
Canonical Disjoint NP-Pairs of Propositional Proof Systems∗

Christian Glaßer † Alan L. Selman‡ Liyu Zhang§

September 26, 2006

Abstract

We prove that every disjoint NP-pair is polynomial-time, many-one equivalent to the canon-
ical disjoint NP-pair of some propositional proof system. Therefore, the degree structure of the
class of disjoint NP-pairs and of all canonical pairs is identical. We show that this degree struc-
ture is not superficial: Assuming there exist P-inseparable disjoint NP-pairs, every countable
distributive lattice can be embedded into every interval of polynomial NP-degrees of disjoint
pairs by maps that preserve the least and greatest element, respectively. As one consequence of
this embedding, under the same assumption, there exist intermediate disjoint NP-pairs. That
is, if (A, B) is a P-separable disjoint NP-pair and (C, D) is a P-inseparable disjoint NP-pair,
then there exist P-inseparable, incomparable NP-pairs (E, F) and (G, H) whose degrees lie
strictly between (A, B) and (C, D). Furthermore, between any two disjoint NP-pairs that are
comparable and inequivalent, such a diamond exists.

1 Introduction

One reason why it is important to study the class DisjNP of all disjoint NP-pairs is its relationship
to the theory of proof systems for propositional calculus. Specifically, Razborov [Raz94] defined the
canonical disjoint NP-pair, (SAT∗,REFf), for every propositional proof system f , and he showed
that if there exists an optimal propositional proof system f , then its canonical pair is a complete
pair for DisjNP. (We will explain this notation later.) In the same paper he asked for evidence
of existence of a propositional proof system whose canonical disjoint NP-pair is not separable by
a set belonging to the complexity class P, and, relatedly, he asked whether it is possible to reduce
to canonical pairs (SAT∗,REFf), another disjoint NP-pair that we believe to be hard (i.e., not
separable by a set in P). We answer these questions in the strongest possible way. We prove

∗A preliminary version of this paper was presented at the 30th International Symposium on Mathematical Foun-
dations of Computer Science, Gdansk, Poland, 2005.

†Lehrstuhl für Informatik IV, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. Email:
glasser@informatik.uni-wuerzburg.de

‡Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260. Research partially
supported by NSF grant CCR-0307077 and by the Alexander von Humboldt-Stiftung. Email: selman@cse.buffalo.edu

§Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260. Email:
lzhang7@cse.buffalo.edu

1

that every disjoint NP-pair is polynomial-time, many-one equivalent to the canonical disjoint NP-
pair of some propositional proof system. It follows immediately that every disjoint NP-pair we
believe to be P-inseparable (cannot be separated by a set in P) is many-one equivalent to some
pair (SAT∗,REFf) that is also P-inseparable.

This paper does not address the question of whether P-inseparable disjoint NP-pairs exist, but we
mention that there is evidence for their existence, for example, if P �= UP or if P �= NP ∩ coNP
[GS88]. On the other hand, the hypothesis that P �= NP does not seem to be sufficient to obtain
P-inseparable disjoint NP-pairs. Homer and Selman [HS92] constructed an oracle relative to which
P �= NP and all disjoint NP-pairs are P-separable.

It is easy to see that if proof system f simulates proof system g, then the pair (SAT∗,REFg) is
many-one reducible to the pair (SAT∗,REFf). A proof system is optimal if it simulates every other
propositional proof system. Although it is an open question whether optimal proof systems exist,
as we stated above, Razborov showed that if there exists an optimal propositional proof system
f , then its canonical pair is a complete pair for DisjNP. We obtain this result of Razborov as a
corollary of our result above.

Glaßer et al. [GSSZ04] constructed an oracle relative to which the converse of Razborov’s result
does not hold; i.e., relative to this oracle, using our current result, there is a propositional proof
system f whose canonical pair is complete, but f is not optimal. Hence, there is a propositional
proof system g such that the canonical pair of g many-one reduces to the canonical pair of f , but f
does not simulate g. Our Theorem 3.1 presents a tight connection between disjoint NP-pairs and
propositional proof systems. Nevertheless, relative to this oracle, the relationship is not as tight as
we might hope for.

