Human—Computer Interaction — INTERACT '87
H.-J. Bullinger and B. Shackel (Editors)

Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1987

EVALUATING USER INTERFACE COMPLEXITY

489

John Karat, Richard Fowler and Mary Gravelle

IBM Austin

This paper presents an attempt to utilize a formal model in the study of
user interface development. A study was conducted to examine learning
and performance differences between a command language and a direct

manipulation system.

Subjects initially unfamiliar with computer systems

learned file management functions and carried out a series of tasks on one

of the systems.

Experimental results point out large differences in per-

formance between the command language and direct manipulation systems which

favor direct manipulation.

Formal models of the knowledge required to use

the systems were developed following the.framework suggested by Kieras and

Polson 1 .

"There are difficulties in mapping predictions from the formal
models to the experimental data for the systems involved.

Analysis suggests

‘that inability of the formal model to predict error data was a basic problem

with the formal analysis.
1. INTRODUCTION

Considerable effort has been directed
toward development of formal user inter-
face analysis tools. Though perhaps

for different reasons, attempts to
'harden' the science of human, computer
interface design have been called for
from both the development (seeking to
increase quality and lower development
cost) and scientific (using computer
systems to study human cognition) com-
munities. There is some reason to believe
‘that some important steps are now being
taken in this area (Newell & Card [2]).
From the GOMS model of Card, Moran and
Newell [3], to extensions of this work
put forward by Kieras and Polson [1],

we are seeing a number of techniques
aimed at improving the design process
for user interface development. These
techniques claim to provide assistance
that will enable accurate design
decisions to be made, without necessi-
tating costly user testing. They do not
necessarily claim to eliminate the need
for iterative testing of the design to
fine tune the details, but they do hold
a promise of an additional tool for the
interface designer.

Faced with the task of designing the

user interface for a new system, there
are many design decisions that one is
faced with. Clearly the most important
step in the process is to carry out a
careful analysis of the task which the
system will be used to perform (the often
cited, but not so well understood 'task

analysis' phase). Once this has been
accomplished much still remains to be
decided. Computer systems can vary in

a great number of dimensions, and the
designer is faced with a number of
decisions. While it might be desirable
to provide a set of standard answers

for user interface design questions, the
closest we come now is in the form of
general guidelines (many such guidelines
exist under the name of standards,
architectures, or guidelines). Decisions
about many aspects of interface design
will continue to vary depending on the
task and users involved. Placing useful
tools in the hands of developers will
likely play a larger role in improving
the quality of user interfaces than the
development of standards.

There has been some promising prelimi-
nary work which suggests that a formal
analysis of knowledge required to learn
and use a system would be useful in
making design decisions. Kieras and
Polson 1 have shown that a variety of
user behavior can be accounted for
through production system modeling.

The framework described by Kieras and

‘Polson [I]is an extension of the GOMS

work developed by Card, Moran, and
Newell [3], that is intended to provide
predictions for ease of learning and
transfer of knowledge in addition to the
predictions of ease of use of a Com-
puter system available from the key-
stroke model. In the Kieras and Polson

490 J. Karat et al.

work, knowledge necessary to use a
system is modeled in a production
system. Predictions of ease of learning
are obtained through a count of the
productions contained in, the model, and
predictions of transfer between systems
(or components. of system§7 are obtained
from the number of shared productions.
Performance predictions are obtained
from counts of production cycles when
carrying out tasks. Considerable
experimental work has been conducted

in attempting to validate the predic-
tions of this framework (Polson and
Kieras [4], Polson, Muncher, and
Engelbeck [5), and Ziegler, Hoppe and
Fahnrich [61). ’

The development of production systems,
like the development of any cognitive
model, is not a completely well defined
task. At this point, it certainly is
not something that would be easy for an
experienced software developer to carry
out. In an applied setting, issues
critical to this framework (such as
maintaining a consistent production
granularity) might even be considered
problematic for experienced cognitive
psychologists. Experience in model
building often leaves one wondering if
certain aspects of the task are receiv-
ing too much or too little attention,
and one is always aware of the fact that
and model developed is not unique. While
this is a lesser problem in many areas
of modeling (it is of little trouble
when one is only seeking a sufficient
model of a single system or cognitive
task is being modeled), it is a prob-
lem if two quite different systems are
to be compared and if the heart of the
predictions is based on a count of
productions involved. Another issue

of immediate concern here is whether

or not such analysis can capture
difficulties (primarily error recovery)
which occur in more natural settings
than the laboratory work of Kieras and
Polson. There are many other issues in
cognitive modeling through production
systems, but these are the central
issues for this investigation.

