
Weak Mitoticity of Bounded Disjunctive
and Conjunctive Truth-Table

Autoreducible Sets

Liyu Zhang(B), Mahmoud Quweider, Hansheng Lei, and Fitra Khan

Department of Computer Science, University of Texas Rio Grande Valley,
One West University Boulevard, Brownsville, TX 78520, USA

{liyu.zhang,mahmoud.quweider,hansheng.lei,fitra.khan}@utrgv.edu

Abstract. Glaßer et al. (SIAMJCOMP 2008 and TCS 2009 (The two
papers have slightly different sets of authors)) proved existence of two
sparse sets A and B in EXP, where A is 3-tt (truth-table) polynomial-
time autoreducible but not weakly polynomial-time Turing mitotic and B
is polynomial-time 2-tt autoreducible but not weakly polynomial-time 2-
tt mitotic. We unify and strengthen both of those results by showing that
there is a sparse set in EXP that is polynomial-time 2-tt autoreducible
but not even weakly polynomial-time Turing mitotic. All these results
indicate that polynomial-time autoreducibilities in general do not imply
polynomial-time mitoticity at all with the only exceptions of the many-
one and 1-tt reductions. On the other hand, however, we proved that
every autoreducible set for the polynomial-time bounded disjunctive or
conjunctive tt reductions is weakly mitotic for the polynomial-time tt
reduction that makes logarithmically many queries only. This shows that
autoreducible sets for reductions making more than one query could still
be mitotic in some way if they possess certain special properties.

1 Introduction

Let r be a reduction between two languages as defined in computational com-
plexity such as the common many-one and Turing reductions. We say that a
language L is r-autoreducible if L is reducible to itself via the reduction r where
the reduction does not query on the same string as the input. In case that r is the
many-one reduction, we require that r outputs a string different from the input
in order to be an autoreduction. Researchers started investigating on autore-
ducibility as early as 1970’s [12] although much of the work done then was in
the recursive setting. Ambos-Spies [1] translated the notion of autoreducibility
to the polynomial-time setting, and Yao [13] considered autoreducibility in the
probabilistic polynomial-time setting, which he called coherence.

More recently polynomial-time autoreducibilities, which correspond to
polynomial-time reductions, gained attention due to its candidacy as a struc-
tural property that can be used in the “Post’s program for complexity theory”

L. Zhang—Research supported in part by NSF CCF grant 1218093.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 192–204, 2018.
https://doi.org/10.1007/978-3-319-94776-1_17

liyu.zhang@utrgv.edu

Weak Mitoticity of Bounded Disjunctive 193

[3] that aims at finding a structural/computational property that complete sets
of two complexity classes don’t share, hereby separating the two complexity
classes. Autoreducibility is believed to be possibly one of such properties that
will lead to new separation results in the future [2]. We refer the reader to Glaßer
et al. [7] and Glaßer et al. [6] for recent surveys along this line of research.

In this paper we continue to study the relation between the two seemingly
different notions, autoreducibility and mitoticity. Glaßer et al. [9] proved that
among polynomial-time reductions, autoreducibility coincides with polynomial-
time mitoticity for the many-one and 1-tt reductions, but not for the 3-tt reduc-
tion or any reduction weaker than 3-tt. In a subsequent paper Glaßer et al. [4]
further proved that 2-tt autoreducibility does not coincide with 2-tt mitoticity.
However, the set they construct is weakly 5-tt mitotic. So the technical question
remained open whether one can construct a language that is 2-tt autoreducible
but not weakly Turing-mitotic. We solve this problem in the positive way. More
precisely, we proved that there exists a sparse set in EXP that is 2-tt autore-
ducible but not even weakly Turing-mitotic. This result unifies and strengthens
both of the previous results.

In attempting to strengthen our results further we asked the question whether
one can even construct a language that is r-autoreducible but not weakly Turing-
mitotic for any reduction r that is weaker than the 1-tt reduction but stronger
than 2-tt reduction such as 2-dtt and 2-ctt reductions. We proved that any
language that is k-dtt or k-ctt autoreducible is also weakly kO(2c log(c−1)n)-tt
mitotic for any integers k, c ≥ 2. Glaßer et al. [9] and Glaßer et al. [5] showed that
k-dtt and/or k-ctt complete set for many common complexity classes including
NP, PH, PSPACE and NEXP are k-dtt and/or k-ctt autoreducible, respectively.
In light of that we have the interesting corollary that k-dtt and/or k-ctt complete
sets of those complexity classes are weakly dtt- and/or ctt-mitotic, respectively.

We give definitions and notations needed to present our results in Sect. 2
below. We then describe our main results in more details in Sect. 3. Due to
space limit we have to omit the proofs for Lemma 1, Theorems 4, and 5 in this
proceeding paper. Those proofs will be available upon request and in the journal
version of the paper.

