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Glaßer et al. (SIAMJCOMP 2009 and TCS 2009) proved that NP-complete languages are polynomial-time mitotic 
for the many-one reduction, meaning that each NP-complete language 𝐿 can be split into two NP-complete 
languages 𝐿 ∩ 𝑆 and 𝐿 ∩ 𝑆, where 𝑆 is a language in P. It follows that every NP-complete language can be 
partitioned into an arbitrary finite number of NP-complete languages. We strengthen and generalize this result 
by showing that every NP-complete language can be partitioned into infinitely many NP-complete languages. 
Furthermore those NP-complete languages resulting from such partitioning can be effectively presented.
1. Introduction

Let 𝑟 be a reduction between two languages as defined in computa-

tional complexity such as the common many-one and Turing reductions. 
We say a language 𝐿 is 𝑟-autoreducible if 𝐿 is reducible to itself via 
the reduction 𝑟 where the reduction does not query on the same string 
as the input. We say that a language 𝐿 is 𝑟-mitotic if 𝐿 can be parti-

tioned by a polynomial-time decidable set 𝑆 into to two subsets, both of 
which are equivalent to 𝐿 for the reduction 𝑟, i.e., 𝐿 ≡

p
r 𝐿 ∩𝑆 ≡

p
r 𝐿 ∩𝑆 . 

Autoreducibility and mitoticity are related but different computational 
properties of languages. They coincide for the many-one and 1-tt re-

duction [8] but not for the 2-tt or any weaker reduction [4] among 
polynomial-time reductions. Complete sets of many complexity classes 
are known to be autoreducible, mitotic, or both under various reduc-

tions while several important problems remain open [1,6,5].

Polynomial-time autoreducibilities and mitoticities gained attention 
due to their candidacies as structural properties that can be used in 
the “Post’s program for complexity theory” [3] that aims at finding a 
structural/computational property that complete sets of two complex-

ity classes don’t share, hereby separating the two complexity classes. 
Autoreducibility is believed to be possibly one of such properties that 
will lead to new separation results in the future [1]. We refer the reader 
to Glaßer et al. [6] and Glaßer et al. [5] for surveys along this line of 
research.

In this paper we strengthen one of the main results by Glaßer et 
al. [8] that every NP-complete set is many-one-mitotic, i.e., can be 
split into two NP-complete subsets by a polynomial-time decidable set. 
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Though the result by Glaßer et al. does imply that every NP-complete 
sets can be split by a polynomial-time decidable set into 𝑘 NP-complete 
subsets for every 𝑘 ≥ 1, it does not provide a uniform way to construct 
nondeterministic Turing machines that accepts those NP-complete sub-

sets. Our results provide such uniform constructions that can be gener-

alized to an infinite number of subsets.

The key observations used by our proof are that the left set of a non-

deterministic polynomial-time Turing machine 𝑁 is structurally simi-

lar to that of the same machine with a deterministic polynomial-time 
decider 𝐷 attached to the end of every computation path. This simi-

larity can be utilized to construct an m-autoreduction of the language 
𝐿(𝑁) ∩ 𝐿(𝐷) in a uniform way (see Theorem 3.7 and Theorem 3.2), 
which in turn can be used to show the m-mitoticity of 𝐿(𝑁) ∩ 𝐿(𝐷). 
Our constructions are also recursive in nature. The m-autoreductions we 
constructed for NP-complete subsets of the given NP-complete language 
were used recursively to construct m-autoreductions for finer-grained 
NP-complete subsets of the same NP-complete language. We consider 
our result a significant extension of Glaßer et al. [8] rather than a 
straightforward adaption.

We provide needed definitions and notations in Section 2 and state 
our results and proofs in Section 3.

2. Definitions and notations

We assume familiarity with basic notions in complexity theory and 
particularly, common complexity classes P and NP, and polynomial-

time reductions [10,9]. Without loss of generality, we use the alphabet 
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Σ = {0, 1} and all sets we referred to in this paper are either languages 
over Σ or sets consisting of integers. Call a set 𝐿 non-trivial if both 𝐿 and 
𝐿 have at least two elements. Let ℕ denote the set of natural numbers 
and ℕ+ denote ℕ∖{0}. For every 𝑛 ∈ℕ, we use Σ=𝑛 to represent strings 
over Σ of length 𝑛. For every string/integer 𝑥, we use |𝑥|/𝑎𝑏𝑠(𝑥) to 
denote the length/absolute value of 𝑥. We use a pairing function ⟨⋅, ⋅⟩, 
where for every strings/integers 𝑥 and 𝑦, ⟨𝑥, 𝑦⟩ = 𝑥𝑦10|𝑥| and hence, |⟨𝑥, 𝑦⟩| = 2|𝑥| + |𝑦| + 1. For every function 𝑓 , we use 𝑓 (𝑖)(𝑥) to denote 
𝑓 (𝑓 (⋯𝑓
⏟⏞⏟⏞⏟

𝑖

(𝑥))) for every 𝑖 ∈ ℕ, where 𝑓 (0)(𝑥) = 𝑥.

Throughout the paper, we use the two terms Turing machines

and algorithms interchangeably. All reductions used in this paper are 
polynomial-time computable unless otherwise specified. A language 𝐿 is 
complete for a complexity class  for a reduction 𝑟 if every language in 
 is reducible to 𝐿 via 𝑟. For any algorithm or Turing machine , we 
use (𝑥) to denote both the execution and output of  on input 𝑥, i.e., 
“(𝑥) accepts” has the same meaning as “(𝑥) = 𝑎𝑐𝑐𝑒𝑝𝑡”.

We provide the detailed definition for the most relevant reduction, 
many-one reduction, considered in this paper.

Definition 2.1. Define a language 𝐴 to be polynomial-time many-one 
reducible (≤

p
m) to a language 𝐵, if there exists a polynomial-time com-

putable function 𝑓 ∶ Σ∗ → Σ∗ ∪ {𝐴𝐶𝐶, 𝑅𝐸𝐽}1 that on every input 
string 𝑥 outputs 𝑦 ∈ 𝐵 or 𝐴𝐶𝐶 if 𝑥 ∈ 𝐴, and outputs 𝑦 ∉ 𝐵 or 𝑅𝐸𝐽

if 𝑥 ∉ 𝐴. Here 𝑓 is called a many-one reduction (≤
p
m-reduction), or sim-

ply 𝑚-reduction from 𝐴 to 𝐵.

Now we define autoreducible and mitotic languages formally.

Definition 2.2. Given any type of reduction 𝑟, a language is autore-

ducible for 𝑟 or 𝑟-autoreducible, if the language is reducible to itself via 
a reduction of type 𝑟 that does not query on the input. The 𝑟-reduction 
used here is called an 𝑟-autoreduction.

Definition 2.3. Given any type of reduction 𝑟, a language 𝐿 is mi-

totic for 𝑟 or 𝑟-mitotic, if there exists another language 𝑆 where 𝑆 is 
polynomial-time decidable, and 𝐿, 𝑆 ∩ 𝐿 and 𝑆 ∩ 𝐿 are all equivalent 
under the reduction 𝑟, i.e., 𝐿 ≡𝑟 𝑆 ∩𝐿 ≡𝑟 𝑆 ∩𝐿.

Note that the many-one type of reduction we defined above is 
slightly weaker than the commonly used many-one reduction, denoted 
by ≤𝑝

𝑚𝑜, that always outputs a string 𝑦 ∈ Σ. The two types of many-one 
reductions are equivalent for non-trivial sets in terms of reducibility. 
In particular, for any non-trivial sets 𝐴 and 𝐵, 𝐴 ≤

p
m 𝐵 if and only if 

𝐴 ≤𝑝
𝑚𝑜 𝐵. Therefore, most results about the ≤𝑝

𝑚𝑜 reduction in complex-

ity theory and from Glaßer et al. [8] hold for the ≤p
m reduction as well 

on non-trivial languages. The following are two examples.

