
The Informational Content of Canonical Disjoint NP-Pairs

Christian Glaßer∗ Alan L. Selman† Liyu Zhang‡

June 17, 2009

Abstract

We investigate the connection between propositional proof systems and their canonical pairs. It
is known that simulations between propositional proof systems translate to reductions between
their canonical pairs. We focus on the opposite direction and study the following questions.

Q1: For which propositional proof systems f and g does the implication
[can(f) ≤p

m can(g) ⇒ f ≤ g] hold, and for which does it fail?

Q2: For which propositional proof systems of different strengths are the canonical pairs equiv-
alent?

Q3: What do (non-)equivalent canonical pairs tell about the corresponding propositional proof
systems?

Q4: Is every NP-pair (A,B), where A is NP-complete, strongly many-one equivalent to the
canonical pair of some propositional proof system?

In short, we show that Q1 and Q2 can be answered with ‘almost all’, which generalizes pre-
vious results by Pudlák and Beyersdorff. Regarding Q3, inequivalent canonical pairs tell that
the propositional proof systems are not “very similar,” while equivalent, P-inseparable canon-
ical pairs tell that they are not “very different.” We can relate Q4 to the open problem in
structural complexity that asks whether unions of disjoint NP-complete sets are NP-complete.
This demonstrates a new connection between propositional proof systems, disjoint NP-pairs,
and unions of disjoint NP-complete sets.

1 Introduction

One reason it is important to study canonical pairs of propositional proof systems (proof systems)
is their role in connecting proof systems with disjoint NP-pairs (NP-pairs) [6]. Razborov [15] first
defined the canonical pair, can(f) = (SAT∗,REF(f)), for every proof system f . He showed that if

∗Lehrstuhl für Informatik IV, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. Email:
glasser@informatik.uni-wuerzburg.de

†Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260, USA. Research
partially supported by NSF grant CCR-0307077. Email: selman@cse.buffalo.edu

‡Department of Computer Science and Computer Information Systems, University of Texas at Brownsville,
Brownsville, TX, 78520, USA. Email: Liyu.Zhang@utb.edu

1

there exists an optimal proof system f , then its canonical pair is a complete pair for DisjNP. Pudlák
[14] related canonical NP-pairs of proof systems to the reflection principle and automatizabilities
of proof systems. In particular, he showed that the canonical NP-pair of a propositional proof
system is P-separable if and only if the propositional proof system is simulated by an automatizable
propositional proof system. In a recent paper [7], we show that every NP-pair is polynomial-time
many-one equivalent to the canonical pair of some proof system. So the degree structure of the
class of NP-pairs and of all canonical pairs is identical.

Beyersdorff [1] studies proof systems and their canonical pairs from a proof theoretic point of view.
He defines the subclasses DNPP(P) of NP-pairs that are representable in some proof system P
and shows that the canonical pairs of P are complete for DNPP(P). This interesting result tells
us that for certain meaningful subclasses of NP-pairs, complete pairs do exist. Beyersdorff also
compares the simulation order of proof systems with the hardness of their canonical pairs, which
we will address in this paper too.

Encouraged by the above exciting results on proof systems and their canonical pairs, we continue
this line of research and concentrate on the following fundamental correspondence between proof
systems and NP-pairs. For proof systems f and g,

f ≤ g ⇒ can(f) ≤p
m can(g). (1)

Pudlák [14] and Beyersdorff [1] give counter examples for the converse implication. This raises the
following questions which we investigate in this paper.

Q1: For which proof systems does the following implication hold, and for which proof systems
does it fail?

can(f) ≤p
m can(g) ⇒ f ≤ g (2)

Q2: For which proof systems of different strengths are the canonical pairs equivalent?

Q3: What do (non-)equivalent canonical pairs tell about the corresponding proof systems?

Moreover, it is known that every NP-pair is many-one equivalent to the canonical pair of some
proof system [7]. Here we investigate the same question for strongly many-one reductions. It is
easy to see that this question must be restricted to pairs whose first component is NP-complete.

Q4: Is every NP-pair (A,B), where A is NP-complete, strongly many-one equivalent to the canon-
ical pair of some proof system?

Theorem 3.3 addresses the first part of Q1: The theorem asserts that, for any two disjoint NP-pairs
(A,B) and (C,D), there are proof systems f and g such that can(f)≡p

m(A,B), can(g)≡p
m(C,D)

and implication (2) holds nontrivially.

Corollary 3.6 addresses the second part of Q1: The following assertion is equivalent to the reasonable
assumption that optimal proof systems do not exist. For every proof system f there is a proof system
g such that f and g is a counter example to implication (2). More strongly, there is an infinite

2

chain of proof systems g0, g1, · · · , such that f < g0 < g1 < · · · , but the canonical pairs of all of
these proof systems are many-one equivalent. In this way, we address Q2.

In section 4 we answer Q3 in different ways. Equivalent canonical pairs do not tell much about the
mere simulation order of two proof systems (Theorem 4.1). However, inequivalent canonical pairs
tell us that the corresponding proof systems do not simulate each other except on a P-subset of
TAUT (Proposition 4.2). Hence such systems are not “very similar.” In contrast, equivalent, P-
inseparable canonical pairs tell us that none of the corresponding proof systems is almost everywhere
super-polynomially stronger than the other one (Theorem 4.3). In other words, such proof systems
must simulate each other infinitely often (Corollary 4.4). So the proof systems are not “very
different.”

In section 5 we can relate Q4 to the open problem in structural complexity [3, 5] that asks whether
unions of disjoint NP-complete sets are NP-complete. We show under the hypothesis NP 6= coNP
that if Q4 has an affirmative answer, then unions of disjoint NP-complete sets are NP-complete.
This demonstrates a new connection between proof systems, NP-pairs, and problems in structural
complexity. Finally, in section 6 we obtain connections between proof systems and the Turing-
degrees of their canonical pairs.

2 Preliminaries

A disjoint NP-pair is a pair (A,B) of nonempty sets A and B such that A,B ∈ NP and A∩B = ∅.
Let DisjNP denote the class of all disjoint NP-pairs.

Given a disjoint NP-pair (A,B), a separator is a set S such that A ⊆ S and B ⊆ S; we say
that S separates (A,B). Let Sep(A,B) denote the set of all separators of (A,B). For disjoint
NP-pairs (A,B), the fundamental question is whether Sep(A,B) contains a set belonging to P.
In that case the pair is P-separable; otherwise, the pair is P-inseparable. There is evidence [8, 4]
that P-inseparable disjoint NP-pairs exist, and this will be our main hypothesis in the paper. The
following proposition summarizes known results about P-inseparability.

Proposition 2.1

1. P 6= NP ∩ coNP implies that DisjNP contains a P-inseparable pair.

2. P 6= UP implies that DisjNP contains a P-inseparable pair [8].

3. If DisjNP contains P-inseparable pairs, then it contains a P-inseparable pair whose compo-
nents are NP-complete [8].

Item 1 in the above proposition is an easy fact since for any L ∈ NP ∩ coNP − P , (L,L) is a
P-inseparable disjoint NP-pair. While it is probably the case that DisjNP contains P-inseparable
pairs, there is an oracle relative to which P 6= NP and P-inseparable pairs in DisjNP do not exist [9].
So P 6= NP probably is not a sufficiently strong hypothesis to show the existence of P-inseparable

3

pairs in DisjNP. On the other hand, if there exist secure public-key cryptosystems (for example, if
RSA cannot be cracked in polynomial time), then there exist P-inseparable disjoint NP-pairs [8].