2 Definitions and Notations

We assume familiarity with basic notions in complexity theory and particu-
larly, common complexity classes such as P, NP, PH, PSPACE and EXP, and
polynomial-time reductions including many-one (≤p

m), truth-table (≤p
tt) and

Turing reductions (≤p
T) [10,11]. Without loss of generality, we use the alpha-

bet Σ = {0, 1} and all sets we referred to in this paper are either languages over
Σ or sets of integers. Let N denote the set of natural numbers and N

+ denote
N\{0}. We use a pairing function 〈·, ·〉 that satisfies 〈x, y〉 > x + y. For every
string/integer x, we use |x|/abs(x) to denote the length/absolute value of x. For

liyu.zhang@utrgv.edu

194 L. Zhang et al.

every function f , we use f (i)(x) to denote f(f(· · · f︸ ︷︷ ︸
i

(x))) for every i ∈ N, where

f (0)(x) = x.
Throughout the paper, we use the two terms Turing machines and algorithms

interchangeably. Following Glaßer et al. [9], we define a non-trivial set to be a
set L where both L| and L contain at least two distinct elements. This allows
us present our results in a simple and concise way. All reductions used in this
paper are polynomial-time computable unless otherwise specified. A language L
is complete for a complexity class C for a reduction r if every language in C is
reducible to L via r. For any algorithm or Turing machine A, we use A(x) to
denote both the execution and output of A on input x, i.e., “A(x) accepts” has
the same meaning as “A(x) = accept”. We use AB(x) or Ag(x) to denote the
same for algorithm/Turing machine A that has oracle access to a set B or a
function g. Also L(A) (L(AB) or L(Ag)) denotes the language accepted by A
(AB or Ag).

We provide detailed definitions for the most relevant reductions considered
in this paper below.

Definition 1. Define a language A to be polynomial-time truth-table reducible
(≤p

tt) to a language B, if there exists a polynomial-time algorithm A that accepts
A with oracle access to B. In addition, there exists a polynomial-time computable
function g that on input x outputs all queries A(x) makes to B.

Truth-table reductions are also called nonadaptive Turing reductions in the
sense that they are the same as the general Turing reductions except that all
queries the reductions make can be computed from the input in polynomial time
without knowing the answer to any query.

Definition 2. For any positive integer k, define a language A to be polynomial-
time k-tt reducible (≤p

k-tt) to a language B, if there exists a polynomial-time
truth-table reduction r from A to B that makes at most k queries on every input
x. If in addition the k queries q0, q1, · · · , qk−1 that r makes are such that x ∈ A if
and only if some/every qi ∈ B, then r is called a disjunctive/conjunctive truth-
table reduction and A is said to be disjunctive/conjunctive truth-table reducible
(≤p

k-dtt/≤p
k-ctt) to B.

Now we define autoreducible and mitotic languages formally.

Definition 3. Given any reduction r, a language is autoreducible for r or r-
autoreducible, if the language is reducible to itself via r that does not query on
the input.

Definition 4. Given any reduction r, a language L is weakly mitotic for r or
weakly r-mitotic, if there exists another language S, where L, S ∩ L and S are
all equivalent under the reduction r, i.e., L ≡r S ∩ L ≡r S ∩ L. If in addition
S ∈ P, then we say that L is mitotic for r or r-mitotic.

liyu.zhang@utrgv.edu

Weak Mitoticity of Bounded Disjunctive 195

The proof of our second result uses log derivative sequences based on log-
distance functions. We define both concepts below.

Let sgn denote the common sign function defined on integers, i.e., for every
z ∈ Z, sgn(z) = 1 if z ≥ 0 and sgn(z) = −1 otherwise.

Definition 5. For every pair of integers or strings x and y, we define the fol-
lowing log-distance function, logD, as follows.

logD(x, y) =
{

sgn(y − x)	log |y − x|
 if x �= y and ∞ �∈ {x, y}
∞ otherwise.

In case where x and y are strings, y − x is defined to be their lexicographical
difference.

The above function is the same as the “distance function” defined by Glaßer et
al. [9], except that we define logD(x, y) = ∞ instead of 0 when x = y, or either
x or y is ∞.

Definition 6. Let X = {xj}j≥0 be a sequence of strings or integers, where xj

denotes the j-th element in X. Define the i-th log derivative sequence of X,
written X(i) as follows:

– X(0) = X, and
– For i ≥ 1, X(i) = {x

(i)
j }, where x

(i)
j = logD(x(i−1)

j , x
(i−1)
j+1).

In case X is a finite sequence {xj}s≤j≤t, where s, t ∈ N and s ≤ t, then X(i) =
{x

(i)
j }s≤j≤t−i for every i ∈ [0, t − s]. For every i ≥ 2, we say that X(i) is a

higher-order log derivative of X.

3 Results

Our first main result is that there exists a sparse set in EXP that is 2-tt autore-
ducible but not weakly mitotic even for the polynomial-time Turing reduction,
the most general polynomial-time reduction.