Corollary 2.1. A non-trivial language is ≤p
m-complete for NP if and only if 

the language is NP-complete, i.e., ≤𝑝
𝑚𝑜-complete for NP.

Corollary 2.2. Every ≤p
m-complete language for NP is ≤p

m-mitotic.

However, the traditional ≤𝑝
𝑚𝑜 reduction has the property of always 

outputting a string, which the reduction ≤p
m does not have. For this rea-

son, our main results were only shown for the ≤p
m reduction. Adapting 

our proofs for the traditional ≤𝑝
𝑚𝑜 reduction would require an effec-

tive procedure that outputs a string accepted, and a string rejected by 
a given nondeterministic Turing machine. Our current paper does not 
include such as a procedure.

We will also need the following notions for the proofs.

1 Here we assume that 𝐴𝐶𝐶 and 𝑅𝐸𝐽 represent two special symbols not 
2

appearing in Σ.
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Definition 2.4 ([8]). For any pair of strings 𝑥 and 𝑦, define their log-

distance as

𝑙𝑜𝑔𝐷(𝑥, 𝑦) = 𝑠𝑖𝑔𝑛(𝑦− 𝑥)⌊log2 |𝑦− 𝑥|⌋,
where 𝑠𝑖𝑔𝑛 is the regular sign function and |𝑦 − 𝑥| denotes the lexico-

graphical distance between 𝑥 and 𝑦.

Definition 2.5. Let 𝑁 be a nondeterministic Turing machine in which 
each accepting path is of length exactly 𝑝(𝑛) for some polynomial 𝑝. A 
left set of 𝑁 is defined to be

𝑙𝑒𝑓 𝑡(𝑁) = {⟨𝑥, 𝑦⟩ | 𝑥, 𝑦 ∈ Σ=𝑝(|𝑥|),∃𝑧

(𝑧 ∈ Σ=𝑝(|𝑥|), 𝑦 ≤ 𝑧,and 𝑁 accepts 𝑥 along 𝑧.)}

The set 𝑙𝑒𝑓 𝑡(𝑁) defined above is called a left set of 𝑁 since it con-

tains all ⟨𝑥, 𝑦⟩, where 𝑥 ∈ 𝐿(𝑁), and 𝑦 is a computation of 𝑁 on 𝑥
that is to the left (smaller than or is equal to) of an accepting computa-

tion path. Left sets were introduced by Ogiwara and Watanabe [11] and 
originally defined on languages in NP. We found it more convenient to 
define them directly on nondeterministic polynomial-time Turing ma-

chines.

3. Results

Glaßer et al. [8] proved that every non-trivial autoreducible set 𝐿
is mitotic for the standard many-one type of reductions. The core part 
of the proof is to construct from a given m-autoreduction 𝑓 for 𝐿 a 
polynomial-time computable function 𝑠 ∶ Σ∗ → {0, 1} and another m-

autoreduction 𝑔 for 𝐿, where 𝑠(𝑥) = 0 ⇔ 𝑠(𝑔(𝑥)) = 1 for every string 
𝑥 ∈ Σ∗. Then the language 𝐿 can be split by 𝑠 into 𝐿0 = 𝐿 ∩{𝑥 | 𝑠(𝑥) = 0}
and 𝐿1 = 𝐿 ∩ {𝑥 | 𝑠(𝑥) = 1} while the function 𝑔 always flips the value 
𝑠(𝑥) on every input 𝑥 ∈ Σ∗, providing the needed mapping to make 𝐿
many-one reducible to both 𝐿0 and 𝐿1.

In this paper we will apply the above constructions of those “split-

ting” and “flipping” functions in a more structured way in order to split 
the given m-autoreducible set repeatedly and uniformly.

For convenience of references, we define splitting and flipping func-

tions adjusted for our definition of many-one reductions below. We then 
describe how they can be constructed from given many-one autoreduc-

tions.

Definition 3.1. A function 𝑠 ∶ Σ∗ → {0, 1, 𝐴𝐶𝐶, 𝑅𝐸𝐽} is a splitting

function for a language 𝐿 if for every 𝑥 ∈ Σ∗,

• 𝑥 ∈ 𝐿 ⟹ 𝑠(𝑥) ∈ {0, 1, 𝐴𝐶𝐶}, and

• 𝑥 ∉ 𝐿 ⟹ 𝑠(𝑥) ∈ {0, 1, 𝑅𝐸𝐽}.

A function 𝑔 ∶ Σ∗ → Σ∗ ∪ {𝐴𝐶𝐶, 𝑅𝐸𝐽} is a flipping function for a split-

ting function 𝑠 with respect to a language 𝐿 if 𝑔 is an m-autoreduction 
for 𝐿 and for every 𝑥 ∈ Σ∗,

• 𝑠(𝑥) ∈ {0, 1} ⟹ 𝑠(𝑔(𝑥)) = 1 − 𝑠(𝑥), and

• 𝑠(𝑥) ∈ {𝐴𝐶𝐶, 𝑅𝐸𝐽} ⟹ 𝑔(𝑥) = 𝑠(𝑥).

Splitting and flipping functions are closely related to m-mitoticity of 
languages as illustrated by the following proposition:

Proposition 3.1. Assume that 𝑠 is a splitting function for 𝐿 and that 𝑔 is a 
flipping function for 𝑠 with respect to 𝐿. If both 𝑠 and 𝑔 are polynomial-time 
computable, then 𝐿 is m-mitotic.

Proof. Define 𝐿0 = {𝑥 ∈ 𝐿 | 𝑠(𝑥) ∈ {0, 𝐴𝐶𝐶}} and 𝐿1 = 𝐿 −𝐿0. Define 

the following function:
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𝑓0(𝑥) =
⎧⎪⎨⎪⎩

𝑅𝐸𝐽 if 𝑠(𝑥) ∈ {1,𝑅𝐸𝐽},

𝐴𝐶𝐶 if 𝑠(𝑥) = 𝐴𝐶𝐶 , and

𝑔(𝑥) if 𝑠(𝑥) = 0.

Assume that 𝑥 ∈ 𝐿0. Then 𝑠(𝑥) ∈ {0, 𝐴𝐶𝐶}. If 𝑠(𝑥) = 𝐴𝐶𝐶 , then 
𝑓0(𝑥) = 𝐴𝐶𝐶 . If 𝑠(𝑥) = 0, then 𝑓0(𝑥) = 𝑔(𝑥) ∈ 𝐿1 since 𝑠(𝑔(𝑥)) = 1 −
𝑠(𝑥) = 1. Assume that 𝑥 ∉ 𝐿0. Then 𝑠(𝑥) ∈ {1, 𝑅𝐸𝐽}. Hence, 𝑓 (𝑥) =
𝑅𝐸𝐽 . Clearly 𝑓0 is polynomial-time computable since 𝑠 and 𝑔 are 
polynomial-time computable. This shows that 𝑓0 is an m-reduction from 
𝐿0 to 𝐿1.

Similarly, we can show the following functions 𝑓1 and 𝑓 are m-

reductions from 𝐿1 to 𝐿 and from 𝐿 to 𝐿0, respectively. Therefore, 𝐿0, 
𝐿1 and 𝐿 are m-equivalent. It follows that 𝐿 is m-mitotic.

𝑓1(𝑥) =
{

𝑅𝐸𝐽 if 𝑠(𝑥) ∈ {0,𝑅𝐸𝐽,𝐴𝐶𝐶}, and

𝑥 if 𝑠(𝑥) = 1.

𝑓 (𝑥) =
⎧⎪⎨⎪⎩

𝑠(𝑥) if 𝑠(𝑥) ∈ {𝐴𝐶𝐶,𝑅𝐸𝐽},

𝑥 if 𝑠(𝑥) = 0.

𝑔(𝑥) if 𝑠(𝑥) = 1.