1.1. The Design Question
There has been movement to change the

basic style of interaction with computer
systems from interfaces dominated by

command languages in which the user types

fixed format command strings to so called
"direct manipulation" interfaces in

which the user manipulates displayed
objects to carry out some function.

While claims for the superiority of the
direct manipulation style of interface
abound, there has been little formal

demonstration (through experimental or
theoretical work) of the benefits of
such systems. The situation is compli-
cated by the fact that a mixed bag of
user interface components (e.g., use of
high resolution graphics, various point-
ing devices, and employment of system
metaphors) have been lumped together

in discussing direct manipulation or
graphical user interfaces. The experi-
ment here compares an interface low in
the components associated with the new
user interface style with one which
includes several features which seem
important to these interfaces.

As a starting point for our examination,
we consider simple file management in a
computer system with a hierarchical
structure. The structure considered is
one in which the system has a root di-
rectory which may contain files and
other directories (any directory may

contain both files and other directories).

The contents of a directory may be
listed (the names of the entries in the
directory may be displayed), the con-
tents 0of a file may be listed, and
files may be copied or deleted. The
necessary actions in the .system are
identifying the action to be carried
out (list directory, list file, copy
file, and delete file), and identi-
fying the object of the action (a
single file or directory, except in the
case of copy which requires a file and
a destination directory).

Given that command language and direct
manipulation systems are clearly Aif-
ferent, a key question is whether or
not there are formal analysis tech-
niques which would help the designer
decide between such altérnatives. One
question examined here is whether or
not a production system analysis of the
two systems would predict one as supe-
rior to the other. To examine this we
carried out both a "typical" experi-
mental comparison of users learning and
using these two systems, and a formal
analysis of the complexity of the two
systems.

2. SYSTEMS TESTED

For this work, we provided subjects
with an existing file structure, and
asked them to carry out a restricted
set of manipulations on this structure.
The two systems compared include a-
standard command language system (PC/DOS)
and a prototype direct manipulation
system developed to run on the same
hardware (with the exception of the
inclusion of a mouse). The systems
both used an IBM Personal Computer

“Evalua ting user interface complexity k 491

with monochrome display. DOS includes
commands for file manipulation which
are highly descriptive (COPY, TYPE,
DELETE) and some which are less so (DIR
and CD). File and directory names have
a restricted syntax, and files are
contained within directories. Direc-
tories may contain other directories
resulting in a hierarchical structure.
In DOS, a command is entered by speci-
fying the action name, and the name of
the- object (in some cases the object
may be implied, or in the case of COPY,
two specifications for object may be
needed). The prototype system (called
simply GPH), presented the directory
structure in a tree fashion (using only
character graphics - enabling horizontal
and vertical lines to create a direc-
tory "tree"). Pointing to a directory
name and clicking a mouse button twice
will 'open' the selected directory, and
list its contents (file names) at the
side of the display. Pointing and
double-clicking a file name will provide
a listing of the file contents (text).
Pointing to a file or directory, pressing
and holding down a mouse button, and
moving the pointer to a new location,
caused the selected object to be copied
or moved to a new location. In GPH,
commands are entered by selecting an
object by pointing to it, and then
carrying out some action (clicking or
dragging). The techniques are similar
to those used in a number of commercial
systems.

A hierarchical file structure with a
total of 207 directories was used., For
the GPH system the structure was pre-
sented in a viewport in the rightmost
‘64 columns of the screen taking up 25
lines of the display. 1In order to

move from the top of the structure

(root ‘directory) to the bottom, subjects
had to scroll a maximum of 125 lines

by attempting to move the mouse pointer
beyond the top or bottom of the display.
This extensive structure was used to
provide a non-trivial structure for the
GPH system, and.also to examine issues
in file structure not discussed in this
paper.

3. METHOD

Subjects in the experiment read intro-
ductory material describing basic file
management functions, carried out
practice tasks with each function, and
carried out a series of tasks after
they had completed practice with all
functions involved.

7777777 Subjects

Twenty subjects were recruited from
temporary employment agencies to be
tested. All subjects were initially
unfamiliar with file management tasks

on personal computers (previous computer
experience was accepted provided subjects
did not have knowledge of operating
system function). Subjects were ran-
domly assigned to one of two experi-
mental groups. The systems used were
IBM DOS and a prototype direct manipu-
lation system (GPH) developed for this
test.