All reducibilities in the paper are polynomial-time reducibilities. We review the natural notions of
reducibilities between disjoint pairs. The original notions are nonuniform [8]. Here we state only
the known equivalent uniform versions [8, 4].

Definition 2.1 Let (A,B) and (C,D) be disjoint pairs.

1. (A,B) is many-one reducible in polynomial time to (C,D), (A,B)≤p
m(C,D), if there exists

a polynomial-time computable function f : Σ∗ → Σ∗ such that f(A) ⊆ C and f(B) ⊆ D.

2. (A,B) is Turing reducible in polynomial time to (C,D), (A,B)≤p
T (C,D), if there exists a

polynomial-time oracle Turing machine M such that for every separator S of (C,D), L(M,S)
is a separator of (A,B), where L(M,S) denotes the language accepted by M with oracle S.

Köbler, Messner, and Torán [10] define the following stronger version of many-one reductions be-
tween disjoint NP-pairs:

Definition 2.2 Let (A,B) and (C,D) be disjoint pairs. (A,B) is strongly many-one reducible in
polynomial time to (C,D), (A,B)≤p

sm(C,D), if there exists a polynomial-time computable function
f such that f(A) ⊆ C, f(B) ⊆ D, and f(A ∪B) ⊆ C ∪D.

Note that if (A,B)≤p
sm(C,D), then A reduces to C and B reduces D via the same polynomial-time

many-one reduction.

Let SAT denote the set of satisfiable propositional formulas and let UNSAT df=SAT. Moreover, let
TAUT denote the set of tautologies. It is well known that SAT is many-one complete for NP and
both UNSAT and UNSAT are many-one complete for coNP.

Definition 2.3 A disjoint pair (A,B) is ≤p
m-hard for NP if for every separator L of (A,B),

SAT≤p
m L.

Definition 2.4 For any disjoint pair (A,B), the polynomial-time Turing-degree (Turing-degree
for short) of (A,B) is defined as

d(A,B) = {(C,D) | (C,D) is a disjoint pair and (A,B)≡p
T (C,D)}.

In an earlier paper [7] we investigated the restriction of Turing-degrees of disjoint pairs on DisjNP
and showed that every countable distributive lattice can be embedded into the interval between
any two comparable but inequivalent restricted Turing-degrees of disjoint NP-pairs. It follows
trivially that every countable distributive lattice can be embedded into the interval between any
two comparable but inequivalent Turing-degrees of disjoint pairs if both degrees contain some
disjoint NP-pair.

4

Cook and Reckhow [2] defined a propositional proof system (proof system for short) to be a function
f : Σ∗ → TAUT such that f is onto and f is polynomial-time computable. For every tautology α,
if f(w) = α, then we say w is an f-proof of α. Throughout this paper, we fix a polynomial-time
computable and polynomial-time invertible pairing function 〈·, ·〉 such that |〈v, w〉| = 2|vw|.

The canonical NP-pair (canonical pair for short) of f [15, 14] is the disjoint NP-pair
(SAT∗,REF(f)), denoted by can(f), where

SAT∗ = {(x, 0n)
∣∣ x ∈ SAT and n ≥ 0 is an integer} and

REF(f) = {(x, 0n)
∣∣¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.

Conversely, for every disjoint NP-pair (A,B), we can define a proof system fA,B as follows. Choose
a g that is polynomial-time computable and polynomial-time invertible such that A ≤p

m SAT via
g. Let N be an NP-machine that accepts B in time p.

fA,B(z) df=

¬g(x) : if z = 〈x,w〉, |w| = p(|x|), N(x) accepts along path w

x : if z = 〈x,w〉, |w| 6= p(|x|), |z| ≥ 2|x|, x ∈ TAUT

true : otherwise

Clearly, fA,B is a propositional proof system for every disjoint NP-pair (A,B).

Theorem 2.2 ([7]) For every disjoint NP-pair (A,B), (A,B) ≡p
m can(fA,B).

Let f and f ′ be two propositional proof systems. We say that f simulates f ′ (f ′ ≤ f) if there
is a polynomial p and a function h : Σ∗ → Σ∗ such that for every w ∈ Σ∗, f(h(w)) = f ′(w) and
|h(w)| ≤ p(|w|). Furthermore, if the function h can be computed in polynomial time, f p-simulates
f ′ (f ′ ≤p f). A proof system is (p-)optimal if it (p-)simulates every other proof system.

In Section 4, we will need the following generalization of the concept “simulation.” We say that f
simulates f ′ on a subset S of TAUT, if there is a polynomial p and a function h : Σ∗ → Σ∗ such
that for every w ∈ Σ∗, f ′(w) ∈ S implies that f(h(w)) = f ′(w) and |h(w)| ≤ p(|w|). Moreover, f
simulates f ′ except on a subset S of TAUT, if f simulates f ′ on TAUT − S. Obviously, a proof
system f simulates a proof system f ′ if and only if f simulates f ′ on TAUT. We say a proof system
f simulates another proof system g infinitely often if f simulates g on an infinite set S ⊆ TAUT.

We use f < g to denote that f ≤ g and g 6≤ f . We use (A,B)<p
m(C,D) to denote that

(A,B)≤p
m(C,D) and (C,D) 6≤p

m(A,B). We use similar notations for other reductions (≤p
sm , ≤p

T)
between disjoint pairs.

3 Proof Systems and Many-One Degrees of Canonical Pairs

We recall the fundamental relation between the simulation order of proof systems and reducibility
of their canonical NP-pairs.

5

Proposition 3.1 ([14, 7]) Let f and g be proof systems.

f ≤ g ⇒ can(f) ≤p
m can(g)

In this section, we investigate the converse of the above proposition. We show results that address
both parts of Q1 and Q2.

We start our investigations with the observation that refuting an implication that is slightly weaker
than (2) is equivalent to proving the existence of P-inseparable disjoint NP-pairs. This is done
by a purely complexity theoretic proof that does not rely on specific properties of concrete proof
systems.

Theorem 3.2 The following statements are equivalent.

1. P-inseparable disjoint NP-pairs exist.

2. There exist proof systems f and g such that can(f)<p
mcan(g) 6⇒ f ≤ g.

Proof. If P-inseparable disjoint NP-pairs do not exist, then all canonical pairs of proof systems
are P-separable and hence are equivalent. This shows 2 ⇒ 1.

For the other direction, assume that P-inseparable disjoint NP-pairs exist and define the following
set of propositional formulas.