In light of our result above, by examining the degree structure of the class DisjNP, we can un-
derstand the degree structure of canonical pairs (SAT∗,REFf). Thus, as Pudlák [Pud03] has
expressed, we should try to understand the degree structure of DisjNP. Assuming P-inseparable
disjoint NP-pairs exist, we prove that every countable distributive lattice can be embedded into
every interval of polynomial NP-degrees of disjoint NP-pairs by maps that preserve the least and
greatest element, respectively. Our proof is an adaptation of the techniques of Ambos-Spies [AS84]
for the analogous results about the degrees of NP-sets. As a consequence, between any two compa-
rable and inequivalent disjoint NP-pairs (A,B) and (C,D) there exist P-inseparable, incomparable
disjoint NP-pairs (E,F) and (G,H) whose degrees lie strictly between (A,B) and (C,D). This
corollary is an analogue of Ladner’s result for NP [Lad75]. Thus, assuming that P-inseparable
disjoint NP-pairs exist, the class DisjNP has a rich, dense, degree structure—and each of these
degrees contains a canonical pair.

2 Preliminaries

A disjoint NP-pair (NP-pair for short) is a pair (A,B) of nonempty sets A and B such that
A,B ∈ NP and A ∩ B = ∅. Let DisjNP denote the class of all disjoint NP-pairs.

Given a disjoint NP-pair (A,B), a separator is a set S such that A ⊆ S and B ⊆ S; we say that S
separates (A,B). Let Sep(A,B) denote the class of all separators of (A,B). For disjoint NP-pairs

2

(A,B), the fundamental question is whether Sep(A,B) contains a set belonging to P. In that case
the pair is P-separable; otherwise, the pair is P-inseparable. The following proposition summarizes
known results about P-separability.

Proposition 2.1

1. P �= NP ∩ co-NP implies DisjNP contains P-inseparable pairs.

2. P �= UP implies DisjNP contains P-inseparable pairs [GS88].

3. If DisjNP contains P-inseparable pairs, then there exists a P-inseparable (A,B) ∈ DisjNP
such that A and B are NP-complete [GS88].

While it is probably the case that DisjNP contains P-inseparable pairs, there is an oracle relative
to which P �= NP and P-inseparable pairs in DisjNP do not exist [HS92]. So P �= NP probably is
not a sufficiently strong hypothesis to show existence of P-inseparable pairs in DisjNP.

We review the natural notions of reducibilities between disjoint pairs. The original notions are
nonuniform [GS88]. Here we state only the known equivalent uniform versions [GS88, GSSZ04].

Definition 2.2 Let (A,B) and (C,D) be disjoint pairs.

1. (A,B) is many-one reducible in polynomial-time to (C,D), (A,B)≤pp
m (C,D), if there exists

a polynomial-time computable function f such that f(A) ⊆ C and f(B) ⊆ D.

2. (A,B) is Turing reducible in polynomial-time to (C,D), (A,B)≤pp
T (C,D), if there exists a

polynomial-time oracle Turing machine M such that for every separator S of (C,D), L(M,S)
is a separator of (A,B).

3. (A,B) is polynomial-time many-one equivalent to (C,D), (A,B) ≡pp
m (C,D), if

(A,B)≤pp
m (C,D) and (C,D)≤pp

m (A,B).

4. (A,B) is polynomial-time Turing equivalent to (C,D), (A,B) ≡pp
T (C,D), if (A,B)≤pp

T (C,D)
and (C,D)≤pp

T (A,B).

5. (A,B) is a polynomial-time many-one-complete disjoint NP-pair (complete disjoint NP-pair
for short), if (A,B) ∈ DisjNP and for all (C,D) ∈ DisjNP, (C,D)≤pp

m (A,B).

Definition 2.3 For every disjoint pair (A,B), the polynomial-time NP-Turing-degree (NP-Turing-
degree for short) of (A,B) is defined as

d(A,B)|NP = {(C,D) ∈ DisjNP | (A,B) ≡pp
T (C,D)}.

3

We use Rpp
T,NP|NP to denote the collection of NP-Turing-degrees of disjoint NP-pairs, i.e.,

Rpp
T,NP|NP = {d(A,B) | (A,B) ∈ DisjNP}.

Note that NP-Turing-degrees are actually confinements of Turing-degrees of disjoint-pairs on
DisjNP, which could be denoted by d(A,B) in the standard way. However, since we are only
interested in NP-Turing-degrees of disjoint NP-pairs and want to keep notations simple, we will
use d(A,B) for d(A,B)|NP and Rpp

T,NP for Rpp
T,NP|NP throughout the rest of the paper.

