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The term "quantization" originates from signal processing. In signal

processing the quantization is a process of discretizing signals.

In mathematics [Quantization: The best approximation of a Borel
probability measure P on R? by a discrete probability measure

supported by n points {a;....,a,} = R? for a given n.
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Q _ (signal compression): Shannon (1959), Gersho

and Gray (1992)

Q _ (quantization of empirical measures), pattern
recognition, speech recognition: Anderberg (1973), Bock (1974),
Diday and Simon (1976), Tou and Gonzales (1974)

© INIRERESIHEHAEN: Pcts (1997)
Q@ _ (sampling design): Bucklew and Cambanis

(1988), Benhenni and Cambanis (1996)

@ |Mathematical'models'in‘economics| (optimal location of service

centers): Bollobas (1972,1973)
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Wasserstein-Kantorovitch L,-metric for probability measures pu, v

1/r
W, (i, v) = inf { (J |z — y\%m(a:,y)) : m probability on R? x R?
with marginals p and v}

In particular if r = 1 then we get the well known

Kantorovich-Rubenstein metric:

Wi, v) = {Jf Ydp(x Jf Ydv(x :Lip(f)él}, where 0 <
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N B i
Given a probability measure ;2 on R? | a number r € (0,0) and a

natural number n .

W defin the nth quantization error of order  for
1/r
- ;= inf (J d(z, a)rd,u(:z:)) racRU1 < #(a) <n

Let P, be the set of all discrete probabilities on R? with cardinality at

most n. Then we have

(1) enr(ft) = 1nf W, (i, v).

veP,,

Recall that W, is the Wasserstein-Kantorovitch L, metric.
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Y :<tization dimension
The lower and the [Uppé¥ quantization dimensions of u of

order r are defined by

D, (p) :=liminf __logn D, ()| := lim sup _ logn

n—0o0 - 10g (')"rz,,r‘(/~1/) ! N—00 — lOg 671,,7"(#)

If D,(1) = D,(1), the common value is denoted by [Du()|. That is if

the quantization domension D, (u) exists then

1\ YD (w)
log ey, (1) ~ log <> .

n

. 1
Recall :  enr(p) = mf{(S d(z, ) dp(z)) "ac R% 1< #(a) < n} .
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S. Graf and H. Luschgy [2, Proposition 11.3]

lim nfenT = 00
n—oo
XOe O

liminfnse
n—roo TL r

t D $

r

=0

. 1
limsupnte,,

= 00
n—oo
O e o)
lim nse =0
n—oo TL’I"
@ @
t

Recall : enr(p) = inf{(s d(z, oz)rd,u(z))l/r:a cRY1 < #(a) < n} :

Mrinal Kanti Roychowdhury and Karoly Simon [Quantization dimension

b S



N B i
Theorem 1.1 (Pozelberger & Graf-Luschgy)

Let 11 be a probability measure of compact support K — R% and let

1<r<s<ow. Then

(2) D.(u) < Dy(p) <dimpK and D,(p) < D,(p) < dimpK

(3) dimy p < D, (1) and dimp p < Dy (1) .

If 11 is an absolute continuous Borel measure on R? then [Dy(u) = d, for

0<r < oo.
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Self-similar Iterated Function Systems (SS-IFS)

A Self-Simlar Iterated Function System (SS-IFS) on R? is a finite list
S = {S1,...,Sn} of strict contractions of R? with contraction ratios
ALy -5 Am, A € (0,1). The attractor of the IFS [A is a unique

m
non-empty compact set satisfying [A = [} Si(A).
i=1

The |similarity dimension of S is the solution s = s(\) of the equation
Al £« + A, = L. Then we have dimyg A < min {d, s} .
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Self-similar measures |

As above, let S = {S1,...,S,,} be a SS-IFS with contraction ratios
Ay Am € (0,1). Let p= (p1,...,pm) € (0,1)™ be a probability
vector. Then there exists a unique Borel probability measure v = vs

satisfying

(4) vsp(H) sz S;'H), VH cR? Borel

This is the |self-similar measure| correspoinding to the probability vector
p (and also to the SS-IFS S.)
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Self-similar measures 11

Let S = {S1,...,Sn} be a SS-IFS with contraction ratios
Ay Am € (0,1). Let p=(p1,...,pm) € (0,1)™ be a probability
vector. The |similarity dimension of the corresponding

self-similar measure v = vs, is

S, pilogp;

Imgv = &k .
d S Zi=1pi10g>\i

Recall : v(H) =" pv(S; ' H)
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Self-similar measures |1

Let S = {S1,...,Sn} be a SS-IFS with contraction ratios
A, Am € (0,1) and let s be the similarity dimension. That is

> A8 = 1. Consider the
P=(Al,.. s An)
The self-similar measure that corresponds to this probability vector is

called [natural measure .
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Open Set Condition (OSC)

The so-called |Open Set Condition (OSC)  if the cylinders {A;}"; are
well separated. More precisely, the OSC holds if there there exists an

open set V < RY such that

@ Si(V)cV foralliand

@ Si(V)nS;(V)=g foralli+#j.