Overall the proof of our first main result follows the approach of the proof by
Glaßer et al. [4] that there exists a sparse set in EXP that is 2-tt autoreducible
but not 2-tt mitotic. The proof is in general a diagonalization against all possible
partitions of a constructed language L into L1 and L2, as well as all possible
polynomial-time oracle Turing machines Mi and Mj , where L≤p

2-ttL1 via Mi

and L≤p
2-ttL2 via Mj . The construction of L proceeds in stages, where in each

stage, only polynomially many strings of a particular length are added to L.
The gaps between lengths of strings added to L in different stages are made
super-exponential so that strings added to L in later stages won’t affect the
computations of considered Turing machines on strings added to L in previous
stages. In light of the fact that the set constructed as described above is actually
weakly 5-tt mitotic [4], it was assumed that a straightforward adaption of the
above construction won’t be sufficient for proving a stronger result that there

liyu.zhang@utrgv.edu

196 L. Zhang et al.

exists a sparse set in EXP that is 2-tt autoreduction but not weakly Turing
mitotic.

However, something overlooked here is that the aforementioned proof actually
proved a stronger statement than stated - The proof actually shows that there
is a set L, where for every partition {L1, L2} of L, either L �≤p

2-ttL1 or L �≤p
2-ttL2.

In order to prove that L is not 2-tt mitotic we only need to show L �≤p
2-ttL1,

L1 �≤p
2-ttL2 or L2 �≤p

2-ttL. The latter is clearly a weaker statement. In light of
this observation, we adapt the previous proof by considering three oracle Turing
machines Mi, Mj and Mk instead for the purpose of diagonalization in each
stage of constructing the language L. It turns out that this is critical for the
proof to go through.

We now state our first main result in detail below.

Theorem 1. There exists L ∈ SPARSE ∩ EXP such that

– L is 2-tt-autoreducible, but
– L is not weakly Turing-mitotic.

Theorem 1 indicates that 2-tt autoreducibility does not imply weak mitotic-
ity even for the Turing reduction, the most general polynomial-time reduction.
This shows that in general autoreducibility does not even imply the weakest
form of mitoticity in the polynomial-time setting among reductions making more
than one query, despite that autoreducibility and mitoticity are equivalent for
the many one and 1-tt reductions. A further question that is natural to ask
is whether autoreducibility implies any form of mitoticity at all for reductions
that lie between the 2-tt reduction and 1-tt reduction, or reductions with special
properties that are incomparable to 2-tt and/or 1-tt reductions, such as honest
and positive reductions.

Here we consider bounded disjunctive and conjunctive truth-table reductions.
We prove that if a language is k-dtt or k-ctt autoreducible for some integer k ≥ 2,
then the language is weakly truth-table mitotic. In addition, the reduction can
be made to query on at most kO(2c log(c−1) n) strings for every integer c ≥ 2.
Our proof adapts and generalizes in a significant way the proof strategy used by
Glaßer et al. [9], where they showed that every nontrivial language is many-one
or 1-tt autoreducible if and only if the language is many-one or 1-tt mitotic,
respectively. We review their proof strategy below at a higher level and then
describe the changes needed in order to establish the weak mitoticity of any
k-dtt or k-ctt autoreducible sets.

Let L be a nontrivial many-one (≤p
m) autoreducible set, where there exists

a polynomial-time computable function f such that f(x) �= x and f(x) ∈ L if
and only if x ∈ L for every x ∈ Σ∗. It is sufficient to prove that there exists a
polynomial-time decidable set S and a function f ′, where for every x ∈ Σ∗,

(i) f ′(x) ∈ L if and only if x ∈ L, and
(ii) f ′(x) ∈ S if and only if x ∈ S.

The idea of finding a function f ′ that satisfies conditions (i) and (ii) as stated
above is to define f ′(x) = f (i)(x) for an appropriate i ≤ p(|x|), where p is a

liyu.zhang@utrgv.edu

Weak Mitoticity of Bounded Disjunctive 197

polynomial. Since f(x) is an autoreduction, it is obvious that f ′ defined in this
way satisfies condition (i). Now we need to construct a set S where for each x
we can find a correct i so that Condition (ii) also holds, i.e., f ′(x) = f (i)(x) ∈ S
if and only if x ∈ S.

To construct such set S we consider the sequence x, f(x), f(f(x)), . . . , called
trajectory of x in Glaßer et al. [9]. Note that every string on the trajectory of
x has the same membership in L as x and also that every two consecutive
strings on the trajectory are unequal to each other. We first partition Σ∗ into
a sequence of segments, each of which contains all strings of some consecutive
lengths. In addition, those segments are assigned to S and S in an alternate way,
i.e., the i-th segment is assigned to S if and only if the (i + 1)-st is assigned to
S. Then we look for changes of monotonicity in the trajectory of x and assign
x to S or S accordingly. For instance, assign x to S if x < f(x) > f(f(x)) and
to S if x > f(x) < f(f(x)). Clearly if we can find more than one change in
monotonicity along the trajectory of x within polynomially many strings, then
we will find a string y where y �∈ S if and only if x ∈ S. Otherwise, we can find
a strictly monotonic sub-trajectory within the trajectory of x. If within that
sub-trajectory, f increases or decreases fast enough, i.e., leading to a change in
length, then we can find strings on the trajectory of x that are polynomially
many strings from x but belong to different segments and hence have different
memberships of S by x.