We will denote elements in Rpp
T,NP by a, b,

Let TAUT denote the set of tautologies. Cook and Reckhow [CR79] defined a propositional proof
system (proof system for short) to be a function f : Σ∗ → TAUT such that f is onto and computable
in polynomial time. The canonical pair of f [Raz94, Pud01] is the disjoint NP-pair (SAT∗,REFf)
where

SAT∗ = {(x, 0n)
∣∣ x ∈ SAT} and

REFf = {(x, 0n)
∣∣¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.

Let f and f ′ be two propositional proof systems. We say that f simulates f ′ if there is a polynomial
p and a function h : Σ∗ → Σ∗ such that for every w ∈ Σ∗, f(h(w)) = f ′(w) and |h(w)| ≤ p(|w|). A
proof system is optimal if it simulates every other proof system.

3 Canonical Pairs of Proof Systems

Now we state the main result of this paper. We show that for every disjoint NP-pair (A,B) there
exists a proof system f such that (SAT∗,REFf)≡pp

m (A,B). This shows that disjoint NP-pairs and
canonical pairs of proof systems have identical degree structures.

Theorem 3.1 For every disjoint NP-pair (A,B) there exists a proof system f such that
(SAT∗,REFf)≡pp

m (A,B).

Proof. Let 〈·, ·〉 be a polynomial-time computable, polynomial-time invertible pairing function
such that |〈v,w〉| = 2|vw|. Choose g that is polynomial-time computable and polynomial-time
invertible such that A≤p

mSAT via g (such a g exists, since SAT is a paddable NP-complete set).
Let M be an NP-machine that accepts B in time p. Define the following function f .

f(z) df=




¬g(x) : if z = 〈x,w〉, |w| = p(|x|), M(x) accepts along path w

x : if z = 〈x,w〉, |w| �= p(|x|), |z| ≥ 2|x|, x ∈ TAUT

true : otherwise

The function is polynomial-time computable, since in the second case, |z| is large enough so that
x ∈ TAUT can be decided by the brute force algorithm in deterministic time O(|z|2). (Note that

4

in the second case, the condition |z| ≥ 2|x| is equivalent to the condition log |z| ≥ |x|.) In the first
case of f ’s definition, x ∈ B and so g(x) /∈ SAT. It follows that f : Σ∗ → TAUT. The mapping is
onto, since for every tautology y,

f(〈y, 02|y|〉) = y.

Therefore, f is a propositional proof system.

Claim 3.2 (SAT∗,REFf)≤pp
m (A,B).

Choose elements a ∈ A and b ∈ B. The reduction function h is as follows.

1 input (y, 0n)
2 if n ≥ 2|y| then
3 if y ∈ SAT then output a else output b
4 endif
5 if g−1(y) exists then output g−1(y)
6 output a

The condition in line 2 is equivalent to log n ≥ |y|. The exhaustive search in line 3 is possible in
quadratic time in n. So h is computable in polynomial time.

Assume (y, 0n) ∈ SAT∗. If we reach line 3, then we output a ∈ A. Otherwise we reach line 5.
If g−1(y) exists, then it belongs to A. Therefore, in either case (output in line 5 or in line 6) we
output an element from A.

Assume (y, 0n) ∈ REFf (in particular ¬y ∈ TAUT). So there exists z such that |z| ≤ n and
f(z) = ¬y. If we reach line 3, then we output b. Otherwise we reach line 5 and so it holds that
|z| ≤ n < 2|y| and ¬y syntactically differs from the expression true. Therefore, f(z) = ¬y must
be due to line 1 in the definition of f . It follows that g−1(y) exists. So we output g−1(y) which
belongs to B (again by line 1 of f’s definition). This shows Claim 3.2.

Claim 3.3 (A,B)≤pp
m (SAT∗,REFf).

The reduction function is h′(x) df=(g(x), 02(|x|+p(|x|))). If x ∈ A, then g(x) ∈ SAT and therefore,
h′(x) ∈ SAT∗. Otherwise, let x ∈ B. Let w be an accepting path of M(x) and define z df=〈x,w〉.
So |w| = p(|x|) and |z| = 2(|x| + p(|x|)). By line 1 in f’s definition, f(z) = ¬g(x). Therefore,
h′(x) ∈ REFf . This proves Claim 3.3 and finishes the proof of Theorem 3.1. �

Corollary 3.4 Disjoint NP-pairs and canonical pairs for proof systems have identical degree struc-
tures.

