
A Spring Modeling Algorithm to Position Nodes
of an Undirected Graph in Three Dimensions

Aruna Kumar and Richard H. Fowler

Technical Report
Department of Computer Science

University of Texas - Pan American
Edinburg, Texas 78539

Architecture Labs: New Media Prototypes Intel Corporation
Hillsboro, OR 97124

Department of Computer Science
University of Texas - Pan American
Edinburg, TX 78539

Abstract

A number of data presentation problems require the drawing or display of graphs. Methodologies for
creating graph displays have typically focused on drawing on a two-dimensional surface. Recently,
interest in computer-based visualization has increased attention on methodologies for the display of
graphs in three dimensions. The spring embedder algorithm (Eades, 1984) is a heuristic approach to
graph drawing based on a mechanical system in which a graph’s edges are replaced by springs and
vertices are replaced by rings. From the initial configuration of ring positions, the system oscillates until
it stabilizes at a minimum-energy configuration. To date examples of the spring embedder algorithm
have constrained the system of springs to move in a plane in order to draw the underlying graph on a
two-dimensional surface. Allowing the spring system to reach its equilibrium in three dimensions would
enable the use of interactive computer visualization as a tool in revealing the graph’s structure. This
paper reports that extension of the spring embedder algorithm from two to three dimensions.

Table of Contents

1. Introduction
2. A Spring Model in Three Dimensions
2. 1. Background
2.2. A Dynamically Balanced Spring System
2.3. Positioning Nodes in Three Dimensions
2.4. Computing a Local Minimum
2.5. Algorithm for Positioning Vertices in Three Dimensions
3. Example Displays
4. Conclusion
5. Acknowledgments
6. References

1. Introduction

A number of data presentation problems require the drawing or display of graphs. Methodologies for
creating graph displays have typically focused on drawing on a two-dimensional surface. Recently,
interest in computer-based visualization has increased attention on methodologies for the display of
graphs in three dimensions. For visual presentations layout criteria center on how quickly and clearly the
meaning of the diagram is conveyed to the viewer, i. e., the readability of the graph. Graph drawing
algorithms have as their goal the layout and presentation of an inherently mathematical entity in a
manner which meets various criteria for human observation. The aesthetics of a layout determine its
readability and can be formulated as optimization goals for the drawing algorithm (Eades & Tamassia,
1989). For example, the display of symmetry and minimization of the number of edge crossings in two
dimensional drawings are fundamental aesthetics for visual presentations. VLSI design is another area in
which graph layout is an issue, but different criteria are applied, such as minimization of the area
covered by the graph.

Given the wide application of graphs structures in display, there are relatively few algorithms for
drawing general undirected graphs (Tamassia, Di Battista & Battini, 1988). This is due in part to the
inability to specify the aesthetic criteria individuals use in understanding graphs (Eades & Xuemin,
1990). Nonetheless, for certain restricted classes of graphs in which graph-theoretic expressions of
aesthetic criteria can be specified, satisfactory algorithms have been developed (Batini, Nardelli, &
Tamassia, 1986; Carpano, 1980; Rowe et al., 1987). Comprehensive reviews can be found in Eades and
Tamassia (1989) and Tamassia, Di Battista, and Batini (1988). The table below (after Messinger, Rowe,
& Henry, 1991) summarizes representative graph drawing algorithms.

TABLE 1
Representative Graph Drawing Algorithms

Type of Graph Special Attributes Author

Undirected Planar Convex Layouts Chiba, Yamanouchi, & Nishizeki,
1984

Undirected Planar Manhattan Grid Embedd. Min. Edge Bends Tamassia, 1987

General Undirected Symmetric Drawings Eades, 1984

General Undirected Symmetric Drawings Lipton, North, & Sandberg, 1985

General Undirected Circular Drawings Makinen, 1988

Directed Trees Hierarchical Tree Reingold & Tilford, 1981

General Directed Hierarchical, Reduced Edge-crossings Sigiyama, Tagawa, & Toda, 1981

General Directed Hierarchical, Cycles, Graph Browser Rowe et al., 1987

General Directed Hierarchical, Edge-crossing/speed tradeoff Robins, 1987

Some of the aesthetics for drawings of general undirected graphs are symmetry, minimization of edge
crossings and bends in edges, uniform edge lengths, and uniform vertex distribution. (Eades &
Tamassia, 1989). These aesthetics are such that optimality of one may prevent optimality in others.
Additionally, graph layout algorithms in general can be viewed as optimization problems and are
typically NP-complete or NP-hard. These two observations suggest a heuristic approach to general graph
drawing for many applications.

