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Abstract

Let D be a set of many-one degrees of disjoint NP-pairs. We define a proof system representation
of D to be a set of propositional proof systems P such that each degree in D contains the
canonical NP-pair of a corresponding proof system in P and the degree structure of D is reflected
by the simulation order among the corresponding proof systems in P. We also define a nesting
representation of D to be a set of NP-pairs S such that each degree in D contains a representative
NP-pair in S and the degree structure of D is reflected by the inclusion relations among their
representative NP-pairs in S. We show that proof system and nesting representations both exist
for D if the lower span of each degree in D overlaps with D on a finite set only. In particular,
a linear chain of many-one degrees of NP-pairs has both a proof system representation and a
nesting representation. This extends a result by Glaßer et al., 2009. We also show that in general
D has a proof system representation if it has a nesting representation where all representative
NP-pairs share the same set as their first components.

1 Introduction

The canonical disjoint NP-pairs (canonical pairs, for short) has played an important role in the
study of disjoint NP-pairs and their relations to propositional proof systems (proof system, for
short) [8]. Razborov [15] first defined the canonical pair, denoted by can(f), for every proof system
f . He showed that if there exists an optimal proof system f , then its canonical pair is a complete
pair for the class of disjoint NP-pairs. Pudlák [14] related canonical pairs of proof systems to
the reflection principle and automatizabilities of proof systems. In particular, he showed that the
canonical pair of a proof system is P-separable if and only if the proof system is simulated by an
automatizable proof system. Glaßer et al. [9] showed that every disjoint NP-pair is polynomial-
time many-one equivalent to the canonical pair of some proof system. This implies that the degree
structures of the class of disjoint NP-pairs and of all canonical pairs are identical. Beyersdorff [2]
studied proof systems and their canonical pairs from a proof theoretic point of view. He defined
the subclasses DNPP(P ) of disjoint NP-pairs that are representable in some proof system P and
showed that the canonical pairs of P are complete for DNPP(P ). This interesting result tells us
that for certain meaningful subclasses of disjoint NP-pairs, complete pairs do exist.
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More recently Glaßer et al. [10] further studied the connections between proof systems and their
canonical pairs and showed that proof systems whose simulation order do not reflect the degree
structures between their corresponding canonical pairs exist almost everywhere. This generalizes
previous results by Pudlák [14] and Beyersdorff [2]. Glaßer et al. also asked the question for which
propositional proof systems f and g the implication can(f) ≤p

m can(g) ⇒ f ≤ g holds, where
≤p

m and ≤ denote the many-one reducibility between NP-pairs and simulation order between proof
systems, respectively. In answering this question, they showed that for any two degrees d1 and d2 of
NP-pairs, where d1 ≤ d2, there exist proof systems f1 and f2 such that can(f1) ∈ d1, can(f2) ∈ d2,
and can(f1) ≤p

m can(f2).

Let D be a set of many-one degrees of disjoint NP-pairs. We define a proof system representation
of D to be a set of propositional proof systems P such that each degree in D contains the canonical
NP-pair of a corresponding proof system in P and the degree structure of D is reflected by the
simulation order among the corresponding proof systems in P. The result of Glaßer at al. can
be restated as that any D consisting of two comparable degrees of NP-pairs has a proof system
representation. In this paper we show that any D where the lower span of each degree consists only
of a finite set of degrees in D has a proof system representation, and hence extend the previous
result. Interestingly, essentially the same proof shows also that any D satisfying the same property
has a nesting representation. Here we define a nesting representation of D to be a set of NP-pairs
such that each degree contains a representative NP-pair and the degree structure of D is reflected
by the inclusion relations among the representative NP-pairs. A corollary following immediately is
that a linear chain of many-one degrees of NP-pairs has both a proof system representation and a
nesting representation. Regarding the general relations between proof system representations and
nesting representations, we show that a set of many-one degrees of NP-pairs has a proof-system
representation if it has a nesting representation where the first components of all representative
NP-pairs are the same set.

We will give basic definitions in Section 2 and present our results in detail in Section 3. We refer the
reader to the survey by Glaßer et al. [8] and recent literature [13, 5, 4, 3, 16] for more developments
on the study of (canonical) disjoint NP-pairs.

2 Preliminaries

We assume familiarity with basic notions in complexity theory [12, 1].

A disjoint NP-pair (NP-pairs, for short) is a pair (A,B) of nonempty sets A and B such that
A,B ∈ NP and A ∩ B = ∅. An NP-pair (A,B) is many-one reducible in polynomial time to
(C,D) 1, (A,B)≤p

m(C,D), if there exists a polynomial-time computable function f : Σ∗ → Σ∗

such that f(A) ⊆ C and f(B) ⊆ D. (A,B) is many-one equivalent in polynomial-time to (C,D),
(A,B)≡p

m(C,D), if (A,B)≤p
m(C,D) and (C,D)≤p

m(A,B).