EASY df={x
∣∣ x is a propositional formula such that x = (b ∨ b ∨ y)
for a suitable variable b and a suitable formula y}

EASY is a subset of TAUT. Also, EASY ∈ P. Let true df=(b ∨ b ∨ b) and define a proof system as
follows.

f(z) df=

x : if z = 〈x, ε〉 and x ∈ EASY

x : if z = 〈x, y〉 and |y| > 2|x| and x ∈ TAUT

true : otherwise.

Note that f is a proof system. Observe that the elements in EASY are the only tautologies that
have polynomial-size f -proofs. All other tautologies do not have polynomial-size f -proofs. This
makes can(f) P-separable which is witnessed by the following separator:

S = {(x, 0n)
∣∣ [n ≤ 2|x| and ¬x /∈ EASY] or [n > 2|x| and x ∈ SAT]}

By assumption there exists a P-inseparable disjoint NP-pair (A,B). Hence, by Theorem 2.2 there
exists a proof system g′ such that can(g′) and (A,B) are many-one equivalent. Now define another
proof system.

g(z) df=

g′(w) : if z = 0w and g′(w) /∈ EASY

true : if z = 0w and g′(w) ∈ EASY

x : if z = 1w, w = 〈x, y〉, |y| = 2|x|, and x ∈ EASY

true : otherwise.

6

Note that g is a proof system. Observe that formulas in EASY−{true} do not have polynomial-size
g-proofs. It follows that g does not simulate f , since f provides polynomial-size proofs for elements
in EASY.

Now we verify that can(g′)≤p
mcan(g) via the reduction that maps (x, 0n) to (x, 0n+1). If (x, 0n) ∈

SAT∗, then (x, 0n+1) ∈ SAT∗ and we are done. Let (x, 0n) ∈ REF(g′). So there exists some w such
that |w| ≤ n and g′(w) = (¬x). Note that (¬x) /∈ EASY, since formulas in EASY do not start with
a negation. From the definition of g it follows that g(0w) = g′(w) = (¬x). So (x, 0n+1) ∈ REF(g).

So can(g′)≤p
mcan(g) and therefore, (A,B)≤p

mcan(g). Hence can(g) is P-inseparable. This shows
can(f)<p

mcan(g). �

The examples given by Pudlák [14] and Beyersdorff [1] show that the simulation order of proof
systems is not necessarily reflected by the reducibility of their canonical pairs. However, as the
next theorem shows, the canonical pairs of proof systems that satisfy implication (2) in a non-
trivial way, vary over all degrees of disjoint NP-pairs. More precisely, for each pair of many-one
degrees of disjoint NP-pairs, there do exist proof systems whose canonical pairs lie in the respective
degrees such that their simulation order is consistent with the reducibility of the canonical pairs.
This answers the first part of Q1 in the sense that implication (2) can be satisfied non-trivially for
arbitrary canonical pairs.

Theorem 3.3 Let (A,B) and (C,D) be disjoint NP-pairs such that (A,B) ≤p
m (C,D). Then there

exist proof systems f1 and f2 such that all of the following holds.

• can(f1) ≡p
m (A,B)

• can(f2) ≡p
m (C,D)

• f1 ≤p f2

Proof. Choose g1 that is polynomial-time computable and polynomial-time invertible such that
A ≤p

m SAT via g1. Let N1 be an NP-machine that accepts B in time p1. Define the following
function f1.

f1(z) df=

¬g1(x) : if z = 〈x,w〉, |w| = p1(|x|), N1(x) accepts along path w

x : if z = 〈x,w〉, |w| 6= p1(|x|), |z| ≥ 2|x|, x ∈ TAUT

true : otherwise

The proof of Theorem 2.2 shows that f1 is a proof system and can(f1) ≡p
m (A,B). Now choose g2

that is polynomial-time computable and polynomial-time invertible such that C ≤p
m SAT via g2.

Let N2 be an NP-machine that accepts D in time p2. Without loss of generality, we assume for

7

every n ≥ 0, p1(n) 6= p2(n) and range(g1) ∩ range(g2) = ∅. Define the following function f2.

f2(z) df=

¬g1(x) : if z = 〈x, w〉, |w| = p1(|x|), N1(x) accepts along path w

¬g2(x) : if z = 〈x, w〉, |w| = p2(|x|), N2(x) accepts along path w

x : if z = 〈x, w〉, |w| 6= pi(|x|) for i = 1, 2, |z| ≥ 2|x|, x ∈ TAUT

true : otherwise

Clearly f2 is also a proof system, since for every tautology y,

f2(〈y, 02|y|〉) = y.

Also, we notice that each f1-proof z is also an f2-proof for the same tautology except for z ∈
{〈x,w〉 | |w| = p2(|x|) ∧ |〈x,w〉| ≥ 2|x| ∧ x ∈ TAUT}, which is a finite set. So, f1 ≤p f2.

It remains to show can(f2) ≡p
m (C,D). We only show can(f2) ≤p

m (C,D). The proof for
(C,D) ≤p

m can(f2) is the same as that for (A,B) ≤p
m can(f1), for which we refer the reader

to [7].

Let g many-one reduce (A,B) to (C,D). Choose elements c ∈ C and d ∈ D. Define a reduction
function h as follows.

1 input (y, 0n)
2 if n ≥ 2|y|+1 then
3 if y ∈ SAT then output c else output d
4 endif
5 if g−1

1 (y) exists then output g(g−1
1 (y))

6 if g−1
2 (y) exists then output g−1

2 (y)
7 output c

The exhaustive search in line 3 is possible in quadratic time in n. So h is polynomial-time com-
putable.

Assume (y, 0n) ∈ SAT∗. Then y ∈ SAT. If we reach line 3, then we output c ∈ C. Otherwise
we reach line 5. If g−1

1 (y) exists (hence, g−1
2 (y) does not exist, since the ranges of g1 and g2 are

disjoint), then g−1
1 (y) ∈ A and so, g(g−1

1 (y)) ∈ C. Otherwise we reach line 6. If g−1
2 (y) exists, then

g−1
2 (y) ∈ C as y ∈ SAT. Otherwise we reach line 7. Therefore, in all cases (output made in line 5,

6 or 7), we output an element in C.

Assume (y, 0n) ∈ REF(f2) (in particular y ∈ UNSAT). So there exists z such that |z| ≤ n and
f2(z) = ¬y. If we reach line 3, then we output d ∈ D. Otherwise we reach line 5. So far we
have ¬y 6= true and |z| ≤ n < 2|y|+1. Therefore, f2(z) = ¬y must be due to line 1 or line 2 in
the definition of f2. It follows that either g−1

1 (y) exists or g−1
2 (y) exists (but not both). If g−1

1 (y)
exists, then g−1

1 (y) ∈ B (by line 1 of f2’s definition) and we output g(g−1
1 (y)), which belongs to

D. Otherwise, g−1
2 (y) exists and we output g−1

2 (y), which belongs to D as well (by line 2 of f2’s
definition). This shows can(f2) ≤p

m (C,D) via h and finishes the proof of Theorem 3.3. �

8

The proof system g constructed in Theorem 3.2 might seem “pathological,” since in this proof sys-
tem, tautologies from a polynomial-time decidable subset of TAUT have proofs of super-polynomial
length. One might wonder whether Theorem 3.2 can be proved without such pathology. The cor-
responding proof systems are formalized as follows.