3.2. Equipment

In the experiment all subjects carried
out a set of tasks on a standard IBM
PC/XT. 1Instructional material provided
to subjects was developed for this test.
Standard reference material was not
provided subjects in the experiment.

3.3, Procedure

Subjects were brought to the experi-
mental room and told that they would

be asked to carry out some tasks on the
personal computer and:that we were
evaluating the system and not them. The
experimenter provided the subject with
a folder describing the tasks and left
the room. Subjects proceeded at their
own pace, and could call the experi-
menter if they encountered any problems.
The experimenter would intervene when
called for assistance by the subject,
or when the subject had spent at least
five minutes on a problem and was
making no apparent progress in resolv-
ing it. An attempt was made to keep
interventions to a minimum, while not
overinflating the magnitude of specific
problems. Subjects first read. descrip-
tion of the general features of the
system (keyboard, display, etc.).
Following this subjects read a description
of a hierarchical file structure which
was designed to represent part of a
local school system. The first level
of directories were the names of two
high schools. In each of these direc-
tories were files and directories for
students, administration, teachers,
courses, and sports. Additional break-
downs occurred in each of these direc-
tories with a maximum directory depth
of seven levels. Subjects took as much
time as they needed reading about the
file structure in order to understand
it. The description of the complete
structure was available to them ‘during
the remainder of the experiment.

492 J. Karat et al.

Subjects spent an average of about 30
minutes reading about the file structure.

When subjects felt comfortable with the
file structure they continued reading
about file management functions. The
order of presentation of the functions
was list directory, change directory,
copy file, delete file and list file.

For each function the meaning of the
function were explained and several
examples were provided which subjects
carried out. Following the examples,
subjects were asked to carry out several
practice tasks with the current function.
The tasks were designed to explore
performance at different levels in the
hierarchy. On completion of the practice
tasks subjects continued on to the next
function. When all functions were
complete, subjects were asked to carry
out 32 tasks which included a mix of
function and depth in the file structure.
On completing these tasks, the subjects
were debriefed and allowed to leave. The
DOS and direct manipulation task sets
were identical with one exception, and
subjects carried out the same practice
and final tasks in the same order for
each system.

4, RESULTS

Subjects in the experiment took between
two and four hours to complete the tasks.
In the DOS condition only five of the

ten subjects completed the entire task
set (means are reported for subjects
completing each phase of the experiment),
while all ten subjects completed the

GPH condition. Data for reading instruc-
tion times for each function for the

two systems are presented in Figure 1.

As would be expected, there was no
significant difference between the two
conditions for time to read the direc-—
tory structure information (STR in

Figure 1). For the individual function
instructions (list directory, copy file,
delete file and type file contents)

there was a significant difference for
the directory listing and change direc-
tory function, and no difference for

the remaining functions.

Data for performance on practice tasks
(list directory, change directory, copy
file, delete file and type file) and
final tasks (change directory was not
used) for the two systems are presented
in Figures 2 and 3. The full bar height
represents total task time (i.e., the time
from first reading the task until it was
correctly completed), and the shaded area
of each bar represents correct taks
(total time with error time removed).

Correct time (which excludes only un-
detected subject errors such as incor-
rect file or directory specifications
or mouse pointing mistakes) was
measured from the onset of a correct
trial until final entry. For all task
sets there was a significant difference
in total task time between the DOS and
GPH groups favoring the direct manipu-
lation system. Time spent in error
trials is also significantly greater
for the DOS subjects compared to the GPH
subjects.

18891 fivg.Time{sec)

Lo L)
]
byl

JCOND bt bt st
ANNVDD
0082

P DAL I
[si]hals]ahalslis)
[SISISISESESINISEY

8

STR DIR ‘cpg DEL YP
Instructions

Figure 4. Instruction Reading Times by
Type of Instructions

Avg.Time{sec?

o o ot ot s P R PN B B LR LI P
REID I EDE)
LOL0HNLEDERODDHD

o lqh Y=g dealinl iR tep]

DO

7

DT Ccp DLT TYT
DRT CPractice Tasks)

oyt Yaploe]

Ficure 2. Practice Tasks With/Without
Eryor Times

SE83

b= DIt LA =J0DE)
[Falialealinlealon]]

[lalsbalslalalsls)

) D T T I CEA o e b e B

Py DEL
Final Tasks

FicuRe 3. Final Tasks MWith/Without
Exryoxr Times

<E (/a/uating user interface complexity 493

The results of this comparison are
interesting in their own right. First

of all there is a consistent performance
advantage for the direct manipulation
system. Further, this advantage was

found to increase as the location of

the file to be manipulated increased in
depth in the directory hierarchy. For

a 'worst case' scenario maximally

favoring DOS (copy from the root direc-
tory to the root directory, renaming the
file, and requiring a full directory)
scroll in the direct manipulation system),
DOS subjects are faster than the direct
manipulation subjects. However this was
the only task (of the 32 general tasks and
24 practice tasks) in which this was the
case.