□

The following theorem is due to Glaßer et al. [7] though it is stated 
in a slightly more general way so that it can be applied to construct 
an m-autoreduction for either of the subsets resulting from splitting an 
NP-complete set. The key idea is to avoid querying on any string in a 
polynomial-time decidable set that 𝑥 belongs to instead of just avoiding 
querying on 𝑥.

Theorem 3.2 ([7]). Let 𝑁 be a nondeterministic polynomial-time Tur-

ing machine, where each computation path is of length exactly 𝑝(𝑛) for 
some polynomial 𝑝. Then 𝑙𝑒𝑓 𝑡(𝑁) ≤

p
m 𝐿(𝑁) implies that 𝐿(𝑁) is m-

autoreducible. In particular, the function defined in Algorithm 1 is an 
m-autoreduction for 𝐿(𝑁), where ℎ is an m-reduction from 𝑙𝑒𝑓 𝑡(𝑁) to 
𝐿(𝑁). Assume that ℎ runs in time 𝑟(𝑛) for some polynomial 𝑟. Then Algo-

rithm 1 runs in 𝑂(𝑝(|𝑥|)𝑟(2|𝑥| +𝑝(|𝑥|) +1)) time with output length at most 
𝑟(2|𝑥| + 𝑝(|𝑥|) + 1).

Input : An arbitrary string 𝑥 ∈ Σ∗, where |𝑥| = 𝑛

Output : ACC, REJ, or a string 𝑦 ≠ 𝑥, where 𝑦 ∈ 𝐿(𝑁) ⟺ 𝑥 ∈ 𝐿(𝑁)

1 𝑚 ⟵ 𝑝(𝑛);
2 𝑦0 ⟵ ℎ(⟨𝑥, 0𝑚⟩);
3 if 𝑦0 ∈ {𝐴𝐶𝐶, 𝑅𝐸𝐽} or 𝑦0 ≠ 𝑥 then return 𝑦0 ;

4 if 𝑁 accepts 𝑥 along 1𝑚 then return ACC ;

5 𝑦1 ⟵ ℎ(⟨𝑥, 1𝑚⟩);
6 if 𝑦1 = 𝑥 then return REJ;

7 // Here 𝑦0 = ℎ(⟨𝑥, 0𝑚⟩) = 𝑥.

8 // Here 𝑦1 = ℎ(⟨𝑥, 1𝑚⟩) ∈ (Σ∗ − {𝑥}) ∪ {𝑅𝐸𝐽}
9 Use a binary search to find a path 𝑢 of 𝑁 on 𝑥, where

10 𝑦0 = ℎ(⟨𝑥, 𝑢⟩) = 𝑥, and

11 𝑦1 = ℎ(⟨𝑥, 𝑢 + 1⟩) ∈ (Σ∗ − {𝑥}) ∪ {𝑅𝐸𝐽} ;

12 if Any path 𝑣 is found, where ℎ(⟨𝑥, 𝑣⟩) = 𝐴𝐶𝐶 , when executing lines 9 - 11

then return ACC;

13 if 𝑁 accepts 𝑥 along 𝑢 then return ACC;

14 else return 𝑦1 ;

Algorithm 1: The m-autoreduction for 𝐿(𝑁), given an m-

reduction ℎ from 𝑙𝑒𝑓 𝑡(𝑁) to 𝐿(𝑁).

Proof. We refer readers to Glaßer et al. [7] for the proof that Al-

gorithm 1 is an m-autoreduction for 𝐿(𝑁). Here we just analyze the 
running time for Algorithm 1 and give a polynomial bound on the out-

put lengths so that it can be used in the constructions later in this paper.

Since 𝑁 has no more than 2𝑝(|𝑥|) computation paths, the binary 
search in lines 9 - 11 of Algorithm 1 requires at most 𝑝(|𝑥|) iterations. 
Each of those iterations requires computing ℎ(⟨𝑥, 𝑢⟩) for some strings 𝑢
3

of length 𝑝(|𝑥|). Since ℎ is computable in time 𝑟(|𝑥|), the binary search 
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can be completed in time 𝑂(𝑝(|𝑥|)𝑟(|⟨𝑥, 𝑦⟩|)) = 𝑂(𝑝(|𝑥|)𝑟(2|𝑥| + 𝑝(|𝑥|) +
1)). The running time for the rest of Algorithm 1 is clearly dominated 
by the binary search.

The output length of Algorithm 1 is at most

|ℎ(⟨𝑥, 𝑢⟩)| ≤ 𝑟(|⟨𝑥, 𝑦⟩|) = 𝑟(2|𝑥|+ 𝑝(|𝑥|) + 1). □

The following theorem summarizes the most relevant results from 
Glaßer et al. [8] that we need to establish the main results in this paper. 
The results were adjusted for our definition of many-one reductions. We 
also included specific bounds on the running times and output lengths 
for relevant functions, which required some more detailed analysis than 
the original proofs.

Theorem 3.3. Let 𝑓 be an m-autoreduction for a language 𝐿. Assume that 
𝑓 runs in time 𝑝(𝑛) for some increasing and positive polynomial 𝑝, where 
𝑝(𝑛) ≥ 𝑛 for every 𝑛 ∈ ℕ. Define a towering function 𝑡(𝑛) by 𝑡(0) = 2 and 
𝑡(𝑖 + 1) = 𝑝(𝑡(𝑖)). Define further that 𝑡−1(𝑛) = min{𝑖 ∈ ℕ | 𝑡(𝑖) ≥ 𝑛}. Then 
the following hold:

1. The function 𝑠 defined in Algorithm 2 is a splitting function for 𝐿, 
computable in time 𝑂(𝑝(𝑝(𝑛)) log𝑛)

2. The function 𝑔 defined in Algorithm 3 is a flipping function for the split-

ting function 𝑠 given in Statement 1 with respect to 𝐿, 𝑔 is computable 
in time 𝑂(𝑝(4)(𝑛)), and |𝑔(𝑥)| ≤ 𝑝(𝑝(|𝑥|)) for every 𝑥 ∈ Σ∗.

Input : An arbitrary string 𝑥 ∈ Σ∗, where |𝑥| = 𝑛

Output : a string 𝑤 ∈ {0, 1, 𝐴𝐶𝐶, 𝑅𝐸𝐽}

1 𝑦 ← 𝑓 (𝑥);
2 if 𝑦 ∈ {𝐴𝐶𝐶, 𝑅𝐸𝐽} then return 𝑦;

3 𝑠𝑒𝑔𝑥 = 𝑡−1(|𝑥|);
4 𝑠𝑒𝑔𝑦 = 𝑡−1(|𝑦|);
5 if 𝑠𝑒𝑔𝑥 < 𝑠𝑒𝑔𝑦 then return 𝑠𝑒𝑔𝑥 mod 2;

6 𝑧 ← 𝑓 (𝑦);
7 if 𝑧 ∈ {𝐴𝐶𝐶, 𝑅𝐸𝐽} then return 𝑧;

8 if 𝑠𝑒𝑔𝑦 < 𝑡−1(|𝑧|)) then return 1 − (𝑠𝑒𝑔𝑦 mod 2);

9 if 𝑥 < 𝑦 and 𝑦 > 𝑧 then return 0;

10 if 𝑥 > 𝑦 and 𝑦 < 𝑧 then return 1;

11 𝑑𝑥 = 𝑙𝑜𝑔𝐷(𝑥, 𝑦) (see definition in Section 2);

12 𝑑𝑦 = 𝑙𝑜𝑔𝐷(𝑦, 𝑧);
13 if 𝑑𝑥 < 𝑑𝑦 then return 0;

14 if 𝑑𝑥 > 𝑑𝑦 then return 1;

15 if ⌊ 𝑦

2𝑎𝑏𝑠(𝑑𝑥 )+1
⌋ is even then return 0;

16 else return 1;

Algorithm 2: A splitting function 𝑠 for a language 𝐿 given an 
m-autoreduction 𝑓 for 𝐿.