Definition 3.1 A proof system f is well-behaved if for every polynomial-time decidable S ⊆ TAUT
there exists a polynomial p such that for all x ∈ S,

min{|w| | f(w) = x} ≤ p(|x|).

However, well-behaved proof systems probably do not even exist. It has been known [11, 12] that
the existence of well-behaved proof systems is equivalent to the existence of optimal proof systems,
which we believe not to exist (Messner and Torán [13] and Glaßer et al. [4] give evidence for this).
So it is probably the case that no proof system is well-behaved and therefore, every proof system
has long proofs on some polynomial-time decidable subset of TAUT. This shows that the proof
system constructed in Theorem 3.2 is not uncommon. Even more, we can apply the arguments
used in Theorem 3.2 to every non-well-behaved proof system. This allows us to obtain the following
general result.

Theorem 3.4 Let f be a proof system that is not well-behaved. For every (A,B) ∈ DisjNP, there
exists a proof system g such that

• can(g)≡p
m(A,B) and

• g 6≤ f .

Proof. Let f be a proof system that is not well-behaved. Then there exists a set S ⊆ TAUT such
that S ∈ P and for every polynomial p, there exists x ∈ S and min{|w| | f(w) = x} > p(|x|).

Let (A,B) ∈ DisjNP. By Theorem 3.1 in Glaßer et al. [7], there exists a proof system g′ such that
can(g′)≡p

m(A,B). Now define proof system g as follows:

g(z) df=

g′(w) : if z = 0w,

w : if z = 1w and w ∈ S,

true : otherwise.

Clearly, g′ ≤ g. So by Proposition 3.1, it holds that can(g′)≤p
mcan(g) and hence, (A,B)≤p

mcan(g).

Now we show can(g) ≤p
m can(g′) and hence can(g) ≤p

m (A,B). Let n0 = min{|w| | g′(w) = ¬false}.
So (false, 0n0) ∈ REF(g′). The reduction is the following function h:

h(x, 0n) df=

 (false, 0n0) : if ¬x ∈ S,

(x, 0n−1) : otherwise.

9

Clearly h is polynomial-time computable. Assume (x, 0n) ∈ SAT∗, then x ∈ SAT and hence,
¬x /∈ S. So h(x, 0n) = (x, 0n−1) ∈ SAT∗. Now assume (x, 0n) ∈ REF(g). So ¬x ∈ TAUT and
there exists z such that |z| ≤ n and g(z) = ¬x. If ¬x ∈ S, then h(x, 0n) = (false, 0n0) ∈ REF(g′).
If ¬x /∈ S, then for every w, g(1w) 6= ¬x. So it must hold that z = 0w for some w and g(z) =
g′(w) = ¬x. Since |w| = |z| − 1, (x, 0n−1) ∈ REF(g′). This shows can(g) ≤p

m can(g′) and hence,
can(g) ≤p

m (A,B).

It remains to show g 6≤ f . Suppose g ≤ f . Then there exists a polynomial q such that for every
w, there exists w′ such that |w′| ≤ q(|w|) and g(w) = f(w′). Let p(n) = q(n + 1). Let x ∈ S be
such that min{|w| | f(w) = x} > p(|x|) = q(|x| + 1). By the definition of g, g(1x) = x. Now for
w = 1x, since g ≤ f , there exists w′ such that |w′| ≤ q(|1x|) = p(|x|) and f(w′) = g(w) = x. This
contradicts the fact that min{|w| | f(w) = x} > p(|x|) = q(|x|+ 1). �

With help of Theorem 3.4 we can now give an answer to Q2: All non-well-behaved proof systems
provide examples for proof systems that have equivalent canonical pairs, but that differ with respect
to their strengths. Moreover, we can answer the second part of Q1 in the sense that all non-well-
behaved proof systems provide counter examples for implication (2).

Corollary 3.5 For every proof system f that is not well-behaved, there exists a proof system g
such that can(f) ≡p

m can(g) and f < g. In particular,

can(g) ≤p
m can(f) 6⇒ g ≤ f.

Proof. The proof is the same as Theorem 3.4 except that we take (A,B) to be can(f) and g′ to
be f . �

If we assume that optimal proof systems do not exist, then Corollary 3.5 provides even stronger
answers: With regard to Q1, all proof systems provide counter examples for the implication (2).
With regard to Q2, all proof systems provide examples that have equivalent canonical pairs, but
that differ with respect to their strengths. Even more, each proof system is the origin of an infinite,
strictly ascending chain of proof systems whose canonical pairs are equivalent.

Corollary 3.6 The following statements are equivalent.

1. Optimal proof systems do not exist.

2. For every proof system f there exists a proof system g such that can(f) ≡p
m can(g) and f < g.

3. For every proof system f there exists an infinite chain of proof systems g0, g1, . . . such that
f < g0 < g1 < · · · and can(f) ≡p

m can(g0) ≡p
m can(g1) · · · .

4. For every proof system f there exists a proof system g such that

can(g) ≤p
m can(f) 6⇒ g ≤ f.

10

Proof. The implication 3 ⇒ 4 is trivial by choosing g = g0. If an optimal proof system f exists,
then can(f) is ≤p

m -complete for DisjNP. So if f is an optimal proof system, then for every proof
system g it holds that can(g)≤p

mcan(f) and g ≤ f . This shows 4 ⇒ 1. The implication 1 ⇒ 2
follows from Corollary 3.5 together with Messner’s result [12] that the non-existence of optimal
proof systems implies the non-existence of well-behaved proof systems. The remaining implication
2 ⇒ 3 follows by a repeated application of statement 2. �

4 Proof Systems With Equivalent Canonical Pairs

We have seen in the last section that the degree structure of canonical pairs does not necessarily
reflect the simulation order of the corresponding proof systems. In this section we study the
following related question.

Q3: What do (non-)equivalent canonical pairs tell about the corresponding proof systems?

We answer Q3 in different ways. Equivalent canonical pairs do not tell much about the mere
simulation order of two proof systems (Theorem 4.1). However, inequivalent canonical pairs tell us
that the corresponding proof systems do not simulate each other except on a P-subset of TAUT
(Proposition 4.2). Hence such systems are not “very similar.” In contrast, equivalent, P-inseparable
canonical pairs tell us that none of the corresponding proof systems is almost everywhere super-
polynomially stronger than the other one (Theorem 4.3). So the proof systems are not “very
different.”

Assuming the hypothesis that P-inseparable disjoint NP-pairs exist, we show the following bound-
aries for the statements above: There exist proof systems whose canonical pairs are not many-one
equivalent, but they simulate each other except on an NP-subset of TAUT (Corollary 4.9). For
every P-inseparable NP-pair (A,B), there exist proof systems f and g whose canonical pairs are
many-one equivalent to (A,B), and for every P-subset S of TAUT it holds that f and g do not
simulate each other on TAUT− S (Theorem 4.11).

We first show that equivalent canonical pairs do not tell much about the simulation order of two
proof systems.