The most difficult case arises when the trajectory of x is a strictly monotonic
but does not increase or decrease fast enough so that trajectory can reach a
neighboring segment from the segment containing x within polynomially many
strings away from x. Glaßer et al. [9] dealt with this case essentially by dividing
each segment into smaller segments of increasing sizes based on a log distance
function applied on strings on the trajectory of x. This way the trajectory will
contain strings in neighboring segments of the same size depending on how fast
the autoreduction function increases or decreases. Then we can find a y in a
neighboring segment from x on the trajectory, where y ∈ S if and only x ∈ S.

The above strategy obviously does not apply to reductions making more than
one queries as it is. We, however, found a way to adapt the strategy to apply it
on bounded dtt or ctt reductions and prove the weak tt mitoticity of bounded
dtt or ctt autoreducible sets.

Consider a k-dtt autoreducible set L for some integer k ≥ 2. Then there
exists a polynomial-time computable function f , where for every x ∈ Σ∗, f(x) =
〈y0, y1, · · · , yk−1〉 such that

(i) yj �= x for every j ∈ [0, k − 1], and
(ii) f(x) ∈ L if and only if yj ∈ L for some j ∈ [0, k − 1].

Now define a function g where g(x) is the lexicographically least string in f(x)
that has the same membership of L as x. Then it is clear that g(x) �= x and
g(x) ∈ L if and only if x ∈ L. We can apply Glaßer et al.’s construction [9] as
described above on g and establish the tt mitoticity of any k-dtt autoreducible
set. The problem with this approach is, however, that the function g might not
be polynomial-time computable. We circumvented this problem by considering

liyu.zhang@utrgv.edu

198 L. Zhang et al.

all possible values of g(x) for every x, i.e., any of the k values in f(x), This
means that we will look for a y �= x where y ∈ S if and only if x �∈ S, along all
possible trajectories from x. Hence, we no longer can afford traversing along a
trajectory from x for polynomially many strings before we can find the desired y
since there could be exponentially many possible trajectories. Instead, we need
another way to construct the set S so that there exists a y on the g-trajectory
that is at most O(log n) strings away from x, where x ∈ S if and only if y �∈ S.

We solve this problem by considering higher-order log derivatives, defined
in Sect. 2, of the sequence consisting of strings on the trajectory of x, i.e., X =
{xj = g(j)}j≥1. The log-distance function used by Glaßer et al. [9] can be viewed
as the first-order log derivative of the sequence X. We will attempt to find
changes of monotonicity in X, the 1st-order log derivative of X, the 2nd-order
log derivative of X and so on until the c-th order log derivative for some integer
c ≥ 2, in that order, and then assign x to either S or S accordingly. If we don’t
find enough changes of monotonicity among all those high-order log derivative
sequences of X, then we will show that the function g increases fast enough
already so that for some j ∈ [1, O(log|x|), g(j)(x) belongs to the next segment
after the one containing x. Hence, g(j)(x) will be assigned to S if and only if x
is assigned to S. We now provide the detailed proof for our main theorem.

We first need the following lemma that was essentially proved in Glaßer et
al. [9].

Lemma 1 [9]. Let {xj}0≤j≤2 be a strictly monotonic sequence of integers, where
there exists some d ∈ Z such that logD(xj , xj+1) = d for 0 ≤ j ≤ 1. Then the
set X = {	 xj

2abs(d)+1
 | 0 ≤ j ≤ 2} contains at least one even number and one odd
number.

Theorem 2. Let g be a polynomially-bounded function and g(x) �= x for every
x ∈ Σ∗. Then for every positive integer c ≥ 2, there is a polynomial-time algo-
rithm Sc with oracle access to function g, and a polynomial r, where for every
x ∈ Σ∗ an integer jx ∈ [1,
2c log(c−1) |x|�] exists such that

(i) for each j ∈ [0, jx], |gj(x)| ≤ r(|x|),
(ii) for each j ∈ [0, jx − 1], Sg

c accepts x if and only if Sg
c accepts g(j)(x), and

(iii) Sg
c accepts x if and only if Sg

c rejects g(jx)(x).

Proof. Let g be an (nl + l)-bounded function for some l ∈ N
+ as given in the

premise. Let t be a tower function defined by t(0) = 0 and t(i + 1) = t(i)l + l
for i ∈ N. Define the inverse tower function as t−1(n) = min{i | t(i) ≥ n}. Note
that t−1 is polynomial-time computable. Now consider the algorithm Sg

c given
below (Algorithm 1).