The following easy to prove proposition also states a strong connection between proof systems and
disjoint NP-pairs:

5

Proposition 3.5 Let f and g be proof systems. If g simulates f , then

(SAT∗,REFf)≤pp
m (SAT∗,REFg).

Proof. By assumption there exists a total function h : Σ∗ → Σ∗ and a polynomial p such that
for all x, g(h(x)) = f(x) and |h(x)| ≤ p(|x|). We claim that (SAT∗,REFf)≤pp

m (SAT∗,REFg) via
reduction r where r(x, 0n) df=(x, 0p(n)). Clearly, if (x, 0n) ∈ SAT∗, then (x, 0p(n)) ∈ SAT∗ as well.
Let (x, 0n) ∈ REFf , i.e., ¬x is a tautology and there exists y such that |y| ≤ n and f(y) = ¬x. So
for y′ df= h(x) it holds that |y′| ≤ p(n) and g(y′) = ¬x which shows (x, 0p(n)) ∈ REFg. �

The following result of Razborov [Raz94] is an immediate consequence of Theorem 3.1 and Propo-
sition 3.5.

Corollary 3.6 (Razborov) If there exists an optimal propositional proof system f , then
(SAT∗,REFf) is a complete disjoint NP-pair.

We remind the reader that it is known neither whether there exists an optimal propositional proof
systems nor whether there exist complete NP-pairs. Now it is appropriate to repeat a comment
we stated in the introduction. Glaßer et al. [GSSZ04] constructed an oracle relative to which
the converse of Corollary 3.6 does not hold; i.e., relative to this oracle, by Theorem 3.1, there is
a propositional proof system f whose canonical pair is complete, but f is not optimal. Hence,
there is a propositional proof system g such that the canonical pair of g many-one reduces to the
canonical pair of f , but f does not simulate g. The results of this section present tight connections
between disjoint NP-pairs and propositional proof systems. Nevertheless, relative to this oracle,
the relationship is not as tight as one might hope for.

4 Degree Structure of Disjoint NP-Pairs

We are interested in the structure of NP-Turing-degrees of disjoint NP-pairs. We will show that
any countable distributive lattice can be embedded into the interval between two comparable NP-
Turing-degrees of disjoint NP-pairs while preserving either the least or greatest element. Similar
results on NP-sets were shown by Ambos-Spies [AS84] and extended by Merkle [Mer02]. However,
the previous results were only shown for degree of sets and there has been no proof that such
embedding results would also hold on disjoint NP-pairs. The proof techniques are similar to those
used in the previous results.

We follow the approach of Ambos-Spies [AS84], combined with notations and results of Schöning
[Sch82].

6

4.1 Distributive Lattices and Elementary Results

A partially ordered (p.o.) set L = 〈L;≤〉 is a set L with a partial ordering1 ≤ defined on L. For
any a, b ∈ L, define

sup{a, b} = c, where c ∈ L and (∀d ∈ L) [(a ≤ d) ∧ (b ≤ d) ⇒ (c ≤ d)],

and
inf{a, b} = c, where c ∈ L and (∀d ∈ L) [(d ≤ a) ∧ (d ≤ b) ⇒ (d ≤ c)].

If L = 〈L;≤〉 is a p.o. set and sup{a, b} (inf{a, b}) exists for a, b ∈ L, then we call sup{a, b}
(inf{a, b}) the join (meet) of a and b and denote it by a ∨ b (a ∧ b). A p.o. set L = 〈L;≤〉 is an
upper semilattice if a ∨ b exists for every a, b ∈ L; if in addition a ∧ b exists for every a, b ∈ L, then
L is called a lattice.

An order embedding of a p.o. set L1 = 〈L1;≤1〉 into a p.o. set L2 = 〈L2;≤2〉 is a one-to-one map
f : L1 → L2 such that ∀a, b ∈ L1 (a ≤1 b ⇒ f(a) ≤2 f(b)). An order embedding of a lattice L1

into an upper semilattice L2 is a lattice embedding if

∀a, b ∈ L1 [(f(a ∨ b) = f(a) ∨ f(b)) and (f(a) ∧ f(b) exists) and (f(a ∧ b) = f(a) ∧ f(b))].