Theorem 4.1 For every disjoint NP-pair (A,B), there exist proof systems f , g, and h such that

• can(f) ≡p
m can(g) ≡p

m can(h) ≡p
m (A,B),

• f < g and f < h,

• g 6≤ h and h 6≤ g.

Proof. Let f = fA,B. By Theorem 2.2, can(f) ≡p
m(A,B). Define two subsets of TAUT as follows.

11

EASY1 df={x
∣∣ x is a propositional formula such that x = (b∨(¬b)∨y)
for a suitable variable b and a suitable formula y}

EASY2 df={x
∣∣ x is a propositional formula such that x = (b∨b∨(¬b)∨y)
for a suitable variable b and a suitable formula y}

It is obvious that EASY1 ∩ EASY2 = ∅ and both EASY1 and EASY2 belong to P. Also note
that proof system f does not have polynomial-bounded proofs for tautologies in EASY1 ∪ EASY2
(since formulas having short f -proofs either equal true or start with the symbol ¬).

Now define proof systems g and h as follows.

g(z) df=

f(w) : if z = 0w

w : if z = 1w and w ∈ EASY1

true : otherwise

h(z) df=

f(w) : if z = 0w

w : if z = 1w and w ∈ EASY2

true : otherwise

Clearly, both proof systems, g and h, simulate f , since for every w, f(w) = g(0w) = h(0w).
Also note that proof system g (resp., h) has polynomial-size proofs for tautologies in EASY1
(resp., EASY2), but does not have polynomial-size proofs for tautologies in EASY2 (resp., EASY1).
Therefore, f does not simulate g or h. Neither do proof systems g and h simulate each other.

An argument similar to that in the proof of Theorem 3.2 shows that can(g) and can(h) are many-
one equivalent to can(f). Therefore, can(f) ≡p

m can(g) ≡p
m can(h) ≡p

m (A,B). �

However, from another point of view, the proof systems defined in the proof of Theorem 4.1 are
actually quite “similar” to each other. They differ only super-polynomially on a polynomial-time
decidable subset of TAUT. More precisely, the construction of proof systems with equivalent
canonical pairs but arbitrary simulation order hinges on the following fact.

Proposition 4.2 If proof systems f and g simulate each other except on a P-subset of TAUT,
then can(f)≡p

mcan(g).

So here the question is whether we can construct proof systems f and g with equivalent canonical
pairs such that the proof systems are “very different.” For example, do there exist proof systems
f and g such that can(f)≡p

mcan(g) and f is almost everywhere super-polynomially stronger than
g? The following theorem shows that such an extreme difference is only possible for proof systems
whose canonical pairs are P-separable.

12

Theorem 4.3 Let f and g be proof systems such that can(g)≤p
mcan(f). If for almost all tautologies

x and for every polynomial p, the length of the shortest f-proof of x is not bounded by p in the
length of the shortest g-proof of x, then can(f) and can(g) are P-separable.

Proof. Fix proof system f and g that satisfy the premise of the theorem. Without loss of generality,
we assume g(λ) does not start with ¬. Let h many-one reduce can(g) to can(f). Assume g and h
can be computed in time nk and nl, respectively. By hypothesis, let n0 be the minimal integer such
that for every tautology x with |x| > n0 the length of the shortest f -proof of x is not bounded by
the polynomial n(k+1)l+1 in the length of the shortest g-proof of x.

We use the following algorithm to separate can(g):

0 input 〈x, 0n〉
1 y = x, m = n
2 while (|y| ≤ mk) and (m > 0)

3 compute 〈y′, 0m′〉 = h(〈y, 0m〉)
4 if |y′| ≤ n0 then (accept iff y′ ∈ SAT)

5 let 〈y, 0m〉 = 〈y′, 0(m′)
1

(k+1)l+1 〉
6 accept

We first claim that the while-loop in the above algorithm runs for at most n times. To see this, we
just need to observe by line 3 that

m′ ≤ |〈y, 0m〉|l ≤ (mk + m)l < m(k+1)l+1.

So the assignment in line 5, which sets m = (m′)
1

(k+1)l+1 , decrements m. Since initially m is set to
n and decremented in each iteration of the while-loop, the claim holds. This implies that the above
algorithm is polynomial-time computable.

Now we prove the correctness of the algorithm. Assume the input 〈x, 0n〉 ∈ SAT∗. By line 3, it
holds for each iteration of the while-loop that y ∈ SAT implies y′ ∈ SAT, since h many-one reduces
can(g) to can(f). Since initially y = x ∈ SAT and y is set to y′ by line 5 in each iteration, the
loop-invariant y′ ∈ SAT holds. Therefore, the algorithm either accepts in line 4 or accepts in line 6.

Assume the input 〈x, 0n〉 ∈ REF(g). We first show the loop invariant (y, 0m) ∈ REF(g). By line 1
the invariant holds initially. So suppose the invariant holds at the beginning of some iteration
of the loop. If the algorithm reaches line 3, then 〈y′, 0m′〉 ∈ REF(f), since h many-one reduces
can(g) to can(f). So in line 4, y′ ∈ UNSAT and hence, the algorithm rejects if |y′| ≤ n0. Other-
wise, the algorithm reaches line 5. By the choice of n0, it holds that (y′, 0m′

) ∈ REF(f) implies

(y′, 0(m′)
1

(k+1)l+1) ∈ REF(g). This proves the invariant (y, 0m) ∈ REF(g).

Suppose the algorithm reaches line 6. Then either |y| > mk or m = 0. By the loop invariant
(y, 0m) ∈ REF(g), there exists w with |w| ≤ m and g(w) = ¬y. This shows |y| ≤ mk, since g can
be computed in time nk. So it must hold that m = 0 and hence g(λ) = ¬y. This is a contradiction,
because by our hypothesis, g(λ) does not start with ¬. Therefore, we do not reach line 6. So the
algorithm must exit in line 4 where it rejects. This shows that can(g) is P-separable.

13

As f has longer proofs than g for almost all tautologies, it follows trivially that f ≤ g. Hence, by
Proposition 3.1 it holds that can(f)≤p

mcan(g). This implies that can(f) is P-separable too. �

Corollary 4.4 Let f and g be propositional proof systems such that can(f)≡p
mcan(g) and both

can(f) and can(g) are P-inseparable. Then f and g must simulate each other infinitely often.

Proof. The corollary follows immediately from the contrapositive of Theorem 4.3. �

Let us summarize what we have seen so far: Proposition 4.2 says that if two proof systems are
“very similar,” then they have equivalent canonical pairs. Theorem 4.3 tells us that if two proof
systems are “very different” from each other, then either they have P-separable canonical pairs or
their canonical pairs are inequivalent.

We continue to follow the question to what extent can proof systems differ while still having
equivalent canonical pairs. Under the hypothesis that P-inseparable disjoint NP-pairs exist, we show
that Proposition 4.2 does not hold when the P-subset is replaced with an NP-subset (Corollary 4.9).
So altering f -proofs on a P-subset of TAUT does not change the many-one degree of can(f), but
altering f -proofs on an NP-subset of TAUT can do so.