1Here we only give the uniform version of many-one reducibilities between NP-pairs, which is equivalent to the
original nonuniform version [11, 7].
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Definition 2.1 For any disjoint NP-pair (A,B), the polynomial-time many-one degree (many-one
degree, for short) of (A,B) is defined as

d(A,B) = {(C,D) | (C,D) is a disjoint NP-pair and (A,B)≡p
m(C,D)}.

The relation ≤ between many-one degrees of NP-pairs is defined as

d1 ≤ d2
df= for some (A,B) ∈ d1 and (C,D) ∈ d2, (A,B)≤p

m(C,D)

Note that in light of Definition 2.1

d1 ≤ d2 ⇔ for every (A,B) ∈ d1 and (C,D) ∈ d2, (A,B)≤p
m(C,D).

The lower span of a many-one degree d of NP-pairs is the set of many-one degrees d′ of NP-pairs
such that d′ ≤ d.

Let SAT denote the set of satisfiable propositional formulas and let UNSAT denote the set of
unsatisfiable propositional formulas. Moreover, let TAUT denote the set of tautologies over the
basis {∧,∨,¬,TRUE,FALSE} [6].

Cook and Reckhow [6] defined a propositional proof system (proof system, for short) to be a function
f : Σ∗ → TAUT such that f is onto and f is polynomial-time computable. For every tautology α,
if f(w) = α, then we say w is an f-proof of α. Let f and f ′ be two propositional proof systems. We
say that f simulates f ′ (f ′ ≤ f) if there is a polynomial p and a function h : Σ∗ → Σ∗ such that
for every w ∈ Σ∗, f(h(w)) = f ′(w) and |h(w)| ≤ p(|w|). A proof system is optimal if it simulates
every other proof system.

We use f < g to denote that f ≤ g and g 6≤ f . We use (A,B)<p
m(C,D) to denote that

(A,B)≤p
m(C,D) and (C,D) 6≤p

m(A,B). Throughout this paper, we assume an alphabet that con-
tains 0 and 1. We also fix a polynomial-time computable and polynomial-time invertible pairing
function 〈·, ·〉 such that |〈v, w〉| = 2|vw|.

The canonical NP-pair (canonical pair, for short) of f [15, 14] is the disjoint NP-pair
(SAT∗,REF(f)), denoted by can(f), where

SAT∗ = {(x, 0n)
∣∣ x ∈ SAT and n ≥ 0 is an integer} and

REF(f) = {(x, 0n)
∣∣¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.

Conversely, for every disjoint NP-pair (A,B), we can define a proof system fA,B [9] as follows.
Choose a g that is polynomial-time computable and polynomial-time invertible such that A ≤p

m SAT
via g and range(g) consists only of propositional formulas. Let N be an NP-machine that accepts
B in time p. Define

fA,B(z) df=


¬g(x) : if z = 0〈x,w〉, |w| = p(|x|), and N(x) accepts along path w

x : if z = 1〈x,w〉, |z| ≥ 2|x|, and x ∈ TAUT

TRUE : otherwise
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Theorem 2.1 ([9]) For every disjoint NP-pair (A,B), fA,B is a propositional proof system and
(A,B) ≡p

m can(fA,B).

Definition 2.2 Let D = {di}i≥0 be a set of many-one degrees of disjoint NP-pairs and P = {fi}i≥0

be a set of proof systems. We say that P is a proof-system representation of D if the following
hold:

i. ∀i ≥ 0, can(fi) ∈ di,

ii. ∀i, j ≥ 0, di ≤ dj ⇒ fi ≤ fj.

Note that Item (ii) in the above definition can be really stated as ∀i, j ≥ 0, di ≤ dj ⇔ fi ≤ fj since
for any proof systems f and g, f ≤ g ⇒ can(f)≤p

m can(g) [9].

Definition 2.3 Let D = {di}i≥0 be a set of many-one degrees of disjoint NP-pairs and S =
{(Ai, Bi)}i≥0 be a set of NP-pairs. We say that S is a nesting representation of D if the following
hold:

i. ∀i ≥ 0, (Ai, Bi) ∈ di,

ii. ∀i, j ≥ 0, di ≤ dj ⇒ Ai ⊆ Aj ∧ Bi ⊆ Bj.

In the above definition, each (Ai, Bi) is called the representative NP-pair of di.

3 Results

Glaßer et al. [10] showed that any set of two comparable many-one degrees d1 and d2 of NP-pairs
has a proof system representation. We generalize this result to any set of many-one degrees of
NP-pairs that overlaps with the lower span of each degree on a finite set only.