Let m =
2c log(c−1) |x|�. We first observe that Algorithm Sg
c queries on

strings g(j)(x) for 1 ≤ j ≤ c + 2 only, each of which is polynomially bounded
since g is a polynomially bounded function. Hence, Sg

c runs in polynomial time
assuming the value of g(j)(u) for any u queried on can be obtained instantly.

We now turn to the proof for conditions (i)–(iii) of Theorem2. Let x be an
arbitrary input string and let X denote the sequence {xj = g(j)(x)}0≤j≤m. The

liyu.zhang@utrgv.edu

Weak Mitoticity of Bounded Disjunctive 199

Input : An arbitrary string w ∈ {0, 1}∗, where |w| = n
Output : ACCEPT or REJECT

1 m ← k�log n�;
2 D[0, 0] ← x, D[0, 1] ← g(x);
3 if t−1(|D[0, 0]|) < t−1(|D[0, 1]|) then
4 ACCEPT iff t−1(|D[0, 0]|) is odd
5 end
6 D[1, 0] ← logD(D[0, 0], D[0, 1]);
7

8 // Compute the log derivatives of X at x0 = x, x1 = g(x) and x2 = g(g(x));
9 for i ← 0 to k do

10

11 // Compute the i-th order log derivatives;
12 for j ← i + 2 to 0 do
13 if j = i + 2 then
14 D[0, j] ← g(D[0, j − 1]);
15 if t−1(D[0, j − 1])) < t−1(|D[0, j]|) then
16 ACCEPT iff t−1(|D[0, j − 1]|) is even
17 end

18 end
19 else
20 D[i + 2 − j, j] ← logD(D[i + 1 − j, j + 1], D[i + 1 − j, j])
21 end

22 end
23

24 // Accept or reject x based on the computed log derivatives;

25 // Here D[i, 0] = x
(i)
0 , D[i, 1] = x

(i)
1 , D[i, 2] = x

(i)
2 ;

26 u ← D[i, 0], v ← D[i, 1], w ← D[i, 2];
27 if u = v = w then

28 ACCEPT iff �D[i−1,0]

2abs(u) � is odd

29 end
30 if u < v ≥ w or u = v > w then ACCEPT;
31 if u > v ≤ w or u = v < w then REJECT;

32 end
33

34 ACCEPT iff isEvenStage ;

Algorithm 1. The Splitting Algorithm Sg
c based on log-derivative

sequence.

algorithm Sg
c uses an array D to compute and store the log derivatives of the

sequence X. More precisely, every time the execution of the algorithm Sg
c reaches

Line 26, D[p, q] will contain the value of x
(p)
q , the p-th order log derivative of X

at xq, for each p ∈ [0, i] and q ∈ [0, i + 2], where p + q ≤ i + 2. In particular,
D[i, 0], D[i, 1] and D[i, 2] will store the values of x

(i)
0 , x

(i)
1 and x

(i)
2 , in that order.

liyu.zhang@utrgv.edu

200 L. Zhang et al.

We consider the following cases in that order so that the proof for Case e
assumes that none of the cases 1, 2, · · · , e−1 holds. We also assume that t−1(|x|)
is even.

Case 1: There exists j1 ∈ [1,m − 1], where t−1(|xj1 |) < t−1(|xj1+1|). Let j1 be
the smallest such number. Then Sg

c accepts xj1 = x
(0)
j1

at Line 4 if and only if
t−1(|xj1 |) is odd.

Subcase 1(a): t−1(|xj1−1|) ≥ t−1(|xj1 |). In this subcase Sg
c accepts xj1−1 =

x
(0)
j1−1 at Line 16 if and only if t−1(|xj1 |) is even. It follows that Sg

c accepts xj1−1

if and only if Sg
c rejects xj1 .

Subcase 1(b): t−1(|xj1−1|) < t−1(|xj1 |). In this subcase, Sg
c accepts xj1−1 =

x
(0)
j1−1 at Line 4 if and only if t−1(|xj1−1|) is odd. Note that for each j ∈ [1, m],

it holds that

|x(0)
j | = |xj | ≤ |xj−1|l + l = |x(0)

j−1|l + l

since xj = g(xj−1). This implies that t−1(|xj |) ≤ t−1(|xj−1|) + 1 for each j ∈
[1,m]. Hence, it follows from the hypothesis of this subcase that t−1(|xj1−1| =
t−1(|xj1 |) − 1. Then we derive again in this case that Sg

c accepts xj1−1 if and
only if Sg

c rejects xj1 .
Let j2 = j1 − 1. Then we have shown in both subcases (a) and (b) of Case 1

that Sg
c accepts xj2 if and only if Sg

c rejects xj1 , where {j1, j2} ⊆ [0, m].
If Case 1 does not hold, then

∀j ∈ [1, m − 1], t−1(|xj |) ≥ t−1(|xj+1|) (1)
∀j ∈ [0,m], t−1(|xj |) ≤ t−1(|x1|) ≤ t−1(|x|) + 1 (2)

We assume that statements (1) and (2) is true for all the subsequent cases.