Input : An arbitrary string 𝑥 ∈ Σ∗, where |𝑥| = 𝑛

Output : a string 𝑤 ∈ {0, 1, 𝐴𝐶𝐶, 𝑅𝐸𝐽}

1 𝑧 ← 𝑥;

2 while 𝑓 (𝑧) ∈ Σ∗ and |𝑓 (𝑧)| > |𝑧| and 𝑠(𝑥) = 𝑠(𝑧) do

3 𝑧 ← 𝑓 (𝑧)
4 end

5 if 𝑓 (𝑧) ∉ Σ∗ then return f(z);

6 else return z;

Algorithm 3: A flipping function 𝑔 for a splitting function 𝑠 with 
respect to a language 𝐿, for which 𝑓 is an m-autoreduction.

Proof. Much of the proof was given in Glaßer et al. [8]. We provide 
the proof adjusted for our definition of many-one reductions for com-

pleteness. We also present slightly different algorithms from those used 
in the original paper for computing the targeted splitting and flipping 

functions. Our algorithms are special cases of a general algorithm we 
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[12] used earlier as an attempt to generalize the results by Glaßer et al. 
[8] and study the relations between mitoticity and autoreducibility for 
reductions weaker than the many-one and 1-tt reductions.

We first note that 𝑡−1(𝑛) can be computed in polynomial time. This 
can be achieved by performing a binary search for 𝑖 between 1 and 𝑛, 
where 𝑡(𝑖) ≥ 𝑛 and 𝑡(𝑖 − 1) < 𝑛. This gives an 𝑂(log2 𝑛)-time algorithm, 
assuming that 𝑛 is represented in binary form. We also have the follow-

ing observation about the function 𝑡.

Proposition 3.4. For every 𝑥, 𝑦 ∈ Σ∗, |𝑦| ≤ 𝑝(|𝑥|) ⟹ 𝑡−1(|𝑦|) ≤ 𝑡−1(|𝑥|) +
1.

Proof. Let 𝑡−1(|𝑥|) = 𝑘. Then by the definition of 𝑡−1, 𝑡(𝑘) ≥ |𝑥| > 𝑡(𝑘 −
1). This yields |𝑦| ≤ 𝑝(|𝑥|) ≤ 𝑝(𝑡(𝑘)) = 𝑡(𝑘 + 1). Hence, 𝑡−1(|𝑦|) ≤ 𝑘 + 1 =
𝑡−1(|𝑥|) + 1. □

Now consider the functions 𝑠 and 𝑔 defined in Algorithm 2 and 
Algorithm 3, respectively. Clearly 𝑠 is a splitting function for 𝐿 since 
the only case 𝑠 outputs 𝐴𝐶𝐶 or 𝑅𝐸𝐽 is when 𝑓 (𝑥) ∈ {𝐴𝐶𝐶, 𝑅𝐸𝐽} or 
𝑓 (𝑓 (𝑥)) ∈ {𝐴𝐶𝐶, 𝑅𝐸𝐽}. In both cases, 𝑠 makes the output correctly 
due to that 𝑓 is an m-autoreduction for 𝐿. The fact that 𝑔(𝑥) is a flip-

ping function for 𝑠 with respect to 𝐿 follows easily from its definition 
considering again that 𝑓 is an m-autoreduction.

We now analyze the running times of functions 𝑠 and 𝑔. We already 
know that 𝑡−1(𝑛) can be computed in 𝑂(log2 𝑛) time. We further observe 
the following about the running time of function 𝑠, where 𝑛 = |𝑥|:

• |𝑦| ≤ 𝑝(𝑛) and |𝑧| ≤ 𝑝(𝑝(𝑛)) since 𝑦 = 𝑓 (𝑥) and 𝑧 = 𝑓 (𝑦).
• 𝑙𝑜𝑔𝐷(𝑥, 𝑦) and 𝑙𝑜𝑔𝐷(𝑦, 𝑧) can be computed in 𝑂(𝑝(𝑝(𝑛)) log𝑛) time 

since the function 𝑙𝑜𝑔𝐷 can be computed in 𝑂(𝑚 log𝑚) time on 
inputs of length 𝑚.

• The expression in Line 15 can be computed in 𝑂(|𝑦| + |𝑑𝑥|) =
𝑂(𝑝(𝑛)) time.

Therefore, the total running time of the function 𝑠 is bounded by 
𝑂(𝑝(𝑝(𝑛)) log𝑛).

The following lemma is critical in showing that 𝑔 runs in polynomial 
time.

Lemma 3.5. For every 𝑥 ∈ Σ∗, there exists 𝑖 ∈ [0, 4𝑝(|𝑥|) + 2], where |𝑓 (𝑗)(𝑥)| ≤ 𝑝(𝑝(|𝑥|)) for every 𝑗 ∈ [0, 𝑖] and one of the following holds:

1. 𝑓 (𝑖)(𝑥) ∈ {𝐴𝐶𝐶, 𝑅𝐸𝐽} and

𝑠(𝑓 (𝑖−1)(𝑥)) = 𝑠(𝑓 (𝑖−2)(𝑥)) =⋯ = 𝑠(𝑓 (𝑥)) = 𝑠(𝑥) ∉ {𝐴𝐶𝐶,𝑅𝐸𝐽}.

2. 𝑓 (𝑖)(𝑥) ∉ {𝐴𝐶𝐶, 𝑅𝐸𝐽} and

𝑠(𝑓 (𝑖)(𝑥)) ≠ 𝑠(𝑓 (𝑖−1)(𝑥)) = 𝑠(𝑓 (𝑖−2)(𝑥)) =⋯ = 𝑠(𝑓 (𝑥)) = 𝑠(𝑥).

Proof. Let 𝑥 be a string in Σ∗ and |𝑥| = 𝑛. Let 𝑚 = 4𝑝(𝑛) + 2. As-

sume that there exists 𝑖 ∈ [0, 𝑚], where 𝑓 (𝑖)(𝑥) ∈ {𝐴𝐶𝐶, 𝑅𝐸𝐽} and 
𝑓 (𝑗)(𝑥) ∉ {𝐴𝐶𝐶, 𝑅𝐸𝐽} for every 𝑗 ∈ [0, 𝑖 − 1]. If for every 𝑗 ∈ [0, 𝑖 − 1], 
𝑠(𝑓 (𝑗)(𝑥)) = 𝑠(𝑥). Then Statement 1 in Lemma 3.5 holds. Otherwise, an 
𝑖′ ∈ [0, 𝑖 − 1] must exist, where

𝑠(𝑓 (𝑖′)(𝑥)) ≠ 𝑠(𝑓 (𝑖′−1)(𝑥)) = 𝑠(𝑓 (𝑖′−2)(𝑥)) =⋯ = 𝑠(𝑓 (𝑥)) = 𝑠(𝑥).

This means that Statement 2 in Lemma 3.5 holds.

Now assume that 𝑓 (𝑖)(𝑥) ∉ {𝐴𝐶𝐶, 𝑅𝐸𝐽} for every 𝑖 ∈ [0, 𝑚]. We 
show that there must exist 𝑖 ∈ [0, 𝑚], where Statement 2 in Lemma 3.5

holds. Let 𝑥𝑗 = 𝑓 (𝑗)(𝑥) for every 𝑗 ∈ [0, 𝑚]. It suffices to show that there 
exist 𝑖1, 𝑖2 ∈ [0, 𝑚], where 𝑠(𝑥𝑖1

) ≠ 𝑠(𝑥𝑖2
).

We consider the following cases in that order so that the proof for 
Case 𝑒 assumes that none of the cases 1, 2, ⋯, 𝑒 − 1 holds.