Theorem 4.5 Let f be a proof system such that can(f) is not m-complete for DisjNP. Then there
exists a proof system f ′ such that can(f)<p

m can(f ′) and f and f ′ simulate each other except on
an NP-subset of TAUT.

Proof. Let f be a proof system such that can(f) is not m-complete for DisjNP. Since can(f) is
not m-complete, there exists a disjoint NP-pair (A,B) such that (A,B) 6≤p

m can(f). Let (C,D) =
(0A ∪ 1SAT∗, 0B ∪ 1REF(f)). Clearly, can(f)≤p

m(C,D), but (C,D) 6≤p
m can(f).

Choose g that is polynomial-time computable and polynomial-time invertible such that C ≤p
m SAT

via g. Let N be an NP-machine that accepts D in time p. Define a function f ′ as follows.

f ′(z) df=

¬g(x) : if z = 0〈x,w〉, |w| = p(|x|), N(x) accepts along path w

x : if z = 1w, and f(w) = x

true : otherwise

We first observe that f ′ is a proof system. Clearly f ′ is polynomial-time computable. To see
range(f ′) ⊆ TAUT, we just need to observe in the first case in the definition of f ′ that g(x) ∈
UNSAT, since N(x) accepts along path w implies x ∈ D ⊆ C. Also, it is obvious that range(f ′) ⊇
TAUT since range(f ′) ⊇ range(f) = TAUT.

Note that f ′ is similar to the proof system fC,D. The difference is only that the trivial proofs in
fC,D are replaced by f -proofs here. This makes f ′ at least as strong as f .

14

Claim 4.6 f ≤ f ′.

Proof. The proof is trivial since for every w, f ′(1w) = f(w). �

Claim 4.7 (C,D)≤p
mcan(f ′).

Proof. The reduction is given by h(x) = (g(x), 02(|x|+p|x|)+1). Clearly h is polynomial-time com-
putable. Assume x ∈ C. Then g(x) ∈ SAT and hence, h(x) ∈ SAT∗. Assume x ∈ D. Let w be
a witness of x of length p(|x|). Then for z = 0〈x,w〉 with |z| = 2(|x| + p(|x|)) + 1, it holds that
f ′(z) = ¬g(x). So h(x) ∈ REF(f ′). �

Claim 4.8 For all tautologies x /∈ ¬g(D) ∪ {true}, x has an f ′-proof of length n implies x has an
f-proof of length n− 1.

Proof. This is clear from the definition of f ′. �

Claim 4.6 implies can(f)≤p
mcan(f ′) (Proposition 3.1). Claim 4.7 implies can(f ′) 6≤p

m can(f), since
otherwise (C,D)≤p

mcan(f) which is not true. Claim 4.8 together with Claim 4.6 shows that f and
f ′ simulate each other on all tautologies except on ¬g(D) ∪ {true}. The latter is an NP-subset of
TAUT, since g is polynomial-time invertible and D ∈ NP. �

Corollary 4.9 The following statements are equivalent.

1. P-inseparable NP-pairs exist.

2. There exist proof systems f and g whose canonical pairs are not many-one equivalent, but
that simulate each other except on an NP-subset of TAUT.

Proof. This follows from Theorem 4.5, since if P-inseparable NP-pairs exist, then P-separable
NP-pairs are not m-complete for DisjNP. �

Corollary 4.10 If P 6= NP ∩ coNP, then there exist proof systems f and g whose canonical pairs
are not many-one equivalent, but that simulate each other except on an NP-subset of TAUT.

Proof. This follows from Corollary 4.9, since P 6= NP∩ coNP implies that P-inseparable NP-pairs
exist. �

Under the hypothesis that P-inseparable disjoint NP-pairs exist, we now show that proof systems
that do not simulate each other except on P-subsets of TAUT may still have equivalent canonical
pairs. Hence, the converse of Proposition 4.2 does not hold, unless P-inseparable disjoint NP-pairs
do not exist.

15

Theorem 4.11 Let (A,B) be a P-inseparable NP-pair. Then there exist proof systems f and f ′

such that can(f)≡p
mcan(f ′)≡p

m(A,B) and for every P-subset S of TAUT it holds that f and f ′ do
not simulate each other on TAUT− S.

Proof. Consider the proof system f = fA,B. Clearly f has short proofs on ¬g(B) and trivial (but
long) proofs otherwise, where g is a polynomial-time computable and invertible many-one reduction
from A to SAT. It is easy to define another polynomial-time computable and invertible many-one
reduction g′ from A to SAT such that range(g) ∩ range(g′) = ∅. Let f ′ be the proof system that
is obtained from fA,B when g is replaced by g′. Then by Theorem 2.2 can(f)≡p

m(A,B)≡p
mcan(f ′).

We show that f cannot simulate f ′ on TAUT− S for any P-subset S of TAUT.

Assume that for some P-subset S of TAUT it holds that f simulates f ′ on TAUT − S. Note
that on ¬g′(B), f -proofs have exponential length while f ′-proofs have polynomial length. There-
fore, (TAUT − S) ∩ ¬g′(B) is a finite set. So S, which is a set in P, separates a finite varia-
tion of the NP-pair (TAUT,¬g′(B)). However, (TAUT,¬g′(B)) cannot be P-separable, because
(A,B)≤p

m(TAUT,¬g′(B)) via the reduction h(x) = ¬g′(x).

Symmetric arguments show that f ′ cannot simulate f on TAUT− S for any P-subset S of TAUT.
�

5 Strongly Many-One Degrees of Canonical Pairs

Every disjoint NP-pair is many-one equivalent to the canonical pair of some proof system [7]. We
ask the same question for strongly many-one reductions. Note that if a disjoint NP-pair (A,B) is
strongly many-one equivalent to the canonical pair of some proof system, then trivially A must be
NP-complete. So we arrive at the following question.

Q4: Is every NP-pair (A,B), where A is NP-complete, strongly many-one equivalent to the canon-
ical pair of some proof system?

Surprisingly, this question is closely related to the following open problem, which has been studied
for quite a while [16, 3, 5].

Q5: Is the union of two disjoint NP-complete sets NP-complete?

For this, we first translate Q4 into the question whether certain NP-pairs are many-one hard for NP
(Corollary 5.5). From this we show under the hypothesis NP 6= coNP that if Q4 has an affirmative
answer, then Q5 has an affirmative answer. In order to show this implication, it turned out that it
suffices to demand that Q4 has answer ‘yes’ only for A = SAT (Corollary 5.6).

Theorem 5.1 Let (A,B) be a disjoint NP-pair. If (A, A ∪B) is ≤p
m-hard for NP, then there exists

a proof system f such that (SAT∗,REF(f))≡p
sm(A,B).