Case 2.i: For each i ∈ [0, c], we consider Case 2.i in the increasing order of i,
which consists of the following subcases 2.i(a − d).

If i = 0, let Z0 be X(0)\{x} = X\{x}, which is a consecutive subsequence
of X(0) = X with start index s0 = 1 and ending index t0 = m, respectively.
Otherwise, Zi is a consecutive subsequence of X(i) constructed in Case 2.(i−1)(c)
or 2.(i − 1)(d) if applicable, with start index si and ending index ti. Note the
following statement:

Statement 3. If Cases 2.i needs to be considered, then Sc does not accept or
reject any string xj, where si ≤ j ≤ ti − 2, before the i-th iteration of the outer
loop.

Statement 3 is true for i = 0 in light of Case 1: We will consider Case 2.0
only if Sg

c does not accept any xj = x
(0)
j for 1 ≤ j ≤ m−2 at Line 4. We will see

that Statement 3 holds true through all cases 2.i until the smallest i where Sg
c

makes output during the i-th iteration of the outer loop on xj = x
(0)
j for some

j ∈ [si, ti − 2]. In addition, if the execution of Sg
c reaches Line 26 during the i-th

liyu.zhang@utrgv.edu

Weak Mitoticity of Bounded Disjunctive 201

iteration, then none of the elements u = x
(i)
0 , v = x

(i)
1 , and w = x

(i)
2 is ∞, for

otherwise two elements among {x
(i−1)
j | 0 ≤ j ≤ 3} must equal each other since

x
(i)
j = logD(x(i−1)

j+1 , x
(i−1)
j) for every j ∈ [0, mi − i]. That will make Sg

c halt in
the (i − 1)-st iteration of the outer loop already, at lines 29–31.

Subcase 2.i(a): Zi contains 5 consecutive equal elements {x
(i)
j }a≤j≤a+4, where

a ∈ [si, ti − 4]. Then for a ≤ j ≤ a + 2, Sg
c accepts xj at Line 29 if and only if

	 x
(i−1)
j

2abs(d)+1
 is odd.
Define

Ei =

{
	 x

(i−1)
j

2abs(d)+1

}

r≤j≤r+2

, where d = x(i)
r .

Note that x
(i)
j = logD(x(i−1)

j+1 , x
(i−1)
j) for each j ∈ [a, a+2]. Then by Lemma 1,

Ei contains at least one even number and one odd number. Therefore, Sg
c accepts

at least one string xj1 and rejects at least one string xj2 , where j1, j2 ∈ [a, a+2].
Now we assume that there don’t exist 5 consecutive equal strings in Zi.

Subcase 2.i(b): The sequence Zi contains two elements x
(i)
j1

and x
(i)
j2

, where
{j1, j2} ⊆ [si, ti − 2] and

– x
(i)
j1

< x
(i)
j1+1 ≥ x

(i)
j1+2 or x

(i)
j1

= x
(i)
j1+1 < x

(i)
j1+2, and

– x
(i)
j2

> x
(i)
j2+1 ≤ x

(i)
j2+2 or x

(i)
j2

= x
(i)
j2+1 > x

(i)
j2+2.

In this subcase Algorithm Sg
c accepts xj1 at Line 30 and rejects xj2 at Line

31.

Subcase 2.i(c): There does not exist j1 ∈ [si, ti − 2] as required by Subcase
2.i(b), then both of the following hold for each string j ∈ [si, ti − 2]:

– If x
(i)
j < x

(i)
j+1, then x

(i)
j+2 < x

(i)
j+1.

– If x
(i)
j = x

(i)
j+1, then x

(i)
j+2 ≥ x

(i)
j+1.

This shows that Zi is of the following forms, where si ≤ s′
i ≤ t′i ≤ ti:

x(i)
si

< x
(i)
si+1 < · · · < x

(i)
s′

i
= x

(i)
s′

i+1 · · · = x
(i)
t′
i

< x
(i)
t′
i+1 < · · · < x

(i)
ti

(3)

Hence, both Yi1 = {x
(i)
si , x

(i)
si+1, · · · , x

(i)
s′

i
} and Yi2 = {x

(i)
t′
i
, x

(i)
t′
i+1, · · · < x

(i)
ti

} are
strictly monotonic consecutive subsequences of Zi. We set Yi = Yi1 if |Yi1 | ≥ |Yi2 |
and Yi = Yi2 otherwise. Note that Yi is a consecutive subsequence of Y

(1)
i−1, the

log derivative sequence of Yi−1.
If i = 0, Subcase 2.i(a) does not apply since xj �= xj−1 for every j ∈ [1, m].