Case 1: There exists 𝑖1 ∈ [1, 𝑚 − 1], where 𝑡−1(|𝑥𝑖1
|) < 𝑡−1(|𝑥𝑖1+1|). Let 
4

𝑖1 be the smallest such number. Then 𝑠 on 𝑥𝑖1
outputs 𝑡−1(|𝑥𝑖1

|) mod 2
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in line 5. On 𝑥𝑖1−1, 𝑠 either outputs 𝑡−1(|𝑥𝑖1−1|) mod 2 in line 5 if 
𝑡−1(|𝑥𝑖1−1|) < 𝑡−1(|𝑥𝑖1

|), or outputs 1 − (𝑡−1(|𝑥𝑖1
|) mod 2) in line 8 if 

𝑡−1(|𝑥𝑖1−1|) ≥ 𝑡−1(|𝑥𝑖1
|). By Proposition 3.4, 𝑡−1(|𝑥𝑖1−1|) = 𝑡−1(|𝑥𝑖1

|) − 1
if 𝑡−1(|𝑥𝑖1−1|) < 𝑡−1(|𝑥𝑖1

|). Hence, in both cases, 𝑠(𝑥𝑖1−1) ≠ 𝑠(𝑥𝑖1
).

For the remaining cases we assume now that 𝑡−1(|𝑥𝑗 |) ≥ 𝑡−1(|𝑥𝑗+1|)
for every 𝑗 ∈ [1, 𝑚 − 1]. This implies that

∀𝑗 ∈ [1,𝑚] |𝑥𝑗 | ≤ 𝑝(|𝑥1|) ≤ 𝑝(𝑝(|𝑥|)) (1)

Case 2: There exist 𝑖1, 𝑖2 ∈ [1, 𝑚 − 1], where 𝑥𝑖1−1 < 𝑥𝑖1
and 𝑥𝑖1

> 𝑥𝑖1+1, 
and 𝑥𝑖2−1 > 𝑥𝑖2

and 𝑥𝑖2
< 𝑥𝑖2+1. In this case 𝑠(𝑥𝑖1

) = 0 and 𝑠(𝑥𝑖2
) = 1. 

Hence, 𝑠(𝑥𝑖1
) ≠ 𝑠(𝑥𝑖2

).
Note that if Case 2 does not hold, then the sequence {𝑥𝑗}1≤𝑗≤𝑚

is either monotonic or made up of one increasing and one deceasing 
subsequences. In both cases, there exists a monotonic subsequence of 
{𝑥𝑗}1≤𝑗≤𝑚 of length at least 𝑚∕2. We assume for the remaining cases 
that for some 𝑠3, 𝑡3 ∈ [1, 𝑚], 𝑡3 − 𝑠3 +1 ≥ 𝑚∕2 and {𝑥𝑗}𝑠3≤𝑗≤𝑡3

is a mono-

tonic subsequence of {𝑥𝑗}1≤𝑗≤𝑚.

Case 3: There exist 𝑖1, 𝑖2 ∈ [𝑠3, 𝑡3 − 2], where 𝑑𝑥𝑖1
< 𝑑𝑥𝑖1+1

and 𝑑𝑥𝑖2
>

𝑑𝑥𝑖2+1
. In this case, 𝑠 on input 𝑥𝑖1

outputs 0 in line 13, and on input 𝑥𝑖2
outputs 1 in line 14.

If none of the cases 1-3 hold, then {𝑑𝑥𝑗
}𝑠3≤𝑗≤𝑡3−1 must be a mono-

tonic subsequence or made up of one increasing and one deceasing sub-

sequences. By an argument similar to that after Case 2 we can assume 
for the remaining cases that for some 𝑠4, 𝑡4 ∈ [𝑠3, 𝑡3 − 1], 𝑡4 − 𝑠4 + 1 ≥
(𝑡3 −1 − 𝑠3 +1)∕2 = (𝑡3 − 𝑠3)∕2 ≥ 𝑚∕4 −1∕2 and {𝑑𝑥𝑗

}𝑠4≤𝑗≤𝑡4
is a mono-

tonic subsequence of {𝑑𝑥𝑗
}𝑠3≤𝑗≤𝑡3−1.

Case 4: There exists 𝑖1 ∈ [𝑠4, 𝑡4 − 1], where 𝑑𝑥𝑖1
= 𝑑𝑥𝑖1+1

. Then by 
Lemma 3.6 below, {𝑠(𝑥𝑖1

), 𝑠(𝑥𝑖1+1), 𝑠(𝑥𝑖1+2)} = {0, 1}.

Lemma 3.6 ([8]). Let 𝑥, 𝑦, and 𝑧 be strings over Σ, where 𝑥 < 𝑦 < 𝑧 or 
𝑥 > 𝑦 > 𝑧, and 𝑙𝑜𝑔𝐷(𝑥, 𝑦) = 𝑙𝑜𝑔𝐷(𝑦, 𝑧) = 𝑑 for some 𝑑 ∈ ℤ. Then the set 
{⌊ 𝑤

2𝑎𝑏𝑠(𝑑)+1 ⌋ | 𝑤 ∈ {𝑥, 𝑦, 𝑧}} contains at least one even number and one odd 
number.

Assume now that none of the cases 1-4 holds. Then {𝑑𝑥𝑗
}𝑠4≤𝑗≤𝑡4

is 
an increasing or decreasing sequence due to cases 3 and 4. Note that 
{𝑥𝑗}𝑠4≤𝑗≤𝑡4+1 is a subsequence of the monotonic sequence {𝑥𝑗}𝑠3≤𝑗≤𝑡3

. 
Hence, {𝑑𝑥𝑗

}𝑠4≤𝑗≤𝑡4 is a monotonic sequence consisting of integers of 
the same sign. Therefore,

|𝑥𝑡4+1 − 𝑥𝑠4
| = |𝑥𝑡4+1 − 𝑥𝑡4

|+ |𝑥𝑡4
− 𝑥𝑡4−1|+⋯+ |𝑥𝑠4+1 − 𝑥𝑠4

|
≥ 2𝑎𝑏𝑠(𝑑𝑡4+1) + 2𝑎𝑏𝑠(𝑑𝑡4 ) +⋯+ 2𝑎𝑏𝑠(𝑑𝑠4 )

≥ 2𝑡4−𝑠4+1 + 2𝑡4−𝑠4 +⋯+ 21 + 20

≥ 2𝑡4−𝑠4+2 − 1

≥ 2𝑚∕4−1∕2+1

≥ 2𝑝(𝑛)+1

This implies that either 𝑥𝑠4
or 𝑥𝑡4

must be of length greater than 
𝑝(𝑛) as the maximal lexicographical distance between two strings of 
length 𝑝(𝑛) or less is 2𝑝(𝑛) − 1. That is a contradiction to Statement (1). 
Therefore, we have argued in all cases that there exists 𝑖 ∈ [0, 𝑚], where 
either Statement 1 or Statement 2 is true.

Finally, let 𝑖 be the smallest index satisfying conditions for Case 1. 
Then for every 𝑗 ∈ [1, 𝑖 − 1], 𝑡−1(|𝑥𝑗 |) ≥ 𝑡−1(|𝑥𝑗+1|) and hence, for every 
𝑗 ∈ [2, 𝑖], 𝑡−1(|𝑥𝑗 |) ≤ 𝑡−1(|𝑥1|). This implies that |𝑥𝑗 | ≤ 𝑝(|𝑥1|) ≤ 𝑝(𝑝(|𝑥|))
for every 𝑗 ∈ [1, 𝑖] since |𝑥1| ≤ 𝑝(|𝑥|). The same holds if Case 1 does not 
hold due to Inequality (1). This shows that ∀𝑗 ∈ [0, 𝑖] |𝑥𝑗 | ≤ 𝑝(𝑝(|𝑥|))
and finishes the proof of Lemma 3.5. □

By Lemma 3.5, the while loop in Algorithm 3 runs for no more than 

𝑂(𝑝(𝑛)) iterations on an input of size 𝑛. Each iteration requires 𝑂(𝑝(|𝑧|))
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time to compute 𝑓 (𝑧) for some 𝑧 of length at most 𝑝(𝑝(𝑛). Hence, the 
running time of 𝑔 is bounded by 𝑂(𝑝(4)(𝑛)).