16

Proof. Choose a one-one, length-increasing, polynomial-time computable, polynomial-time
invertible function g such that A≤p

mSAT via g. Such a g exists, since SAT is a paddable
NP-complete set. Moreover, let r be a polynomial-time-computable function that witnesses
(SAT,SAT)≤p

m(A,A ∪B). Let N be an NP-machine that accepts B in time p, and choose a
constant c > 0 such that for all n, p(n) < 2n + c.

f(z) df=

¬g(x) : if z = 〈x, w〉, |w| = p(|x|), N(x) accepts along path w

x : if z = 〈x, w〉, |w| = 2|x| + c, x ∈ TAUT

true : otherwise

The function is polynomial-time computable, since in the second case, |z| is large enough so that
x ∈ TAUT can be decided by the brute force algorithm in deterministic time O(|z|2). In the first
case of f ’s definition, x ∈ B and so g(x) /∈ SAT. It follows that f : Σ∗ → TAUT. The mapping is
onto, since for every tautology y,

f(〈y, 02|y|+c〉) = y.

Therefore, f is a propositional proof system.

Claim 5.2 (SAT∗,REF(f))≤p
sm(A,B).

Proof. Choose elements a ∈ A and b ∈ B. The reduction function h is defined as follows.

0 input (y, 0n)
1 if n ≥ 2(|¬y|+ 2|¬y| + c) then
2 if y ∈ SAT then output a else output b
3 endif
4 if g−1(y) exists and n ≥ 2(|g−1(y)|+ p(|g−1(y)|)) then output g−1(y)
5 output r(y)

Observe that the exhaustive search in line 2 is possible in quadratic time in n. So h is computable
in polynomial time. We show that h achieves the asserted reduction.

Assume (y, 0n) ∈ SAT∗, i.e., y ∈ SAT. If we reach line 2, then we output a ∈ A. Otherwise we
reach line 4. If g−1(y) exists, then it belongs to A, since g reduces A to SAT. Moreover, r(y) ∈ A.
So any output made in lines 4 or 5 belongs to A.

Assume (y, 0n) ∈ REF(f) and hence ¬y ∈ TAUT. If n ≥ 2(|¬y| + 2|¬y| + c), then the output is
b ∈ B. Otherwise, n < 2(|¬y|+ 2|¬y| + c) and we reach line 4. By assumption, there exists a string
z of length ≤ n such that f(z) = ¬y. Note that f(z) is not defined according to the third line of
f ’s definition, since the expression ‘true’ does not start with the character ‘¬’. Also, f(z) is not
defined according to the second line of f ’s definition, since there, n ≥ |z| = 2(|¬y| + 2|¬y| + c).
So f(z) must be defined according to the first line of f ’s definition. Therefore, for some x ∈ B,
y = g(x) and n ≥ |z| = 2(|x| + p(|x|)). This shows that g−1(y) exists, that g−1(y) = x ∈ B, and

17

that n ≥ 2(|g−1(y)| + p(|g−1(y)|)). So if the algorithm reaches line 4, then the output is made in
line 4 and this output is a string from B.

Assume (y, 0n) /∈ SAT∗ ∪ REF(f) and hence ¬y ∈ TAUT. For z = 〈¬y, 02|¬y|+c〉 it holds that
|z| = 2(|¬y|+2|¬y| + c) and f(z) = ¬y. So n < 2(|¬y|+2|¬y| + c), since otherwise (y, 0n) ∈ REF(f)
witnessed by z. Hence we reach line 4. Assume that the output is made in line 4, i.e., g−1(y)
exists and n ≥ 2(|g−1(y)| + p(|g−1(y)|)). Note that g−1(y) /∈ A, since g reduces A to SAT.
Suppose x

df= g−1(y) belongs to B. Let z = 〈x, w〉 where w is an accepting path of N(x). So
f(z) = ¬g(x) = ¬y and

n ≥ 2(|g−1(y)|+ p(|g−1(y)|)) = 2(|x|+ p(|x|)) = |z|.

Hence (y, 0n) ∈ REF(f) which contradicts our assumption. Therefore, x = g−1(y) /∈ B. This shows
that any output that is made in line 4 does not belong to A ∪ B. It remains the case where the
output is made in line 5. Here r(y) /∈ A ∪B, since (SAT,SAT)≤p

m(A, A ∪B) via reduction r.

This shows (SAT∗,REF(f))≤p
sm(A,B) via h, which proves Claim 5.2. �

Claim 5.3 (A,B)≤p
sm(SAT∗,REF(f)).

Proof. The reduction is h(x) df=(g(x), 02(|x|+p(|x|))).

If x ∈ A, then g(x) ∈ SAT and therefore, h(x) ∈ SAT∗. Assume now x ∈ B. Let w be an accepting
path of N(x) and define z

df=〈x,w〉. So |z| = 2(|x| + p(|x|)) and hence f(z) = ¬g(x). Therefore,
h(x) ∈ REF(f).

Finally, let us assume x /∈ A∪B. Hence g(x) /∈ SAT and so h(x) /∈ SAT∗. Suppose h(x) ∈ REF(f),
i.e., there exists a z such that |z| ≤ 2(|x|+ p(|x|)) and f(z) = ¬g(x). Note that f(z) is not defined
according to the third line of f ’s definition, since the expression ‘true’ does not start with the
character ‘¬’. Also, f(z) is not defined according to the second line of f ’s definition, since there,
|z| = 2(|¬g(x)|+ 2|¬g(x)| + c) > 2(|x|+ p(|x|)) (recall that g is length-increasing). So f(z) must be
defined according to the first line of f ’s definition. Hence z = 〈x′, w′〉 such that |w′| = p(|x′|) and
M(x′) accepts along path w′. So ¬g(x) = f(z) = ¬g(x′). From the fact that g is one-one we obtain
x = x′. Therefore, x ∈ B which contradicts our assumption. This shows h(x) /∈ REF(f) and hence
h(x) /∈ SAT∗ ∪ REF(f). This finishes the proof of Claim 5.3. �

The theorem follows from the Claim 5.2 and 5.3. �

Proposition 5.4 Let (A,B) be a disjoint NP-pair such that A ∪ B 6= Σ∗. If there exists a proof
system f such that (SAT∗,REF(f))≡p

sm(A,B), then (A,A ∪B) is ≤p
m-hard for NP.

Proof. Let g be a reduction that witnesses (SAT∗,REF(f))≤p
sm(A,B). Fix some c ∈ A ∪B. We

claim that (SAT,SAT)≤p
m(A,A ∪B) via the following reduction.

18

h(x) df=

 g(x, λ) : if f(λ) 6= ¬x

c : otherwise

If x ∈ SAT, then (x, λ) ∈ SAT∗ and hence g(x, λ) ∈ A. Note that f(λ) 6= ¬x. Therefore, h(x) ∈ A.

Assume now that x ∈ SAT. So (x, λ) /∈ SAT∗ and hence g(x, λ) /∈ A. Together with c /∈ A we
obtain h(x) /∈ A. Suppose h(x) ∈ B. So f(λ) 6= ¬x and h(x) = g(x, λ). Thus g(x, λ) ∈ B and
(x, λ) ∈ REF(f). It follows that f(λ) = ¬x which is a contradiction. Therefore, h(x) /∈ A ∪B. �

Corollary 5.5 The following are equivalent for a disjoint NP-pair (A,B) where A ∪B 6= Σ∗.

1. (A,A ∪B) is ≤p
m-hard for NP.