The least (greatest) element of a p.o. set L is denoted by 0L (1L) or simply by 0 (1) if there is no
confusion from the context. We say an embedding f of L1 into L2 preserves the least element or 0
(greatest element or 1) if either f(0L1) = 0L2 (f(1L1) = 1L2) or 0L1 (1L1) does not exist. A lattice
L = 〈L;≤〉 is distributive if

∀a, b, c ∈ L ((a ∨ b) ∧ (a ∨ c) = a ∨ (b ∧ c)).

A lattice L is complemented if ∀a ∈ L ∃a ∈ L (a ∨ a = 1 and a ∧ a = 0). A distributive and
complemented lattice L = 〈L;≤〉 is Boolean if L possesses 0 and 1, and 0 �= 1. An element a of a
lattice L with least element 0 is an atom of L if 0 < a and

∀b ∈ L (0 ≤ b ≤ a ⇒ b = 0 or b = a).

A lattice L with 0 is atomless if it has no atoms. A proper subset I �= ∅ of L is an ideal of the
upper semilattice L = 〈L;≤〉 if I is closed under joins and ∀a ∈ L∀b ∈ I (a ≤ b ⇒ a ∈ I). The
quotient upper semilattice L/I = 〈L∗;≤∗〉 of L over the ideal I is defined by L∗ = {[a] | a ∈ L},
where [a] = {a ∨ b | b ∈ I} and [a] ≤∗ [b] if and only if a ≤ b ∨ c for some c ∈ I. Note that for a
Boolean lattice L, L/I is a Boolean lattice too.

Since it is known [Grä78, Page 64, Theorem 19] that any countable distributive lattice (with at least
two elements) can be embedded into the (up to isomorphism unique) countably infinite atomless
Boolean lattice by a map that preserves both 0 and 1, it suffices to embed an arbitrary countable
atomless Boolean lattice for our purpose. We will use the one stated in the following theorem.

Let N denote the set of natural numbers. Define

PN = {S | S ⊆ N ∧ TALLY(S) ∈ P},
1A partial ordering is a binary relation that is reflexive, antisymmetric and transitive.

7

where TALLY(S) = {0n | n ∈ S}. Let 〈P∗
N
;⊆∗〉 be the quotient lattice of 〈PN;⊆〉 over ideal of

finite sets. Namely, P∗
N

= {[α]|α ∈ PN}, where [α] = {β | α
∗= β} and α

∗= β if and only if α is a
finite variation of β, and [α] ⊆∗ [β] if and only if a finite variation of α is a subset of β.

Theorem 4.1 (Ambos-Spies) 1. 〈PN;⊆〉 is a Boolean lattice.

2. 〈P∗
N
;⊆∗〉 is a countable atomless Boolean lattice.

We refer the readers to Ambos-Spies [AS84] for the proof of Theorem 4.1 and to Grätzer [Grä78]
for a detailed treatment of the above notions from lattice theory.

The partial ordering on the NP-Turing-degrees of NP-pairs induced by the Turing reduction (≤pp
T)

between NP-pairs is denoted by ≤. So for a,b ∈ Rpp
T,NP,

a ≤ b ⇔ ∃(A,B) ∈ a ∃(C,D) ∈ b (A,B)≤pp
T (C,D)

⇔ ∀(A,B) ∈ a ∀(C,D) ∈ b (A,B)≤pp
T (C,D).

As usual, we write a < b if a ≤ b but not a = b. We use a∨b and a∧b to denote the least upper
bound and greatest lower bound of a and b, respectively. Note that given two NP-Turing-degrees
a and b, a ∧ b might not exist. We also use the interval [a,b] to denote {d ∈ Rpp

T,NP|a ≤ d ≤ b}.
For sets A and B, let A⊕B df=0A∪1B be the disjoint union of A and B. We observe that 〈Rpp

T,NP;≤〉
is an upper semilattice because of the following proposition:

Proposition 4.2 For every (A,B), (C,D) ∈ DisjNP,

d(A,B) ∨ d(C,D) = d(A ⊕ C,B ⊕ D).