If the OSC holds then the dimension of the attractor and any self-similar

measures are equal to their similarity dimension.
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e
Theorem (Graf, Luschgy, 2001) Let S = {Si,..., S} be a SS-IFS on
R |satisfying the OSC with contraction ratios Ai,..., A\, € (0,1). Let
P = (p1,---,0m) € (0,1)™ be a probability vector. Let v = vs, be the
corresponding self-similar measure. For every r € (0, 0) the quantization

dimension D, = D, (v) exists and satisfies
e _Dp
) 5 (o = 1.

If Vot is the natural measure (the invariant measure corresponding to
Prat = (A, ..., A8)) then D,.(vp.:) = s for all » > 0, where s is the
similarity dimension. Recall : v(H) =", piv(S; 'H), VH c R? Borel.
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Until now whatever | have said it was on R from now on we confine

ourself to R. A self similar IFS on R is of the form
(6) S ={Si(z) = Nz +t;};L,, e (—1,1)\{0}

We have seen that OSC implies that the [Hausdorff dimension of
a self-similar measure s | corresponding to the probability vector
p = (p1,...,pm) is equal to the similarity dimension of vg ,:

dime v 2 pilogps
SYSp T 37 pilog i

5 _ \m ) —1
Recall : v(H)=Y,",piv(S; H).
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We know that dimpg vsp<min {1, dimgvs,} always holds. It follows

from a Theorem of Hochman that "typically" we have equality. For

Sy ={Si(x) =N -z+[@}",
we fix the contraction ratios A = (\y,..., \,,) € (0,1)" and
‘consider the translations t — (f,.....t,) € R" ‘as parameters . Then
for every fixed A = (A\q,..., \n) € ((—1,1)\{0})", the corresponding
_ is - Hochman Theorem says that for all
but a set of at most m — 1 packing dimension of t € R™, Vp there in an
equality in the yellow formula. In particular, for all A € ((—1,1)\{0})™,

for Lebesgue a.e. t € R™ we have equality in the yellow formula.
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Now we recall that Theorem 1.1 impilies that

m

min {1, dimpg vsp} < D, (vsp) < Dy(vsp) < min {1, s}, Z NP = 1.
i-1

Putting together this with the Hochman Theorem mentioned on the
previous slide: we get that V A € ((—1,1)\{0})", for all but a set of

packing dimension at most m — 1 set of t and finally for all probability

vector p = (p1, e aan)1

- Z:i1 pilogp; — .
(7) min {1, S e | < Dyl p) < Dilvgp) < min (1,5},
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The case of the natural measure

In the previous formula, which was:

. o1 Pilog pi — .
min {1, SELPEER < D (v4) < D () < min (1,51

all inequalities are equalities if the measure is the natural self-similar
measure that is pnae = (A% ..., | Anl®). So, V X e ((—1,1)\{0})"™, for
all but a set of packing dimension at most m — 1 set of t € R™, for
Prat = (|A1]%, .-+, [Am[*), the quantization dimension D, (vss ;, ) exists,

and D, (Vstp,,) = min {1, s} . Recall : 3% [Xil* =1
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S. Graf and H. Luschgy'’s result on slide 14 computes the quantization
dimension D,.(v) of a self-similar measure v for a SS-IFS with slight
overlapping between the cylinders. That is in the case when the OSC
holds. {In the overlapping case little is known.  With Mrinal Kanti
Roychowdhury (Univ of Texas Rio Grande Valley) we considered a special
family self-similar fractals on the line with heavy overlaps and computed
the quantization dimension for this special case in the hope that our
method canbe generalized at least for SS-IFS on the line satisfying the
so-called Weak Separation Property (WSP). For simplicity we define the
WSP (Weak Separation Property) for homogeneous SS-IFS.
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That is when all the contraction ratios are the same A € (0, 1).
(8) S={Si(z)=A-z+t;},, r e R.

Let I be the interval spanned by the smallest and largest fixed points of
the mappings S;. We assume that [ is not a point. Let f; := S;i(1),
where i = (i1,...,4,) € {1,...,m}", Sj:= S;, 0---05; . We say that
the [WSP holds if there exists an ¢ > 0 such that

|1 1

Vn,Vi,je {1,...,m}" ,i#j either ; = I; or
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e
We remark that for a SS-IFS on the line given in the form
S={Si(z)=A-z+t},, reR.
the OSC holds if and only if
‘]i M IJ‘
||
So, the difference is that in the case of the WSP the total overlap

between the cylinders is allowed. We consider the following self-similar
IFS on R

1
(10) S = {Sz(w) = -z + z} :
3 1€{0,1,3}
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- |
S ={Si(z) = 30+ i}ie{013}' We write A := {0, 1,3}, and ¥ (X*) for
the set of infinite (finite) words above the alphabet A, respectively.