Theorem 3.1 Let D = {di}i≥0 be a set of many-one degrees of NP-pairs such that the intersection
of the lower span of each di with D is a finite set. Then D has a proof-system representation.

Proof. Fix a set of disjoint NP-pairs {(Ai, Bi)}i≥0 such that for every i ≥ 0, (Ai, Bi) ∈ di.
Furthermore, for each i let Ni be the NP-machine that accepts Bi in time bounded by a polynomial
pi and let gi be a one-to-one and polynomial-time invertible reduction such that Ai ≤p

m SAT via
gi and range(gi) is a subet of propositional formulas. (Such a gi exists since SAT is a paddable
complete set [1].) Furthermore, we assume that for every i 6= j ≥ 0, range(gi) ∩ range(gj) = ∅.
This can be done by replacing gi with g′i(x) = TRUE ∧ TRUE ∧ · · · ∧ TRUE︸ ︷︷ ︸

i

∧(¬FALSE) ∧ gi(x).

For any i ≥ 0, since the intersection of the lower span of di with D is a finite set, let di1 , di2 , · · · , dik ,
where k ≥ 0, be the only degrees in D such that dj < di for every j ∈ {i1, i2, · · · , ik}.
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Now we define fi as follows:

fi(z) df=


¬gj(x) :

if z = 0j+11〈x,w〉, |w| = pj(|x|), and Nj(x) accepts along path w,

where j ∈ {i1, i2, · · · , ik, i}.

x : if z = 1〈x,w〉, |z| ≥ 2|x|, and x ∈ TAUT

TRUE : otherwise

Line 3 of the definition of fi can be computed in polynomial time by brute-force search. Hence, fi

is a polynomial-time computable function. Note that for any x accepted by Nj , x ∈ Bj ⊆ Aj and
hence gj(x) ∈ UNSAT since gj is a many-one reduction from Aj to SAT and range(gj) contains
only propositional formulas. This shows range(fi) ⊆ TAUT. Also, for every tautology y,

f(1〈y, 02|y|〉) = y,

and so fi is a mapping onto TAUT. Therefore, fi is a proof system.

We claim that {fi} defined above is a proof system representation of D. First we note that for each
tautology x 6= TRUE and j ∈ {i1, i2, · · · , ik}, every fj-proof of x is also an fi-proof of x. It follows
that fj ≤ fi for every j ∈ {i1, i2, · · · , ik}. This proves that for every i, j ≥ 0, dj ≤ di ⇒ fj ≤ fi.

It remains to show that can(fi) ≡p
m (Ai, Bi) for every i ≥ 0. We first show that (Ai, Bi) ≤p

m can(fi).
The reduction is given by

h′i : x 7→ (gi(x), 02(|x|+pi(|x|))+i+2).

Clearly h′i is polynomial-time computable. Assume x ∈ Ai. Then gi(x) ∈ SAT since gi many-one
reduces Ai to SAT, and hence h′i(x) ∈ SAT∗. Now assume x ∈ Bi. Then gi(x) ∈ UNSAT and
hence ¬gi(x) is a tautology. Let w be an accepting path of Ni on x with |w| = pi(|x|). Then
fi(0i+11〈x,w〉) = ¬gi(x) and hence h′i(x) ∈ REF(fi), since |0i+11〈x,w〉| = 2(|x|+ pi(|x|)) + i + 2.

Now we show that can(fi) ≤p
m (Ai, Bi). For each j ∈ {i1, i2, · · · , ik}, let rji be a polynomial-time

many-one reduction from (Aj , Bj) to (Ai, Bi). Let rii be the identity function. Choose elements
ai ∈ Ai and bi ∈ Bi. Define a reduction function hi as follows.

1 input (y, 0n)
2 if n ≥ 2|y|+1 then
3 if y ∈ SAT then output ai else output bi
4 for each j ∈ {i1, i2, · · · , ik, i} do
5 if g−1

j (y) exists

6 let x = g−1
j (y)

7 if n ≥ 2(|x|+ pj(|x|)) + j + 2 then output rji(x)
8 output ai

The exhaustive search in line 3 is possible in quadratic time in n, so hi is polynomial-time com-
putable.
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Assume (y, 0n) ∈ SAT∗. Then y ∈ SAT. If the output is made in line 3, then we output ai ∈ Ai.
Otherwise we reach line 4. If the output is made in line 7 for some j ∈ {i1, i2, · · · , ik, i}, then
x = g−1

j (y) ∈ Aj and we output rji(x) ∈ Ai since rji is a many-one reduction from (Aj , Bj) to
(Ai, Bi). Otherwise we reach line 8 and we output ai ∈ Ai. Therefore, in all cases we output an
element in Ai.