For every input 𝑥 ∈ Σ∗, let 𝑖 be the minimal number guaranteed 
to exist by Lemma 3.5. Then 𝑔(𝑥) = 𝑓 (𝑖)(𝑥) and |𝑔(𝑥)| ≤ 𝑝(𝑝(|𝑥|)) by 
Lemma 3.5.

This finishes the proof of Theorem 3.3. □

The following theorem describes the critical step that splits an NP-

complete set in a uniform way into two subsets, both being equivalent 
to the original set for the many-one reduction.

Theorem 3.7. Let 𝑁 be a nondeterministic polynomial-time Turing ma-

chine, where 𝑙𝑒𝑓 𝑡(𝑁) ≤p
m 𝐿(𝑁) via a function ℎ. Assume that 𝑠 is a splitting 

function for 𝐿(𝑁) and 𝑔 is a flipping function for 𝑠 with respect to 𝐿(𝑁). 
Then the following hold for the nondeterministic polynomial-time Turing ma-

chines 𝑁0 and 𝑁1, defined in Algorithm 4, and the functions ℎ0 and ℎ1, 
defined in Algorithm 5:

• 𝐿(𝑁0) = {𝑥 ∈ 𝐿(𝑁) | 𝑠(𝑥) ∈ {0, 𝐴𝐶𝐶}},

• 𝐿(𝑁1) = {𝑥 ∈ 𝐿(𝑁) | 𝑠(𝑥) = 1}, and

• 𝑙𝑒𝑓 𝑡(𝑁0) ≤
p
m 𝐿(𝑁0) via ℎ0, and 𝑙𝑒𝑓 𝑡(𝑁1) ≤

p
m 𝐿(𝑁1) via ℎ1.

• 𝐿(𝑁) ≡p
m 𝐿(𝑁0) ≡

p
m 𝐿(𝑁1)

In addition, assume that 𝑁 runs in time 𝑝(𝑛) and functions ℎ, 𝑠, and 𝑔 are 
computable in time 𝑞1(𝑛), 𝑞2(𝑛), and 𝑞3(𝑛), in that order, where 𝑝, 𝑞1, 𝑞2, 
and 𝑞3 are all polynomials. Then both 𝑁0 and 𝑁1 run in 𝑂(𝑝(𝑛) + 𝑞2(𝑛))
time and both ℎ0 and ℎ1 are computable in 𝑂(𝑞1(𝑛) + 𝑞2(𝑛) + 𝑞3(𝑛)) time.

Input : An arbitrary string 𝑥 ∈ Σ∗, where |𝑥| = 𝑛

Output : 𝐴𝐶𝐶 or 𝑅𝐸𝐽

1 if 𝑁 rejects 𝑥 then return REJ ;

2 if 𝑠(𝑥) ∈ {𝑅𝐸𝐽, 1 − 𝑏} then return REJ ;

3 // The line below should be included for 𝑏 = 1 only

4 // if 𝑠(𝑥) = 𝐴𝐶𝐶 then return 𝑅𝐸𝐽

5 return 𝐴𝐶𝐶

Algorithm 4: A nondeterministic polynomial-time TM 𝑁𝑏, where 
𝑏 ∈ {0, 1}, 𝐿(𝑁0) = {𝑥 ∈ 𝐿(𝑁) | 𝑠(𝑥) ∈ {0, 𝐴𝐶𝐶}}, and 𝐿(𝑁1) =
{𝑥 ∈ 𝐿(𝑁) | 𝑠(𝑥) = 1}, given a nondeterministic polynomial-time 
TM 𝑁 and a splitting function 𝑠 for 𝐿(𝑁).

Input : ⟨𝑥, 𝑦⟩, where 𝑥, 𝑦 ∈ Σ∗ and |𝑥| = 𝑛

Output : 𝐴𝐶𝐶 , 𝑅𝐸𝐽 , or a string 𝑧, where ⟨𝑥, 𝑦⟩ ∈ 𝑙𝑒𝑓 𝑡(𝑁𝑏) ⟺ 𝑧 ∈ 𝐿(𝑁𝑏) ∪ {𝐴𝐶𝐶}

1 if 𝑠(𝑥) ∈ {𝑅𝐸𝐽, 1 − 𝑏} then return 𝑅𝐸𝐽 ;

2 𝑧 ⟵ ℎ(⟨𝑥, 𝑦⟩);
3 if 𝑧 ∈ {𝐴𝐶𝐶, 𝑅𝐸𝐽} then return 𝑧;

4 if 𝑠(𝑧) ∈ {𝐴𝐶𝐶, 𝑅𝐸𝐽, 𝑠(𝑥)} then return 𝑧;

5 else return 𝑔(𝑧);

Algorithm 5: An m-reduction ℎ𝑏 from 𝑙𝑒𝑓 𝑡(𝑁𝑏) to 𝐿(𝑁𝑏), where 
𝑏 ∈ {0, 1}, 𝐿(𝑁0) = {𝑥 ∈ 𝐿(𝑁) | 𝑠(𝑥) ∈ {0, 𝐴𝐶𝐶}}, and 𝐿(𝑁1) =
{𝑥 ∈ 𝐿(𝑁) | 𝑠(𝑥) = 1}, given a nondeterministic polynomial-time 
TM 𝑁 , a splitting function 𝑠 for 𝐿(𝑁), a flipping function 𝑔 for 
𝑠 with respect to 𝐿(𝑁), and an m-reduction ℎ from 𝑙𝑒𝑓 𝑡(𝑁) to 
𝐿(𝑁).

Proof. Let 𝑁 , ℎ, 𝑠 and 𝑔 be given as in the premise of the theorem. 
Given the definitions of nondeterministic Turing machine 𝑁𝑏 and func-

tions ℎ𝑏, where for 𝑏 ∈ {0, 1}, as given by Algorithm 4 and Algorithm 5, 
respectively, the statements about their running times in the theorem 
clearly hold.

It is also clear that 𝐿(𝑁0) = {𝑥 ∈ 𝐿(𝑁) | 𝑠(𝑥) ∈ {0, 𝐴𝐶𝐶}} and 
5

𝐿(𝑁1) = {𝑥 ∈ 𝐿(𝑁) | 𝑠(𝑥) = 1}, and that 𝐿(𝑁)≡p
m𝐿(𝑁0)≡

p
m𝐿(𝑁1) due 
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to existence of the flipping function 𝑔 for the splitting function 𝑠 with 
respect to 𝐿. We now show that 𝑙𝑒𝑓 𝑡(𝑁𝑏) ≤

p
m 𝐿(𝑁𝑏) for 𝑏 ∈ {0, 1}.

Note that 𝑁0 and 𝑁1 both have the same nondeterministic choices 
as 𝑁 and for every 𝑥, 𝑦 ∈ Σ∗,

• 𝑦 is an accepting path of 𝑁0 if and only if 𝑦 is an accepting path of 
𝑁 on 𝑥 and 𝑠(𝑥) ∈ {0, 𝐴𝐶𝐶}, and

• 𝑦 is an accepting path of 𝑁1 if and only if 𝑦 is an accepting path of 
𝑁 on 𝑥 and 𝑠(𝑥) = 1.

It follows that

𝑙𝑒𝑓 𝑡(𝑁0) = {⟨𝑥, 𝑦⟩ ∈ 𝑙𝑒𝑓 𝑡(𝑁) | 𝑠(𝑥) ∈ {0,𝐴𝐶𝐶}} (2)

𝑙𝑒𝑓 𝑡(𝑁1) = {⟨𝑥, 𝑦⟩ ∈ 𝑙𝑒𝑓 𝑡(𝑁) | 𝑠(𝑥) = 1} (3)

By hypothesis, ℎ is an m-reduction from 𝑙𝑒𝑓 𝑡(𝑁) to 𝐿(𝑁). Consider 
the function ℎ0 as defined in Algorithm 5.