The spring embedder algorithm (Eades, 1984) is a heuristic approach to graph drawing based on a
physical system. This algorithm simulates a mechanical system in which a graph’s edges are replaced by
springs and vertices are replaced by rings connecting edges (springs) incident on a vertex. From the
initial configuration of ring positions, the system oscillates until it stabilizes at a minimum-energy
configuration. Among the parameters that control the forces acting on the rings and causing their
movement are spring length, spring stiffness, spring type, and initial configuration. This a very general
heuristic which can be combined with other algorithms (Esposito, 1988) to provide approximate
solutions for competing aesthetics.

To date examples of the spring embedder algorithm have constrained the system of springs to move in a
plane in order to draw the underlying graph on a 2-dimensional surface. Allowing the spring system to
reach its equilibrium in three dimensions would enable the use of interactive computer visualization as a
tool in revealing the graph’s structure. This paper reports that extension of the spring embedder
algorithm from two to three dimensions. The work and paper closely following the approach and
explication of Kamada and Kawaii (1989) in the extension.

2. A Spring Model in Three Dimensions

2.1. Background

An elastic body is one that experiences a change in volume or shape when the deforming forces act upon
it but resumes its original size or shape when the deforming forces cease to act. The deformation of an
elastic body is directly proportional to the magnitude of the applied force, provided the elastic limit is
not exceeded. The elastic potential energy of a deformed body, which is our main concern, is the
negative of the work done by the elastic forces when the body changes from the configuration defined as
that of zero potential energy to the deformed configuration.

Consider a spring of negligible mass with one end attached to a wall. We choose the origin of the x axis
to be the location of the free end of the spring when it is not stressed. If we apply an external force F to
the free end, we find experimentally (to a good approximation) that the force required to stretch or
compress the spring is proportional to the distance the free end moves from its unstressed location. The
force F can be defined by the following equation:

where X is the distance the free end moves due to the stretching. The work that is done to stretch the free
end of a spring from to a position is 1/2 . The work done in stretching the spring is stored as
potential energy. Thus the potential energy stored in the system is given by the following equation:

K is the force constant of the spring. X is the elongation that the spring underwent as a consequence of
the deforming forces acting on it.

The energy of the system is dependent on the length of elongation that the spring underwent. Hence
there will be a gradual variation in the spatial positions of the extremities of the spring as it tends
towards it’s equilibrium position. The coordinate variables x, y, and z are required to define the position

of the springs in three dimensions. Thus the variation of the energy of each spring with respect to the
coordinate variables x, y and z can be represented in the form of a partial differential equation. To arrive
at the equilibrium position of the spring it will be necessary to solve the partial differential equations for
each spring. The result will be the distances x, y, and z respectively. Potential energy is always
associated with a change in the configuration of a system of particles, in this case the rings or edges of
the springs. The potential energy stored in the spring can be completely recovered by allowing the
spring to move back to its unstressed position. Thus the final energy of the spring is at a minimum,
possibly zero.

The above describes the method to be used in solving for the minimum potential energy of a single
spring defined by the coordinate variables in three dimensions. In dealing with a system of springs it will
be necessary to solve a system of partial differential equations to arrive at the equilibrium position of the
entire system. If we are concerned with an arbitrary system of n vertices (n springs) then we have to
solve 3n simultaneous non-linear equations. The drawings to be represented here are considered to have
straight edges and the position of the vertices of the structures are not restricted. We are primarily
concerned with the balance of the layout. In this model the total balance of the layout is formulated as
the square summation of the differences between desirable distances and real ones for all pairs of
vertices.

2.2. A Dynamically Balanced Spring System

The description below closely follows Kamada and Kawai’s (1989) terminology and methodology,
extending their algorithm from positioning nodes in a plane to positioning nodes in three dimensions.
The algorithm considers a dynamic three dimensional structure in which n particles are connected by
springs. Vertices, v, in the graph correspond to particles, p, in the system. The total energy of the system
of springs is given by

Balanced layouts are obtained by decreasing the energy (E) of the system of springs. The all pairs
shortest path algorithm is used to find the shortest distance dij between vertices. lij is the length of the
spring between two particles, pi and pj. The distance dij between two vertices vi and vj in a graph is the
length of the shortest path between vi and vj. With L the final length of an edge (spring), length lij is:

Absolute display space can be restricted based upon the distance between the maximum distance
between pairs in a graph:

where i < j and is the length of a side in the square display area.

kij is the strength of the spring between pi and pj. Considering 1 as the square summation of the
differences between final, minimum energy distances for vertices and current distances for all pairs of
particles, is

where K is a constant expressing spring force.