4.1 Production Systems Models

Production system models were developed
for the two systems used in the experi-
ment. This was done to enable compari-
son. of predictions of ease of learning
and use from these models to be compared
to those of the experimental data. While
we do not employ the strict criteria for
learning employed by Kieras and Polson
in their laboratory work, there should
be some correspondence between the per-
formance times for our instructional
phase and the number of productions in
the two systems. While the situation

in which our subjects learmned the file
management functions was not completely
natural, it is closer to a real learning
environment than that used in the Kieras
and Polson work. i

Guidelines for developing production
system models were obtained from Polson
‘and Kieras. These are 'style rules'
which cover certain conventions which
have been found useful in their previous
work. The first two authors independently
developed a production system for one of
the systems. After this was done, the
production systems were reviewed in a
team (consisting of Karat; Fowler and
Penny Smith-Kerker who is also working
on production system models). Minor
modifications were made based on these
discussions. 1In general it took roughly
one person weeks time to develop each
production system.

Presenting a detailed description of the
contents of the production systems would
require an extensive discussion, and only
some general features will be provided
here. The two production systems were
fairly similar in total size (i.e., num-
ber of productions). The GPH production
system consisted of 49 productions, while
the DOS production system consists of 43
productions. Both systems are fairly
similar in structure, and both make the

same sort of predictions concerning the
relative difficulties of the functions
(e.g. copy should be most complex, de-
lete and type should be equally diffi-
cult). With the order of functions
used in the experiment, there is assumed
to be considerable transfer from the
directory list function to the other
functions (i.e., learning to specify a
directory path in DOS, OR tg¢ point to a
directory in GPH is assumed to transfer
to the other functions in which this
activity is a component). Basically,
in terms of number of productions and
transfer between function, the systems
vary only a level of detail which is
quite small.

If the instruction reading times from
Figure 1 are taken as a measure of
learning time (instruction reading time
includes time to carry out sample tasks),
then the number of new productions ‘
involved corresponds well to the copy,
delete, and type function learning time
data for both systems. For both DOS

and GPH the reading time for the direc-
tory list function was far less than is
predicted (it should be comparable to
the COPY function time). This could be
explained in a number of ways, and
probably reflects a difficulty in assur-
ing that a strict learning criteria has
been reached by these subjects. Addi-
tionally, the significant difference in
time between the DOS and GPH groups for
the directory function is not predicted
by the production system. From comments
made by subjects during this phase, the
difference would seem to be in-the
relative difficulty of understanding the
path specification used in DOS compared
to the spatial representation used in
GPH. This difference did not show up

in the production systems used.

Predictions of performance time are
obtained from cycle counts by running
the production system through the task
set used by subjects. In the work of
Kieras and Polson this is done by
developing a GIN for the system involved,
dand having the simulated system and
production system carry out the tasks.
We did not actually develép a GIN for
DOS and GPH, and ran the simulations by
hand instead. The simulation suggested
that compared to each other, the two
systems would take similar times (within
10%) to carry out the functions. Both
predict similar relative function
difficulties, with the copy function
approximately twice as long to execute
as the other functions. Executing each
of the other three functions involved
similar numbérs of cycles (i.e., list

direitogy,,deiete file, and type file all
involved similar production cycles). :

494 J. Karat et al.

Some aspects of these predictions are
well reflected in the data (relative
function difficulty within a system and
transfer between functions), while others
are not (comparison of difficulty

between systems). Considering total

time for each function for both practice
and final tasks, the data show a signi-
ficant advantage for GPH over DOS which
is not predicted by the production cycle
count. The difference is moderated (is
either not significant or only marginally
so) if time involved in error trials is
excluded. There is no provision for
errors in our production systems, and
while one could be included, it would

be a significant task involving the
inclusion of problem solving mechanisms
not well understood in cognitive
psychology. This does not suggest that
the production system analysis is wrong,
only that it is incomplete in its current
form.

