open a closed
paragraph by just clicking on it in the detail window,
however it does not affect the overview window, to
give some freedom to the reader.

2.2.1. HTML Parser. HTML parser is the only

parser implemented that has the CParser interface. All
HTML documents opened with this parser have
HTML-structured code for a document. Not all tags are
parsed by this parser, but only the ones that have useful
structural information about the document, and also the
ones that convey link information to other documents.

Structural parts that are considered to be useful are
the header tags (<h1>, <h2>, …, <h6>) and the para-
graph tag (<p>). Link information is captured by ana-
lyzing <a> tag and all the link information that the

document has are preserved. This enables on-text lin-
kage in the detail window. In addition to those tags,
image tag () is also handled and all images are
replaced by “” automatically to give user an idea
about how the original document has been organized.
This also lets the user take links on-text that does not
have any word, but only image(s).

2.2.2. Overview Window. The Overview window

consists of a tab control that is used to change the view
between “Structure” and “Links” tabs. The structure
window is designed to show a structural summary of
the document. nce current version of ATV works with
HTML, the structural parts that are considered are
header tags (h1, h2, …, h6) and the paragraph tag (p).
These tags are assumed to be the structural parts that
convey information about how the document is orga-
nized. All these parts are inserted into a tree view in the
following way:

For all headers, the priority order is h1, h2, …, h6.
Paragraphs are the least-priority units.
For any structural unit,
If the previous unit has a higher priority than this, it

is inserted into the tree as the previous one’s child.
If the previous unit has the same priority as this,

new one is inserted into the tree as a sibling of the pre-
vious one.

If a previous unit has a lower priority, then the hie-
rarchy is traversed bottom-up to the root until a node
with higher priority is found. The new node is inserted
as the child of this.

After the tree is built by this method, only the first-
level nodes of the tree are visible. Thus, the detail win-
dow is updated such that only the visible structural
units are in open state. When reader opens a tree node
to see its children, the detail window is updated again
to reflect the changes. This provides better control on
the document.

Attached to each node is an image that expresses
what structural unit that is. This allows user to know
the real organization of the document thoroughly. Fig-
ure 1 shows a screenshot that shows how this is all
organized in the overview window.

2.2.3. Links. This window gives information about

the document’s linkage information. All links that exist
in the document are listed in alphabetical order of their
URL. If the reader wants to see the links only, this is
the place to look at. Redundant links to the same

Figure 1: Structure of the document is shown in the tree view in the overview window.

document can be easily identified here, since they
would appear adjacent to each other in the list. This
window, also, controls the detail window by allowing
the reader open a document that is in the list by just
double-clicking on it.

The procedure to open a new document is the same
for all instances. First, MIME type of the new docu-
ment is captured. If the current parser cannot parse the
document of this MIME type, then an appropriate pars-
er is constructed. At this point in the research, only
implemented parser is HTML, so if a document cannot
be opened with HTML parser, then a blank page is the
result. Reader can go back to see the last document.
Second, the location of the document is determined.
There are two access options; Internet access or local
access. For Internet access, a request is sent to the
server and the data sent by the server, as response, is
copied to the buffer. If the document is to be accessed
locally, then the file is opened and contents are copied
to the parser’s buffer. Then, parser starts to parse the
document that resists in its buffer. For both access
types, the current document’s location is used as con-
text, so that relative links are enabled in documents.

2.2.4. WordFreq. The wordfreq (short for “word
frequency”) is part of the ATV tool program to aid the
user in getting an “insight” of a Web domain before
reading it. A small java applet will crawl a domain,
parse and stem [15] each word and add them to a sim-
ple Microsoft Access Database, the database keeps
count on the number of times that word (stemmed ver-
sion of it) appeared. Then wordfreq uses the text in the
current page compares the number of times each word
appeared in the domain vs. users thresholds. (Word
freq will discard all “stop words”). Also to ensure effi-
ciency the words are stored in a CStringList class and
the alphabetized afterwards redundant words are re-
moved. This way only one connection used to the
Access Database using OBDC then the information is
sent to the detail window.