Assume that ⟨𝑥, 𝑦⟩ ∈ 𝑙𝑒𝑓 𝑡(𝑁0). Then ⟨𝑥, 𝑦⟩ ∈ 𝑙𝑒𝑓 𝑡(𝑁) and 𝑠(𝑥) ∈
{0, 𝐴𝐶𝐶} by Equation (2). Assume 𝑠(𝑥) = 0. Then ℎ0 reaches Line 2. 
Note that in this case 𝑧 = ℎ(⟨𝑥, 𝑦⟩ ∈ 𝐿(𝑁) ∪ {𝐴𝐶𝐶} since ℎ is an m-

reduction from 𝑙𝑒𝑓 𝑡(𝑁) to 𝐿(𝑁). Hence, ℎ0 returns 𝐴𝐶𝐶 in Line 3
if 𝑧 = 𝐴𝐶𝐶 . Now assume 𝑧 ∈ 𝐿(𝑁). Then ℎ0 returns 𝑧 ∈ 𝐿(𝑁0) if 
𝑠(𝑧) ∈ {𝐴𝐶𝐶, 0} in Line 4 or 𝑔(𝑧) ∈ 𝐿(𝑁0) if 𝑠(𝑧) = 1. The latter is due 
to that 𝑔 is a flipping function for 𝑠 with respect to 𝐿(𝑁). Therefore, in 
all cases if ⟨𝑥, 𝑦⟩ ∈ 𝑙𝑒𝑓 𝑡(𝑁0), then ℎ0(⟨𝑥, 𝑦⟩) ∈ 𝐿(𝑁0) ∪ {𝐴𝐶𝐶}.

Now Assume that ⟨𝑥, 𝑦⟩ ∉ 𝑙𝑒𝑓 𝑡(𝑁0). Then ⟨𝑥, 𝑦⟩ ∉ 𝑙𝑒𝑓 𝑡(𝑁) or 𝑠(𝑥) ∈
{1, 𝑅𝐸𝐽} by Equation (2). If 𝑠(𝑥) ∈ {1, 𝑅𝐸𝐽}, then ℎ0 on input ⟨𝑥, 𝑦⟩
returns 𝑅𝐸𝐽 in Line 1. Now assume 𝑠(𝑥) ∈ {0, 𝐴𝐶𝐶}. Then ℎ0 reaches 
Line 2. Note that in this case 𝑧 = ℎ(⟨𝑥, 𝑦⟩ ∈ 𝐿(𝑁) ∪ {𝑅𝐸𝐽} since ℎ is 
an m-reduction from 𝑙𝑒𝑓 𝑡(𝑁) to 𝐿(𝑁). Hence, ℎ0 returns 𝑅𝐸𝐽 in Line 
3 if 𝑧 = 𝑅𝐸𝐽 . Now assume 𝑧 ∈ 𝐿(𝑁). Then ℎ0 returns 𝑧 ∉ 𝐿(𝑁0) if 
𝑠(𝑧) ∈ {𝑅𝐸𝐽, 0} in Line 4 or 𝑔(𝑧) ∉ 𝐿(𝑁0) if 𝑠(𝑧) = 1. The latter is due 
to that 𝑔 is a flipping function for 𝑠 with respect to 𝐿𝑁 . Therefore, in 
all cases if ⟨𝑥, 𝑦⟩ ∉ 𝑙𝑒𝑓 𝑡(𝑁0), then ℎ0(⟨𝑥, 𝑦⟩) ∉ 𝐿(𝑁0) ∪ {𝐴𝐶𝐶}.

This shows that ℎ0 is an m-reduction from 𝑙𝑒𝑓 𝑡(𝑁0) to 𝐿(𝑁0). A 
similar argument would show that ℎ1, also as defined in Algorithm 5, 
is an m-reduction from 𝑙𝑒𝑓 𝑡(𝑁1) to 𝐿(𝑁1).

This finishes the proof of Theorem 3.7. □

Now we have all the necessary tools to establish our main result:

Theorem 3.8. Let 𝑁 be a nondeterministic polynomial-time Turing ma-

chine. Assume that 𝑙𝑒𝑓 𝑡(𝑁) ≤p
m 𝐿(𝑁) via some polynomial-time computable 

function ℎ. Then there exist a set of nondeterministic polynomial-time Tur-

ing machines {𝑁𝑤}𝑤∈Σ∗ and sets of polynomial-time computable functions 
{ℎ𝑤}𝑤∈Σ∗ , {𝑓𝑤}𝑤∈Σ∗ , {𝑠𝑤}𝑤∈Σ∗ , and {𝑔𝑤}𝑤∈Σ∗ , where 𝑁𝜆 = 𝑁 and all 
the following hold for every 𝑤 ∈ Σ∗:

1. 𝐿(𝑁𝑤) ≡
p
m 𝐿(𝑁), where

a. 𝐿(𝑁𝑤) = 𝐿(𝑁) if 𝑤 = 𝜆,

b. 𝐿(𝑁𝑤) = {𝑥 ∈ 𝐿(𝑁𝑤′ ) | 𝑠𝑤′ (𝑥) ∈ {0, 𝐴𝐶𝐶}}, if 𝑤 = 𝑤′0 for some 
𝑤′ ∈ Σ∗, and

c. 𝐿(𝑁𝑤) = {𝑥 ∈ 𝐿(𝑁𝑤′ ) | 𝑠𝑤′ (𝑥) = 1}, if 𝑤 = 𝑤′1 for some 𝑤′ ∈ Σ∗.

2. ℎ𝑤 is an m-reduction from 𝑙𝑒𝑓 𝑡(𝑁𝑤) to 𝐿(𝑁𝑤).
3. 𝑓𝑤 is an m-autoreduction for 𝐿(𝑁𝑤).
4. 𝑠𝑤 is a splitting function for 𝐿(𝑁𝑤).
5. 𝑔𝑤 is a flipping function for 𝑠𝑤 with respect to 𝐿(𝑁𝑤).
6. The encodings of 𝑁𝑤 and all the functions of ℎ𝑤, 𝑓𝑤, 𝑠𝑤, and 𝑔𝑤 can 

be computed from 𝑤.

Proof. We prove the theorem by induction on 𝑤. Let 𝑁 be a non-

deterministic polynomial-time Turing machine NP-complete language, 
where there is an m-reduction ℎ from 𝑙𝑒𝑓 𝑡(𝑁) to 𝐿(𝑁).

Base Case: 𝑤 = 𝜆. We let 𝑁𝜆 be an nondeterministic polynomial-time 

Turing machine where 𝐿(𝑁𝜆) = 𝐿(𝑁) and every computation path 
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of 𝑁 on input 𝑥 is of length exactly 𝑝(|𝑥|). It holds trivially that 
𝐿(𝑁𝜆) ≡

p
m 𝐿(𝑁). It should also be clear that ℎ can be modified in a 

straightforward way to a function ℎ𝜆 so that 𝑙𝑒𝑓 𝑡(𝑁𝜆) ≤
p
m 𝐿(𝑁𝜆) via 

ℎ𝜆. Hence, Statement 1a and 2 hold. Statement 1b or 1c does not apply. 
Statement 3 holds by applying Theorem 3.2 with ℎ = ℎ𝜆 to obtain the 
m-autoreduction 𝑓𝜆 in the way as described in Algorithm 1. Statements 
4 and 5 hold by Theorem 3.3, where function 𝑠𝜆 is defined using 𝑓𝜆, 
and the function 𝑔𝜆 is defined using 𝑓𝜆 and 𝑠𝜆 in the ways as described 
in Algorithm 2 and 3, respectively.

The encoding of 𝑁𝜆 can be obviously computed from 𝜆 given the 
polynomial 𝑝(|𝑥|) fixed previously for 𝑁𝜆. Then a program can use the 
encodings of 𝑁𝜆 and the m-reduction ℎ𝜆 from 𝑙𝑒𝑓 𝑡(𝑁𝜆) to 𝐿(𝑁𝜆) to 
generate the encoding of function 𝑓𝜆 according to Algorithm 1. Subse-

quently, the encoding of 𝑓𝜆 can be used to generate the encodings of 
functions 𝑠𝜆 and 𝑔𝜆 according to Algorithms 2 and 3, respectively.