T REE NI
< |
! | | | |
S T T -

N S I + ! !

[ [ | | : :

~ ~




S ={Si(z) = 30+ i}ie{O,LS}' The , the red

ones are the level 2 and the blue ones are the level 3 cylinders.

—_— [—————
fo——= =
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110 1
(11) A=1111 | B:=1011 |
111 1

Given a probability vector _ Let v = ygp be the

corresponding self-similar measure: v(H) = > piv(S; 'H), VYV H c R,
€A

Ya={ieX: (g, irs1) # (0,3)}, ¥p:={ieX: (i, ixs1) # (1,0)}.
If p; > p3 then we work on ¥4, otherwise we work on >z. From now on

we always assume that p; = ps.
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Let

T = {ie A" : (i, ip) # (0,3),VE <n) . D=L T 0D,

n=1

where b is the empty word.
@ For an i€ 7, there can be exponentially many j € A" with
Lin Iy # .
@ Ifie 7, then there is at most one j € 7,,\ {i} such that ; n [; # .
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(12)

Ii:={ne A" : S, = Si} and W(i)i= > pp, foreveryie 3,
neIi

and we define
(13) Y (p) := 1, where b is the empty word.

We prove that the limit in the following definition exists:

(14) p(t) = Ai_r)gloilog ; Pi(i), t=0.
ieT,,
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Moreover, we verify that the function ¢ — p(t), is continuous and strictly

decreasing. In this way the following function
(15) t— p(t) :=p(t) — rtlog3
has a unique zero which we call ¢5 . That is
(16) plto) = 0.

Then we define x, such that

(17) to = —rfrxr thatis '\ = 1—t'_@;—0 .
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The new result

recat 4~ (0.1.), [

Foreveryie X%, Zi:={ne A":S, =S} and -

Let p(t) := lim Llog > ¥!(i), to is defined such that p(ty) = rtglog3
) ie7;t

Xr == 1 -

Theorem 2.1

The quantization dimension of the measure vs ;, exists and
DT(VS,I)) = Xr-
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Definition 2.2

We say that a function ¢ : % — [0, ) is a [weak quasi=
multiplicative potential on X, if the following three conditions

hold:

@ Thereis an £ € X% which is not the empty word such that ¢(€) > 0.

@ 3 C; > 0such that ¢(ij) < C10(i)o(j), Vij e T

@ JzeN, Cy>0suchthatVi,je X%, 3JkelJ,_;Trub such that
ikj € 3% and ¢(i)p(j) < Coo(ikj).
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Theorem 2.3 (Feng)

Let ¢ be a weak quasi-multiplicative potential on 3%. Then there exists

a unique invariant ergodic measure m on Y4 with the following property
(i)
ZjeﬁL ¢(J)
where a(i) =~ b(i) if there exists a ¢ > 0 such that 1b(i) < a(i) < ¢b(i).

Moreover, the pressure P(¢) of ¢ is

(18) )=~ ~ ¢(i) exp (—nP(9)), ieX}

(19) P(¢) == lim log > ¢(i)

n—ao0
ie7,
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——

Foreveryie %, Z;:={neA":S,=25;} and -

Y 3% — [0,00) is NOT quasi-multiplicative. Let

max () B(E0)) i iy = 1
(i), if iy # 1,

. %
forie X7.

(20) (i) :={

@ ¢ is weak quasi-multiplacative .

@ The potentials ¢ and @Z have the same pressure function. Namely,

(21) I<—<<n, VieT,.
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@) oo i, L 1os X0 - iy L S (0’
i€e7, ie7,

(23) auti) = (D60) 37"

(24) P(t) == lim — log Z o:(j) — rtlog 3.
n jeTn

P(t) strictly decreasing P(0) = p(0) = 0.876036,
P( )=0-— rlog3 < 0, there is a unique zero ty. That is P(ty) = 0.
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Let ¢ := ggto . Then ¢ is a weak quasi-multiplicative potential whose

pressure is zero. So, by Feng Theorem we get

Proposition 2.4 |
There is a Cy > 1 and a unique invariant ergodic measure m on X4 such

that

(25) Crt ¢1‘ <(Cy, forall ieXy.

Using this measure m and the standard techniques of the theory of
quantization dimension we get that Theorem 2.1 holds.



Some further references are given below.

31 [4] [1] [3]
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Thank you for your attention!
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