Consequently |Y0| ≥ m0 =
m/2�. Otherwise, t′i − s′
i ≤ 4 due to Subcase 2.i(a)

and Eq. (3). Assume |Yi−1| ≥ mi−1. Then |Zi| = |Yi−1| − 1. Hence, |Yi| ≥ mi =

((mi−1 − 1) − 3)/2� =
mi−1/2� − 2.

liyu.zhang@utrgv.edu

202 L. Zhang et al.

Subcase 2.i(d): There does not exist j2 ∈ [0, mi − 2] as required by Subcase
2.i(b). This subcase is symmetric to Subcase 2.i(c). We again obtain a strictly
monotonic consecutive subsequence Yi of length at least mi within Zi. We let Yi

be that subsequence with starting index si and ending index ti. Again, Yi is a
subsequence of the log derivative sequence of Yi−1.

For both subcases 2.i(c) and 2.i(d) we define Zi+1 = Y
(1)
i and proceed to

Case 2.(i + 1). Clearly Zi+1 is a consecutive subsequence of X(i+1) since Yi is
a consecutive subsequence of X(i). Also, the start and ending indices of Zi+1

are si+1 = si and ti+1 = s′
i − 1, or si+1 = t′i and ti+1 = ti − 1, respectively,

depending on how Yi is formed in Case 2.i(c) or Case 2.i(d).

Summary of Case 2.i: In Case 2.i, we either find {j1, j2} ⊆ [0, m − 2], where
Sg

c accepts xj1 if and only if Sg
c rejects xj2 (subcases 2.i(a) and 2.i(b)) or we

obtain a strictly monotonic and consecutive subsequence Yi of both X(i) and
Yi−1, where |Yi| ≥ mi.

If none of the subcases 2.i(a) and 2.i(b) apply for all 0 ≤ i ≤ c, then we
arrive at a set of sequences Yi, where

– Y0 is a strictly monotonic and consecutive subsequence of X(0) with |Y0| ≥
m0 =
m/2�, and

– for each i ∈ [1, c], Yi is a strictly monotonic and consecutive subsequence of
both X(i) and Y

(1)
i−1 with |Yi| ≥ mi =
mi−1/2� − 2

Note that the length of each string in X(0) = X is at most nl + l due to Eq. 2.
Hence, every element in Y1 has an absolute value no more than log(2·2(nl+l+1)) =
O(nl) for sufficiently large n. This in turn implies that every element in Y2 has
an absolute value no more than O(log n) using the same argument. Continuing
applying this argument on Y3, Y4,... through Yc, we obtain that every element
in Yc for c ≥ 2 should have an absolute value no more than O(log(c−1) n).

However, a simple induction proof shows that mc = Ω(log(c) n). The maximal
absolute value of elements in Yc is no less than mc/2 = Ω(log(c) n), since Yc

is a strictly monotonic sequence of integers of length at least mc. This is a
contradiction to the argument above that every element in Yc for c ≥ 2 should
have an absolute value no more than O(log(c−1) n). Hence, either subcase 2.i(a)
or 2.i(b) must hold for some i ∈ [0, c] if Case 1 does not hold. This will ensure
that Sg

c accepts xj1 = g(j1)(x) if and only if Sg
c rejects xj2 = g(j2)(x) for some

{j1, j2} ⊆ [0,m]. This proves (ii) and (iii) of Theorem2.
Regarding Condition (i) of the theorem, we observe that if Case 1 applies

then jx ≤ j1, where j1 is the smallest number j ∈ [1, m−1] such that t−1(|xj |) <
t−1(|xj+1|). This implies that t−1(|xj |) ≤ t−1(|x1|), for each j ∈ [1, j1]. Hence,
it follows that |xj | ≤ |x1|l + l for each j ∈ [1, jx]. Note that |x1| ≤ |x|l + l since
x1 = g(x0) = g(x). So for each j ∈ [0, jx], |g(j)(x)| ≤ |x|l + l.

Now assume that Case 1 does not apply. Then by Eq. (2), for each j ∈ [0, m],
it holds that t−1(|xj |) ≤ t−1(|x1|) ≤ t−1(|x|) + 1, or equivalently, |g(j)(x)| =
|xj | ≤ (|x|l + l)l + l ≤ 2|x|2l. Therefore, Condition (i) holds for r(n) = 2n2l.

This finishes the proof of Theorem2. ��
With Theorem 2 we can now establish the rest of our main results.

liyu.zhang@utrgv.edu

Weak Mitoticity of Bounded Disjunctive 203

Theorem 4. For every k ∈ N
+ and positive integer c ≥ 2, if a non-trivial

language L is ≤p
k-dtt -autoreducible, then L is weakly ≤p

kO(2c log(c−1) n)-tt -mitotic.

Proof. We assume that k ≥ 2 since it is already known that a non-trivial lan-
guage is ≤p

1-tt autoreducible if and only if it is ≤p
1-tt mitotic [9].

Let L be a non-trivial and ≤p
k-dtt -autoreducible language. Then there exists

a polynomial-time computable function f , where f(w) = 〈u0, u1, . . . , uk−1〉 for
each x ∈ Σ∗ such that

– for each i ∈ [0, k − 1], x �= ui, and
– x ∈ L if and only if ∃i ∈ [0, k − 1], ui ∈ L.