Here we need to show how we find a polynomial 𝑞 that bounds the 
output lengths of 𝑓𝜆 in order to generate the part of the encoding of 𝑠𝜆

that computes 𝑡−1. Assume that function ℎ𝜆 is computable in time 𝑟(𝑛)
for some polynomial 𝑟. Then output lengths of ℎ𝜆 are bounded by 𝑟(𝑛)
on inputs of length 𝑛 and that of 𝑓𝜆 is bounded by 𝑞(𝑛) = 𝑟(2𝑛 +𝑝(𝑛) +1)
according to Theorem 3.2. Then we can define and compute the tower 
function 𝑡 used by Algorithm 2 in terms of the polynomial 𝑞. Hence, 
the part of encoding of 𝑠𝜆 that computes 𝑡−1 can be generated using 𝑞. 
Therefore, the encodings of 𝑁𝜆, ℎ𝜆, 𝑓𝜆, 𝑠𝜆 and 𝑔𝜆 can all be computed 
from 𝑤 = 𝜆. This shows Statement 6 holds for the base case.

Induction Step: Assume that 𝑁𝑤, ℎ𝑤, 𝑓𝑤, 𝑠𝑤 and 𝑔𝑤 have been 
properly defined that satisfy statements 1 - 6. Then we apply Theo-

rem 3.7 with 𝑁 = 𝑁𝑤, ℎ = ℎ𝑤, and 𝑠 = 𝑠𝑤 to define nondeterministic 
Turing machines 𝑁𝑤0 and 𝑁𝑤1, and 𝑚-reductions ℎ𝑤0 and ℎ𝑤1 that 
satisfy statements 1 and 2, respectively. Then similar to the base case 
we

• apply Theorem 3.2 with 𝑁 = 𝑁𝑤0 and 𝑁 = 𝑁𝑤1 to define 𝑓𝑤0 and 
𝑓𝑤1, respectively, that satisfy Statement 3, and

• apply Theorem 3.3 with 𝑓𝑤0 and 𝑓𝑤1 to define 𝑠𝑤0 and 𝑠𝑤1, re-

spectively, that satisfy Statement 4, and 𝑔𝑤0 and 𝑔𝑤1, respectively, 
that satisfy Statement 5.

In addition it is clear that all those functions defined above, 𝑓𝑤𝑏, 
𝑠𝑤𝑏, and 𝑔𝑤𝑏, where 𝑏 ∈ {0, 1}, are polynomial-time computable given 
that 𝑁𝑤 is a polynomial-time nondeterministic machine, and ℎ𝑤 and 
𝑠𝑤 are polynomial-time computable functions by Theorems 3.7, 3.2, 
and 3.3. Therefore, statements 1 - 5 hold for 𝑤0 and 𝑤1.

To compute the encoding of 𝑁𝑤𝑏, ℎ𝑤𝑏, 𝑓𝑤𝑏, 𝑠𝑤𝑏, and 𝑔𝑤𝑏 for 𝑏 ∈
{0, 1}, we just need to follow Algorithms 1 - 5 with 𝑁 = 𝑁𝑤, ℎ = ℎ𝑤, 
𝑓 = 𝑓𝑤, 𝑠 = 𝑠𝑤, and 𝑔 = 𝑔𝑤.

Here we need to show how to compute the part of the encoding 
of 𝑠𝑤0 that computes the towering function 𝑡 = 𝑡𝑤0 used by 𝑠𝑤0. We 
observe that we just need to find a polynomial that bounds the output 
lengths of 𝑓𝑤0. Let 𝑞𝑤 and 𝑟𝑤 be two polynomials that bound the output 
lengths of 𝑓𝑤 and ℎ𝑤, respectively. Note that 𝑞𝜆 = 𝑞 and 𝑟𝜆 = 𝑟 as given 
in the base case. Note also that the length of every computation path of 
𝑁𝑤 is the same as that of 𝑁𝜆, i.e., 𝑝(|𝑥|) on input 𝑥. We then observe 
for every 𝑥 ∈ Σ∗ that there exists some 𝑦 ∈ Σ∗, where |𝑦| = 𝑝(|𝑥|) and

|𝑓𝑤0(𝑥)| ≤ |ℎ𝑤0(⟨𝑥, 𝑦⟩)| by Algorithm 1

≤ 𝑚𝑎𝑥(|ℎ𝑤(⟨𝑥, 𝑦⟩)|, |𝑔𝑤(ℎ𝑤(⟨𝑥, 𝑦⟩))|) by Algorithm 5

≤ 𝑞𝑤(𝑞𝑤(𝑟𝑤(|⟨𝑥, 𝑦⟩|))) by Theorem 3.3

≤ 𝑞𝑤(𝑞𝑤(𝑟𝑤(2|𝑥|+ 𝑝(|𝑥|) + 1)))

Therefore, if we use two polynomials 𝑞𝑤(𝑛) and 𝑟𝑤(𝑛) to bound the 
output lengths of 𝑓𝑤 and ℎ𝑤 in order to compute 𝑠𝑤, then we can use 
𝑞𝑤0 = 𝑞𝑤(𝑞𝑤(𝑟𝑤(2𝑛 + 𝑝(𝑛) + 1))) and 𝑟𝑤0 = 𝑞𝑤(𝑞𝑤(𝑟𝑤(𝑛))) to bound the 
output lengths of 𝑓𝑤0 and ℎ𝑤0, respectively, in order to compute 𝑠𝑤0. 
6

It follows that the encodings of the functions 𝑠𝑤0 and 𝑔𝑤0, and the 
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Turing machine 𝑁𝑤0 can all be computed from 𝑤0. The same argument 
shows the same statement for 𝑠𝑤1, 𝑔𝑤1, and 𝑁𝑤1 holds. This implies that 
Statement 6 holds for 𝑤0 and 𝑤1, and completes (the induction step of) 
the proof of Theorem 3.8. □

With Theorem 3.8 now we see that an NP-complete language can be 
partitioned by a computable function into an infinite set of NP-complete 
languages. Similar results were shown for NEXP by Buhrman, Hoene 
and Torenvliet [2].

Definition 3.2. Define a class  of languages to be effectively presentable

if there exists a computable function 𝑓 ∶ℕ → Σ∗ such that

• 𝑀 is the encoding of a Turing machine for every 𝑀 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑓 ), 
and

•  = {𝐿(𝑀) | 𝑀 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑓 )}.

Corollary 3.9. Let 𝐿 be an NP-complete set. Then there exists an effectively 
presentable set of NP-complete languages {𝑅𝑘}𝑘∈ℕ, where

•
⋃

𝑘∈ℕ 𝑅𝑘 = 𝐿, and

• ∀𝑖 ≠ 𝑗 ∈ ℕ 𝑅𝑖 ∩𝑅𝑗 = ∅.

Proof. Given an NP-complete language 𝐿, let 𝑁 and ℎ be the nonde-

terministic Turing machine and m-reduction as defined in the premise 
of Theorem 3.8, respectively. Let {𝑁𝑤}𝑤∈Σ∗ be the set of nondeter-

ministic polynomial-time Turing machines obtained by applying The-

orem 3.8 on 𝐿, 𝑁 , and ℎ. Therefore, {𝑁𝑤}𝑤∈Σ∗ is an effectively pre-

sentable set. For every 𝑘 ∈ ℕ define 𝑅𝑘 = 𝐿(𝑁1𝑘0). Clearly {𝑅𝑘}𝑘∈ℕ is 
effectively presentable. It is also straightforward to verify that all 𝑅𝑘’s 
are NP-complete and satisfy both statements in this corollary. □

Note that with the additional assumption that NP ≠ P, the language 
𝐿 and all the resulting languages 𝑅𝑘 in Corollary 3.9 are infinite.
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