 Word Freq also can show the list of words and
frequency on the left form view that was within the
threshold requirements of the whole domain. And it
shows the most used word in the UTPA Computer
Science domain is “comput”. The stem of Computers,
computer, Computing, etc. This also aids if in case the

Figure 2: Two thresholds applied for a search. Color, here shade, represents relevance.

page you are looking at does not have by random
chance the most repeated used words. Currently, Word
Freq supports two user-defined thresholds. Threshold 1
will first configure the view to show the text in a nega-
tive form, with a dark blue background. Threshold 2
will show the text in a negative form too but with a
dark green background. This dual-threshold mechan-
ism is depicted in Figure 2.

2.2.5. Detail Window. This is the window in which

the user actually reads the document. Therefore, this is
the main field that efforts had been focused on. A fi-
sheye view, coordinated with the overview window’s
structure tab, is applied to this window. So, the reader
can control the parts that he wants to read. This win-
dow basically consists of ParagraphViews and prefe-
rences that apply to them. Each ParagraphView gets its
internal data from corresponding Paragraph, and
paints the text on the window based on this data and
applied preferences. Main characteristics can be listed
as follows:

The more related to document, the darker. The
darkness of the text color is specified by the relevancy
of the corresponding paragraph to the whole document.
The darker text color gains more attention than the
lighter one. This knowledge is used to gain reader’s
attention more to the relevant paragraphs, so he can

find more related information without searching for
line by line. This is decided by the following function:

where R(p,d) is the cosine similarity of term vectors

of paragraph p and the document d, and n is the num-
ber of paragraphs in the document. D(p’) analyzes the
number of steps that the relevance value R(p’, d) is
away from the mean relevance value. Each step is
equal to the standard deviation of the relevancies of
paragraphs to the containing document. This is a naive
statistical approach to define the relevance of the para-
graph to its document, and not intended to provide the
best solution. Based on D(p) value the color of the text
is specified.

If the value is negative,
Color(p) = 90 – 15 * D(p)

If positive,
 Color(p) = 64 – 10 * D(p)

This equation is used to calculate the color value. The
actual color is obtained by assigning the same color
value to each of three components of a color (red,
green, and blue). This makes more relevant paragraphs
darker and less relevant paragraphs lighter.

Figure 3: The more relevant paragraphs to the document are painted in darker color. Since this is an installation
manual document, the first paragraphs, which explain how to download the file and the copyright information,
are less relevant then the last ones, which actually explains the steps for installation.

2.2.6. Searching for occurrences of words. The

detail window provides a highlighting mechanism to
search for specified words. This enables the reader to
find specific information he is looking for, easily. It
also conveys some information about the relevance of
the document to information need of reader. After user
clicks OK button in the dialog, first thing is to parse
words in the input string. Then, each word is stemmed
by an algorithm that implements Porter’s suffix strip-
ping method [15]. The last thing is to send these stems
to each of the ParagraphViews, where all occurrences
are highlighted.

2.2.7. On-context linkage. The linkage structure of

the document is preserved in a way that anchors of the
HTML references and references themselves are tightly
coupled together. Anchors are painted in blue text-
color, so that the reader can easily see and take the
links. When the cursor points to an anchor word, the
cursor is changed to a hand cursor, as usual in all

browsers, and the location of the reference is displayed
in the status bar. If the user clicks on an anchor word,
the location displayed in the status bar is opened. If the
click is on a non-anchor word, then the paragraph’s
state is changed. If it is open, closes; or if it is closed, it
opens.

This feature comes with the necessity of providing
backward and forward links. If the reader opens a doc-
ument accidentally and wants to go back, then he can
use File → Go Bacward and File → Go Forward menu
buttons, or arrows in the toolbar.

3. Future Work

The abstract Text viewer currently lacks the ability

to save the view in original format. If the MIME is
html we wish to add the capability to save abstract text
in html and to have the ability to view it in a web
browser. For wordfreq and add a sub-category for the
user to include synonyms when deciding on thresholds.