5. DISCUSSION

The results of this study suggest that
the direct manipulation file management
system was much more easily used than
DOS for the tasks involved. The
differences were quite large for all
but worst case scenarios for the direct
manipulation system, and ‘increase with
level in the directory hierarchy. This
result is consistent with the claims
made for object oriented direct manipu-
lation systems. However, these results
were not anticipated by the production
system analysis carried out on the
systems involved. It is important to
look at this failure in detail for
causes and possible solutions (one of
which may be to place limits on the
usefulness of production system analysis
of user interface complexity).

There were several issues in production
system use that we intended on examining
in this work. First, we wanted to find
out if sufficient systems could be
developed from the style rules provided
by Polson and Kieras. Basically the
result was mixed. While the task of
writing production system models seems
not terribly difficult (it was done by
several members of our laboratory "in
time frames in the order of days rather
than months or years), we all had a
similar feeling of struggling with
issues of granularity and uniqueness.
While goal structures for tasks seemed
to be easy to derive and agree upon,
levels of analysis within the goals was
not so easy. Take for example the
question of how many productions should
describe mouse pointing (what sort of

level should one use to describe to hom-
ing behavior). i

Some of these questions are less criti-
cal in a GOMS like model, where unequal
components are acceptable, but when one
is relying on 'all productions to be
equal' for learning and performance
predictions, the ability to maintain
equal granularity across quite different
environments is critical.

This may point to some limitations of the
applicability of production system anal-
ysis. While Kieras and Polson have
demonstrated that within environments
involving limited differences good pre-
dictions can be derived, it may be that
comparisons across quite different
systems are not reliable. While behav-
ioral studies could be used to help
establish the'correct' number of produc-
tions for some given component (such as
mouse pointing), the point of formal
analysis is to try and bypass such
analysis for engineering approximation.

The main failure in the predictions re-
sulting from the production system model
seems to lie in the inability to account
for the large error times in the command
language data compared to the direct
manipulation data. This failure is not

fundamental to the framework (i.e., it

is easy to see how problem solving be-
havior could be 'built in' to the frame-
work, even if the exact mechanisms are
far in cognitive psychologies future),
but it does suggest again that such
considerations cannot be ignored in
discussions of system usability. It
would be nice if understanding and pre-
dicting expert behavior alone were
sufficient, but it simply misses some
very important facts.

This does not necessarily mean that the
production system framework should be
abandoned. We still need something
beyond GOMS in order to address issues
of ease of learning and transfer which
are not easily addressed within that
framework, and production system work
has much promise if the difficulties

can be overcome. But issues such as
production granularity and the incorpo-
ration of problem solving mechanisms
which are necessary for examining learn-
ing and transfer issues are not simple
problems. In its current form, it does
not appear that production systems pro-
vide a framework that would allow system
designers to deal with these issues as
well as the GOMS work deals with expert
performance predictions.

What needs to be done to improve the
usefulness of this approach takes the
form of both extending the framework

(to encompass areas such as error recovery
behavior), and building a knowledge base.

~Evalua ting user interface complexity

Error behavior is simply too important
to continue to ignore, and while there
has been work in this area, it has not
been incorporated in the Kieras and
Polson framework. Additionally, there
is considerable modularity in the produc-
tion system framework which should be
taken advantage of. Building a library
of well understood models for common
techniques (such as mouse pointing and
keyboard error correction) would take
much of the guess work out of model
development. Finally, it would seem
more useful to imbed the entire produc-
tion system framework within a higher
level task or goal oriented approach
before expecting members of the software
development community to find it useful.

REFERENCES

[l Kieras, D. E., & Polson, P. G. (1985).
An approach to the formal analysis
of user complexity. International
Journal of Man Machine Studies, 22,
365-394.

[2) Newell, A., & Card, S. K. (1985).

The prospects for psychological
science in human—-computer interaction.
‘Human-Computer Interaction, 1, 209-
“242.

3] card, S. K., Moran, T. P., & Newell,
A. (1983). The Psychology of Human
Computer Interaction. Hillsdale, NJ:
Erlbaum.

[4] Polson, P. G., & Kieras, D. E. (1985).
A quantitative model of the learmning
and performance of text editing
knowledge. Proceedings of the CHI
1985 Conference on Human Factors in
Computing. San Francisco:ACM.

[5] Polson, P. G., Muncher, E., &
Engelback, G. (1986). A test of the
common elements theory of transfer.
Proceedings of the CHI 1986 Conference
on Human Factors in Computing. Boston:
ACM.

[pl Ziegler, J. E., Hoppe, H. U., &
Fahnrich, K. P. (1986). Learning and
transfer for text editing with a
direct manipulation interface.
Proceedings of the CHI 1986 Conference
on Human Factors in Computing.

Boston: ACM.

495