2. There exists a proof system f such that (SAT∗,REF(f))≡p
sm(A,B).

Proof. This follows from Theorem 5.1 and Proposition 5.4. �

Corollary 5.6 Assume NP 6= coNP. If for all disjoint NP-pairs (SAT, B) there exists a proof
system f such that (SAT∗,REF(f))≡p

sm(SAT, B), then unions of disjoint NP-complete sets are
NP-complete.

Proof. Assume NP 6= coNP and assume that for all disjoint NP-pairs (SAT, B) there exists a proof
system f such that (SAT∗,REF(f))≡p

sm(SAT, B). Fix some B ∈ NP such that SAT∩B = ∅. From
NP 6= coNP it follows that A ∪ B 6= Σ∗. By Corollary 5.5, (SAT,SAT ∪B) is ≤p

m -hard for NP.
Therefore, SAT ∪ B is NP-complete. So we have shown that for every B ∈ NP, if SAT ∩ B = ∅,
then SAT∪B is NP-complete. By Theorem 5.7 in Glaßer et al. [3], unions of disjoint NP-complete
sets are NP-complete. �

6 Proof Systems and Turing-Degrees of Canonical Pairs

In this section, we consider the connection between proof systems and the more general Turing-
degrees of their canonical pairs. We try to generalize some of the results in previous sections on
many-one reductions to Turing reductions.

Proposition 6.1 Let f and g be proof systems such that can(f) ≤p
T can(g). Then there exists a

proof system g′ such that can(g′) ≡p
T can(g) and f ≤p g′.

19

Proof. Define proof system g′ as follows:

g′(w) =
{

f(w′) if w = 0w′

g(w′) if w = 1w′

Clearly, both f and g are p-simulated by g′. So, can(f) ≤p
T can(g) ≤p

m can(g′). It remains to show
can(g′) ≤p

T can(g). Let can(f) be Turing reducible to can(g) via a polynomial-time oracle Turing
machine M . Then can(g′) is Turing reducible to can(g) via the following polynomial-time oracle
Turing machine M ′: On input (x, 0n), if (x, 0n−1) /∈ S, then reject; otherwise accept if and only if
MS accepts (x, 0n−1), where S is the oracle set.

The correctness of M ′ can be seen as follows. Let S be a separator of can(g). If (x, 0n) ∈ SAT∗, then
x ∈ SAT. This implies (x, 0n−1) ∈ S and MS(x, 0n−1) accepts and hence, (M ′)S(x, 0n) accepts.
On the other hand, if (x, 0n) ∈ REF(g′), then by the definition of g′, either (x, 0n−1) ∈ REF(f)
or (x, 0n−1) ∈ REF(g). If (x, 0n−1) ∈ REF(g), then (x, 0n−1) 6∈ S and hence, (M ′)S(x, 0n) rejects.
Otherwise, (x, 0n−1) ∈ REF(f) and hence (M)S(x, 0n−1) rejects. This implies that (M ′)S(x, 0n)
rejects. �

Corollary 6.2 Let d1 < d2 be two Turing-degrees of disjoint NP-pairs. Then for every proof
system f such that can(f) ∈ d1, there exists a proof system g such that can(g) ∈ d2 and f < g.

Proof. By Theorem 2.2, we can choose a proof system g′ such that can(g′) ∈ d2. By Proposi-
tion 3.1, g′ 6≤ f . By Proposition 6.1, there exists a proof system g such that f ≤p g and g ∈ d2.
Also, g 6≤ f , since otherwise can(g)≤p

mcan(f). �

Proposition 6.3 For all disjoint NP-pairs (A,B) and (C,D) such that (A,B)<p
T (C,D), there

exist proof systems f and g such that

• can(f)≡p
m(A,B),

• can(g)≡p
m(C,D), and

• f 6≤ g and g 6≤ f .

Proof. By Theorem 2.2 we obtain a proof system g such that can(g)≡p
m(C,D). From the proof

of this theorem it is clear that g is not well-behaved. (For example, the tautologies in the set
S = {a ∨ (¬a) ∨ y | y is a propositional formula} do not have g-proofs of polynomial length.) Now
apply Theorem 3.4 to g and (A,B). We obtain a proof system f such that can(f)≡p

m(A,B) and
f 6≤ g. Note that g 6≤ f as well, since otherwise, by Proposition 3.1, (C,D)≤p

m(A,B). �

20

References

[1] O. Beyersdorff. Disjoint NP-pairs from propositional proof systems. In Proceedings 3rd Con-
ference on Theory and Applications of Models of Computation, volume 3959 of Lecture Notes
in Computer Science, pages 236–247, 2006.

[2] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. The Journal
of Symbolic Logic, 44(1):36–50, 1979.

[3] C. Glaßer, A. Pavan, A. Selman, and S. Sengupta. Properties of NP-complete sets. SIAM
Journal on Computing, 36(2):516–542, 2006.

[4] C. Glaßer, A. Selman, S. Sengupta, and L. Zhang. Disjoint NP-pairs. SIAM Journal on
Computing, 33(6):1369–1416, 2004.

[5] C. Glaßer, A. Selman, S. Travers, and K. Wagner. The complexity of unions of disjoint sets.
Journal of Computer and System Sciences, 74:1173–1187, May 2008.

[6] C. Glaßer, A. Selman, and L. Zhang. Survey of disjoint NP-pairs and relations to propositional
proof systems. In O. Goldreich, A. L. Rosenberg, and A. L. Selman, editors, Theoretical
Computer Science - Essays in Memory of Shimon Even, volume 3895 of Lecture Notes in
Computer Science. Springer, 2006.

[7] C. Glaßer, A. Selman, and L. Zhang. Canonical disjoint NP-pairs of propositional proof
systems. Theoretical Computer Science, 370:60–73, 2007.

[8] J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems. SIAM
Journal on Computing, 17(2):309–335, 1988.

[9] S. Homer and A. Selman. Oracles for structural properties: The isomorphism problem and
public-key cryptography. Journal of Computer and System Sciences, 44(2):287–301, 1992.

[10] J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets for promise
classes. Information and Computation, 184(1):71–92, 2003.

[11] J. Kraj́ıček and P. Pudlák. Propositional proof systems, the consistency of first order theories
and the complexity of computations. The Journal of Symbolic Logic, 54(3):1063–1079, Sep
1989.

[12] J. Messner. On the Simulation order of proof systems. PhD thesis, Universität Ulm, Abteilung
Theoretische Informatik, December 2000.

[13] J. Messner and J. Torán. Optimal proof systems for propositional logic and complete sets.
In Proceedings 15th Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
Computer Science, pages 477–487. Springer Verlag, 1998.

[14] P. Pudlák. On reducibility and symmetry of disjoint NP-pairs. Theoretical Computer Science,
295:323–339, 2003.

[15] A. Razborov. On provably disjoint NP-pairs. Technical Report TR94-006, Electronic Compu-
tational Complexity Colloquium, 1994.

21

[16] A. Selman. Natural self-reducible sets. SIAM Journal on Computing, 17(5):989–996, October
1988.

22