The current domain crawler only uses one word at a
time, configuring it to use two words would increase
the size of the database dramatically with the tradeoff
being that the user could see related words ranked
higher. Other extensions and more detail of the current
version are available [16].

4. Acknowledgements

This work was supported by the University of Texas

– Pan American Computing and Information Technol-
ogy Center and NASA Grant NAG 9-1169 to the first
author.

5. References
[1] Muter, P. & Maurutto, P. (1991). Reading and

skimming from computer screens: The paperless
office revisited. Behavior and Information Tech-
nology, 10

[2] Furnas, G. W. (1981/1999). The FISHEYE view:A
new look at structured files.

(4), 257-266

Readings in Informa-
tion Visualization

[3] Igarashi, Takeo, & Hinckley, Ken. Speed-
dependent Automatic Zooming for Browsing Large
Documents.

, ed. Card, S. K., Mackinlay, J.
D. &Schneiderman, San Diego, CA: Academic
Press, 311-330.

CHI Letters 2,2

[4] Hornbæk, K. & Frokjær, E. Reading of Electronic
Documents: The Usability of Linear, Fisheye, and
Overview+Detail Interfaces.

 P.139-148

CHI 2001

[5] Donskoy, M. & Kaptelinin, V. Window navigation
with and without animation: a comparison of
scroll bars, zoom, and fisheye view. CHI 97

 P. 293 –
300

[6] Bederson, B. & Hollan, J. D. (1994/1999).
Pad++: A Zooming Graphical Interface for Ex-
ploring Alternate Interface Physics. Readings In
Information Visualization.

[7] Bederson, B., Meyer, J. & Good, L. (2000). Jazz:
An Extensible Zoomable User Interface Graphics
Toolkit in Java.

 Card, S. K., Mackinlay,
J. D. &Schneiderman, San Diego, CA: Academic
Press (1999)

Proceedings of the 13th annual
ACM symposium on User Interface Software and
Technology, 2(2)

[8] Hornbæk, K., Bederson, B. B., & Plaisant, C.
2002. Navigation patterns and usability of zooma-

, 171-180.

ble user interfaces with and without an overview.
ACM Transactions on Computer-Human Interac-
tion

[9] Druin, A., Stewart, J., Proft, D., Bederson, B.,
AND Hollan, J. D. 1997. KidPad: A design Colla-
boration between children, technologists, and edu-
cators.

. Volume 9, Issue 4. (2002), 362-389.

CHI 97

[10] Hightower, R. R., Ring, L. T., Helfman, J. I., Be-
derson, B. B., & Hollan, J. D. 1998. Graphical
multiscale Web histories: A study of PadPrints. In

, Atlanta. S. Pemperton, Ed. ACM
Press, New York, N.Y., 463–470.

Proceedings of the Ninth ACM Conference on
Hypertext

[11] Combs, T. & Bederson, B. B. 1999. Does zooming
improve image browsing? In

. ACM Press, New York, N.Y., 58-65.

Proceedings of the
ACM Conference on Digital Libraries

[12] Beard, D.B. & Walker, J. Q. 1990. Navigational
techniques to improve the display of large two-
dimensional spaces.

. ACM
Press, New York, N.Y., 130-137.

Behav. Inform. Techn

[13] Plaisant, C., Carr, D., & Schneiderman, B. 1995.
Image browsers: Taxonomy, guidelines, and in-
formal specifications.

. 9, 6,
451-466

IEEE Softw

[14] Schneiderman, B. 1998. Designing the User Inter-
face. Addison-Wesley, Reading, Mass.

. 12,2, 21-32.

[15] Porter, M.F., 1980, An algorithm for suffix strip-
ping, Program

[16] Fowler, R.H., Tor, Y., Navarro, D., & Grabowski,
L.M. 2003. The Abstract Text Viewer: A tool suite
for content extraction and organization of Web
documents. Technical Report CS-03-28, Depart-
ment of Computer Science, University of Texas –
Pan American. http://cs.panam.edu/TR/cs-tr

, 14(3) :130-137.