When there is no confusion we also use f(x) to denote the set
{u0, u1, . . . , uk−1}. For a set of strings W , let lex − min (W) denote the lex-
icographically least string in W .

Now define

g(w) =
{

lex-min (f(x)) if x �∈ L
lex-min (f(x) ∩ L) if x ∈ L

It’s clear that function g is polynomial bounded and for every x ∈ Σ∗, g(x) �=
x. Hence we can apply Theorem 2 on function g and any positive integer c ≥ 2
to obtain an algorithm Sg

c and a polynomial r that satisfies all the conditions as
stated in Theorem 2. Let S = L(Sg

c). Then one can argue that S can be used to
show that

S ∩ L ≡p
kO(c)-tt L ≡p

kO(2c log(c−1) n)-tt S ∩ L.

��
Using a similar argument we prove the same result for k-ctt autoreducible

sets:

Theorem 5. For every k ∈ N
+ and integer c ≥ 2, if a non-trivial language L is

≤p
k-ctt -autoreducible, then L is weakly ≤p

kO(2c log(c−1) n)-tt -mitotic.

In light that the k-dtt complete sets of many common complexity classes
have been proven to be k-dtt autoreducible for k ≥ 2 [5,8] we have the following
corollary providing a better understanding of (weak) mitoticity of complete sets
in complexity theory.

Corollary 1. For every integer k ≥ 2 and c ≥ 2, every k-dtt complete set for
the following classes is weakly kO(2c log(c−1) n)-dtt mitotic:

– PSPACE,
– the levels ΣP

h , ΠP
h and ΠP

h of the polynomial-time hierarchy for h ≥ 2
– 1NP,
– the levels of the Boolean hierarchy over NP,
– the levels of the MODPH hierarchy, and
– NEXP.

liyu.zhang@utrgv.edu

204 L. Zhang et al.

Proof. Glaßer et al. [8] showed that all k-dtt complete sets of the complexity
classes listed above except NEXP are k-dtt autoreducible. In addition, Glaßer
et al. [5] recently showed that any k-dtt complete set for NEXP is k-dtt autore-
ducible. The corollary follows immediately by applying Theorem4.

��

References

1. Ambos-Spies, K.: On the structure of the polynomial time degrees of recursive sets.
Habilitationsschrift, Zur Erlangung der Venia Legendi Für das Fach Informatik an
der Abteilung Informatik der Universität Dortmund, September 1984

2. Buhrman, H., Fortnow, L., van Melkebeek, D., Torenvliet, L.: Using autoreducibil-
ity to separate complexity classes. SIAM J. Comput. 29(5), 1497–1520 (2000)

3. Buhrman, H., Torenvliet, L.: A Post’s program for complexity theory. Bull. EATCS
85, 41–51 (2005)

4. Glaßer, C., Selman, A., Travers, S., Zhang, L.: Non-mitotic sets. Theoret. Comput.
Sci. 410(21–23), 2011–2033 (2009)

5. Glaßer, C., Nguyen, D.T., Reitwießner, C., Selman, A.L., Witek, M.: Autoreducibil-
ity of complete sets for log-space and polynomial-time reductions. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp.
473–484. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-
1 40

6. Glaßer, C., Nguyen, D.T., Selman, A.L., Witek, M.: Introduction to autoreducibil-
ity and mitoticity. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Mel-
nikov, A., Rosamond, F. (eds.) Computability and Complexity. LNCS, vol. 10010,
pp. 56–78. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50062-1 5

7. Glaßer, C., Ogihara, M., Pavan, A., Selman, A., Zhang, L.: Autoreducibility and
mitoticity. ACM SIGACT News 40(3), 60–76 (2009)

8. Glaßer, C., Ogihara, M., Pavan, A., Selman, A.L., Zhang, L.: Autoreducibility,
mitoticity, and immunity. J. Comput. Syst. Sci. 73, 735–754 (2007)

9. Glaßer, C., Pavan, A., Selman, A., Zhang, L.: Splitting NP-complete sets. SIAM
J. Comput. 37(5), 1517–1535 (2008)

10. Hemaspaandra, L., Ogihara, M.: The Complexity Theory Companion. Springer,
Heidelberg (2002). https://doi.org/10.1007/978-3-662-04880-1

11. Homer, S., Selman, A.: Computability and Complexity Theory. Texts in Computer
Science, 2nd edn. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-
0682-2

12. Trakhtenbrot, B.: On autoreducibility. Dokl. Akad. Nauk SSSR 192(6), 1224–1227
(1970). Transl. Soviet Math. Dokl. 11(3), 814–817 (1790)

13. Yao, A.: Coherent functions and program checkers. In: Proceedings of the 22nd
Annual Symposium on Theory of Computing, pp. 89–94 (1990)

liyu.zhang@utrgv.edu