Assume (y, 0n) ∈ REF(fi) (in particular y ∈ UNSAT). So there exists z such that |z| ≤ n and
fi(z) = ¬y. If the output is made in line 3, then we output bi ∈ Bi. Otherwise we reach line 4.
So far we have ¬y 6= TRUE (syntactically) and |z| ≤ n < 2|y|+1. Therefore, fi(z) = ¬y must be
due to line 1 in the definition of fi. Since range(gi), range(gi1), range(gi2), · · · , range(gik) are all
pair-wise disjoint, this implies that there is a unique j ∈ {i1, i2, · · · , ik, i} such that x = g−1

j (y)
exists and n ≥ 2(|x|+pj(|x|))+ j +2. Then the output of hi must be made in line 7, which outputs
rji(x). Since x = g−1

j (y) ∈ Bj (again by line 1 of fi’s definition) and rji is a many-one reduction (or
the identity function in case j = i) from (Aj , Bj) to (Ai, Bi), it follows that the output rji(x) ∈ Bi.
This shows that can(fi) ≤p

m (Ai, Bi) via hi and finishes the proof of Theorem 3.1. �

The proof of Theorem 3.1 essentially shows also that a set of many-one degrees of disjoint NP-pairs
has a nesting representation if it satisfies the same property as in Theorem 3.1:

Corollary 3.2 Let D = {di}i≥0 be a set of many-one degrees of disjoint NP-pairs where the lower
span of each di consists only of a finite set of degrees in D. Then D has a nesting representation.

Proof. Let D be a set of many-one degrees of disjoint NP-pairs as in the premise. Consider
the proof systems {fi}i≥0 constructed in the proof of Theorem 3.1. Note that for every i ≥ 0,
(TRUE, 00) ∈ REF(fi) since fi(λ) = TRUE. For every tautology x 6= TRUE, an fj-proof of x is
also an fi-proof if fj ≤ fi. Therefore, for every i, j ≥ 0, fj ≤ fi implies that REF(fj) ⊆ REF(fi).
Now let (Ai, Bi) = can(fi) for every i ≥ 0 and it is clear that {(Ai, Bi)} is a nesting representation
of D. �

We define a linear chain of many-one degrees of NP-pairs to be a set of many-one degrees of
NP-pairs D = {di}i≥0 such that d0 ≤ d1 ≤ d2 ≤ · · · .

Corollary 3.3 Any linear chain of many-one degrees of NP-pairs has both a proof system repre-
sentation and a nesting representation.

Now let D be a set of many-one degrees of disjoint NP-pairs. We have shown that D has both a
proof system representation and a nesting representation if the intersection of D with the lower
span of each degree in D is a finite set. A more general question is under exactly what condition
D possesses these representations. We don’t see a straightforward adaption of the proof that
generalizes Theorem 3.1 or Corollary 3.2 significantly. Another related question is whether proof
system and nesting representations yield each other for D. In probing into this question, we were
only able to show that D has a proof system representation if it has a nesting representation where
all representative NP-pairs share the same set as their first components.
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Theorem 3.4 Suppose that D = {di}i≥0 is a set of many-one degrees of NP-pairs with a nesting
representation {(A,Bi)}i≥0. Then D has a proof-system representation.

Proof. Fix D and {(A,Bi}i≥0 as in the premise. Then the following hold:

• ∀i ≥ 0, (A,Bi) ∈ di,

• ∀i, j ≥ 0, di ≤ dj ⇒ Bi ⊆ Bj .

For each i ≥ 0 let Ni be the NP-machine that accepts Bi in time bounded by a polynomial pi and
let g be a polynomial-time invertible reduction such that A ≤p

m SAT via g. Let fi = fA,Bi using
Ni and g. By Theorem 2.1, can(fi)≡p

m(A,Bi).

Now let di, dj ∈ D such that di ≤ dj . Then we have Bi = L(Ni) ⊆ Bj = L(Nj). Now consider any
tautology y 6= TRUE. If y has an fi-proof of the form z = 0〈x,w〉, then by line 1 of the definition of
fi we have y = ¬g(x), where x ∈ Bi ⊆ Bj . Now let w′ be an accepting path of Nj on x with length
pj(|x|). Then z′ = 0〈x,w′〉 is an fj-proof of y. Note that |x| is bounded by a polynomial in |y|
since g is polynomial-time invertible. Hence, |z′| = 2(|x|+ pj(|x|)) + 1 is bounded by a polynomial
in |y|. Now assume that y has an fi-proof of the form z = 1〈x, w〉, where |z| ≥ 2|x|, then clearly z
is also an fj-proof of y by the definition of fj . This shows that fi ≤ fj and hence {fi} is a proof
system representation of D.

�
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