The energy of the spring depends only on the force constant and the length to which it is stretched from
its equilibrium position. The constant Lside (refer appendix source code), is an arbitrary constant that
scales the distances between the nodes, the scaled value is considered to be the length of the extended
spring. The iterative process (Newton-Raphson method) then works to minimize the energy contained in
the extended spring system.

2.3. Positioning Nodes in Three Dimensions

The position of the particles in a three dimensional space are given by their coordinate variables
respectively, where x , y and z are the coordinate values. The energy E defined by 1 can be rewritten
using these 3n variables as follows:

The algorithm computes the values of the 3n variables which minimize E(x1, x2, ..., xn, y1, y2, ..., yn, z1,
z2, ..., zn). The components of the gradient of energy are not independent, arbitrary functions. It is
therefore relatively hard to find a minimum of a multi-dimensional gradient. Since it is difficult to
compute the value of the minimum energy for the entire system, we compute a local minimum and
iterate the steps involved to compute the global minimum. There are no good, general methods for
solving systems of more than one non-linear equation. Minimization in multi-dimensions is not
equivalent to finding a zero of an N-dimensional gradient vector. The components of the gradient vector
are not independent, arbitrary functions. The test of downhillness is one-dimensional. There is no
analogous conceptual procedure for finding a multi-dimensional root, where downhill must mean
simultaneously downhill in N separate function spaces, thus allowing a multitude of trade-offs, as to
how much progress in one dimension is worth compared with progress in another. The efficient
algorithms for finding minima rest on global and local minima indiscriminately.

The algorithm that computes the local minimum is based on the Newton - Raphson method. Perhaps the
most celebrated of all one-dimensional root-finding routines is Newton’s method, also called
Newton-Raphson method. It readily generalizes to multiple dimensions and hence we chose to use this
method. This method is distinguished from other root finding methods by the fact that it requires the
evaluation of both f(x), and the derivative f’(x), at arbitrary points x. This method coverges quadratically
when the search interval envelops the root. However, it could prove disastrous if the search interval is
far from the root. However in this spring system, it is a good choice because we control indirectly the
root since we pre-define a minimum energy and stop the iteration when the minimum energy required is
attained. The following condition must hold for the local minimum:

Satisfying 6 is the dynamic state that balances the forces of individual springs. The following are the
partial derivatives of 5 with respect to xm, ym, and zm.

These 3n simultaneous non-linear equations must be solved. However, the Newton - Raphson method
can not be directly applied, because the equations are not independent.

2.4. Computing a Local Minimum

Hence we compute only a local minimum of E by considering E to be a function of only xm, ym, and zm.
This local minimum can be computed by a 3n-dimensional Newton - Raphson method. The above step
is iterated until the required minimum energy of the system is obtained. During each iteration the system
can be described as follows. Each iteration compares the particle’s energy which has the maximum
value of , which can be defined as follows

to the next particle ’s energy. Thus one particle at a time is fixed and compared with the maximum
energy and moved to it’s stable position. Mathematically the process can defined by the following
equations:

, , and satisfy the linear equations 12, 13, and 14.

The coefficients of the equations 12, 13, and 14 are the elements of a Jacobian matrix and are computed

from the partial derivatives of 7 , 8, and 9 with respect to only xm, ym, and zm in equation 15 - 23:

The unknowns , , and found using equations 12 - 23. Iteration stops when some criterion is

reached for
By solving 12, 13, and 14 simultaneously and substituting for the unknown terms from equations 15
through 23 the unknowns can be determined as follows.

2.5. Algorithm for Positioning Vertices in Three Dimensions

Figure 1 below summarizes the algorithm for minimizing energy in a system in which vertices move in

three dimensions. The input to the algorithm is the distance which is the shortest path between all
pairs of vertices. The shortest pair algorithm used is also outlined below.

All Pairs Shortest Path:

 input adjacency matrix of graph with n vertices, cost[1..n][1..n];
 initialize shortest_path matrix, a[i,j]
 initialize integers i , j and k
 begin

for i:= 1 to n do
for j:= 1 to n do

a[i,j] := cost[i,j]; {copy cost into a}
for k:= 1 to n do { for a path with highest vertex index k}

for i:=1 to n do {for all possible pairs of vertices}
for j:=1 to n do

if (a[i,k] + a[k,j]) < a[i,j]
then a[i,j] := a[i,k] + a[k,j];

 end; (all pairs shortest path)

Vertex Positioning Algorithm:

 compute

 compute

 compute

 initialize

 while ({

let be the particle satisfying

while

compute by solving 12, 13, and 14

}
}

Figure 1: A spring modeling algorithm for positioning vertices in three dimensions

As discussed in Kamada and Kawai (1989) the running time for this algorithm is O(for the all pairs
shortest path algorithm. For the main algorithm O(n) is the time required for the inner while loop (using
the Newton - Raphson method) to compute the and to compute the . The time required
for the outer while loop is O(n). Thus the total time required to terminate the while loops is O(T . n)
where T is the total number of inner loops. The total time required remains the same for particles
represented in a two dimensional plane also. T depends both on the size and connectivity of a specific
graph and on the initial positions of vertices. The algorithm is designed in such a manner that the
number of iterations to be performed can be controlled effectively by lowering the convergence
precision (e) of the vertices.

3. Example Displays

The spring embedder algorithm extended to three dimensions exhibits the same ability to clearly display
symmetries and make isomophorphisms apparent as spring embedder algorithms for graph drawing in a
plane. In addition a three dimensional display provides a means for overcoming some of the difficulties
which remain for edge crossings by allowing the viewer to manipulate the graph in an interactive system
so that projections can be found which "uncross" some edges.

Much of the utility of three dimensional graph viewing lies in the ability to convey, or allow the viewer
to discover, more information by interactive viewing than is possible in a two dimensional display. As
an example, Figure 2 is the layout of a weighted graph presented in Kamada and Kawai’s paper. Using
the original data the three dimensional solution is presented from three different views with lighting and
perspective. The first, presented in Figure 3, is a view aligning the vertices of the three dimensional
solution with the layout in a plane. Figure 4 is a view of vertex layout in three dimensions from the left
hand side of the graph. The graph is viewed from "beneath" in Figure 5.

Figure 2. A weighted graph from Kamada and Kawaii (1989) drawn with vertices positioned using a
spring algorithm in two dimensions.

Figure 3. Three dimension vextex positioning aligned to correspond to Figure 2’s vertex positioning in a
plane.

Figure 4. Three dimension solution viewed from left end of Figures 2 and 3. The relationships among
vertices 4, 5, and 6 at the right are clearly shown.

Figure 5. Three dimension solution viewed from "beneath" the views of Figures 2 and 3.

4. Conclusion

The extension of a spring embedding algorithm to three dimensions affords one means to enhance
viewing in an interactive graph visualization system. Such a system would allows the user to focus on
various aspects which are of interest and provides an enriched display mechanism compared to the
typical two dimensional static display.

5. Acknowledgments

Work described in this paper was supported by NASA NAG9-551 to the second author.

Development of this algorithm was initiated by Brad Wilson using a program written by Roger
Schvaneveldt and Jim McDonald developed from Kamada and Kawai (1989).

6. References

Chiba, N., Yamanouchi, T., & Nishizeki, T. (1984). Linear algorithms for convex drawings of planar
graphs. In Bondy, J. A. & Murty, U. S. R. (Eds.) Progress in Graph Theory. Academic Press, 153-173.

Eades, P. (1984). A heuristic for graph drawing. Congressus Numerantium, May, 149-160.

Eades, P. & Tamassia, R (1989). Algorithms for drawing graphs: An annotated bibliography. Technical
Report, CS-89-09, Brown University.

Eades, P. (1984). A heuristic for graph drawing. Congressus Numerantium, 42, 149-160.

Esposito, C. (1988). Graph graphics: Theory and practice. Computer Mathematics Applications, 15(4),
247-253.

Jablonowsky, D. & Guarna, V. A. (1983). GMB: A tool for manipulating and animating graph data
structures. Software Practice and Experience, 19(3), 283-301.

Kamada, T. & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information
Processing Letters, 31, 7-15.

Lipton, R. J. (1985). A method for drawing graphs. Proceedings of the 1st ACM Symposium on
Computational Geometry, 153-160.

Makinen, E. (1988). On circular layouts. International Journal of Computing Mathematics, 24, 29-37.

Reingold, E. E. & Tilford, J. S. (1981). Tidier drawings of trees. IEEE Transactions on Software
Engineering, SE-7, 223-228.

Robins, G. (1987). The ISI Grapher. Information Sciences Institute. Marina Del Ray, CA.

Rowe, L. A., Davis, M., Messinger, E., Meyer, C., Spirakis, C., & Tuan, A. (1987). A browser for
directed graphs. Software Practice and Experience, 17(1), 61-76.

Sugiyama, K., Tagawa, S., & Toda, M. (1981). Methods for visual understanding of hierarchical system
structures, IEEE Transactions on Systems, Man, and Cybernetics, SMC-11, 109-125.

Tamassia, R. (1987). On embedding a graph in the grid with the minimum number of bends. SIAM
Journal of Computing, 16, 421-444.

Tamassia, R., Di Battista, G & Battini, C. (1988). Automatic graph drawing and readability of diagrams.
IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 61-79.

Comments and questions to: fowler@panam.edu
Last update October 7, 1996