Proof. First of all, it is trivial that (A ⊕ C,B ⊕ D) is an NP-pair, given that (A,B) and (C,D)
are NP-pairs. Also, it is easy to see (A,B)≤pp

m (A ⊕ C,B ⊕ D) via the function f(x) = 0x and
(C,D)≤pp

m (A ⊕ C,B ⊕ D) via the function f(x) = 1x. So d(A,B) ≤ d(A ⊕ C,B ⊕ D) and
d(C,D) ≤ d(A ⊕ C,B ⊕ D). Now given d ∈ Rpp

T,NP such that d(A,B) ≤ d and d(C,D) ≤ d,
we need to show d(A ⊕ C,B ⊕ D) ≤ d. Let d = d(E,F) for some (E,F) ∈ DisjNP. Then
(A,B)≤pp

T (E,F) and (C,D)≤pp
T (E,F). Now let S be a separator of (E,F). Then there exists

a separator S1 of (A,B) such that S1≤p
TS and there exists a separator S2 of (C,D) such that

S2≤p
TS. Define S′ = S1 ⊕ S2. Then S′ is a separator of (A ⊕ C,B ⊕ D) and S′≤p

TS. Hence,
(A ⊕ C,B ⊕ D)≤pp

T (E,F) and so d(A ⊕ C,B ⊕ D) ≤ d. �

We also have the following easy to prove proposition that will be used quite often later.

Proposition 4.3 For any set G ∈ P and (A,B) ∈ DisjNP,

d(A,B) = d(A ∩ G,B ∩ G) ∨ d(A ∩ G,B ∩ G).

8

Proof. Clearly, both (A∩G,B∩G) and (A∩G,B∩G) are NP-pairs too and are many-one (hence,
Turing) reducible to (A,B) via the identity function f(x) = x. We only have to show for any NP-
pair (E,F) that (A ∩ G,B ∩ G)≤pp

T (E,F) and (A ∩ G,B ∩ G)≤pp
T (E,F) implies (A,B)≤pp

T (E,F).
Let S be a separator of (E,F). Then there exist a separator S1 of (A ∩G,B ∩ G) and a separator
S2 of (A ∩ G,B ∩ G) such that S1≤p

TS and S2≤p
TS. So S′ = (S1 ∩ G) ∪ (S2 ∩ G) is a separator of

(A,B) and S′≤p
TS, since G ∈ P. �

4.2 Effectively Presentable Classes of Disjoint NP-Pairs

In this section, we show that various classes of disjoint NP-pairs are effectively presentable.

Let {Mi}i be a standard effective enumeration of all deterministic Turing machines and let {Ni}i

be a standard effective enumeration of all polynomial-time nondeterministic Turing machines.

Definition 4.4 Define a class C of disjoint pairs to be effectively presentable if there exists a total
computable function f : N → N × N such that

1. for all (i, j) ∈ range(f), Mi and Mj halt on all inputs, and

2. C = {(L(Mi), L(Mj)) | (i, j) ∈ range(f)}.

Theorem 4.5 For every disjoint NP-pair (A,B), d(A,B) is effectively presentable.

Proof. Let T1, T2, . . . be an effective enumeration of deterministic polynomial-time-bounded oracle
Turing machines such that Tl’s running time on inputs of length n is nl+l. Without loss of generality,
we assume A and B are infinite sets. (Otherwise we can always pick (A′, B′) = (A×Σ∗, B ×Σ∗) ∈
d(A,B) and A′, B′ are both infinite.) Define the predicate Test(i, j, k, l,m, x) to be true if and only
if all of the following holds:

1. L(Ni) ∩ L(Nj) ∩ Σ≤|x| = ∅
2. for all y such that |y|k + k ≤ |x| and for all S ⊆ Σ≤|x| such that S separates (L(Ni) ∩

Σ≤|x|, L(Nj) ∩ Σ≤|x|) it holds that (y ∈ A ⇒ T S
k (y) accepts) and (y ∈ B ⇒ T S

k (y) rejects)

3. for all y such that |y|l+l ≤ |x| and for all S ⊆ Σ≤|x| such that S separates (A∩Σ≤|x|, B∩Σ≤|x|)
it holds that (y ∈ L(Ni) ⇒ T S

l (y) accepts) and (y ∈ L(Nj) ⇒ T S
l (y) rejects)

4. L(Ni) ∩ Σ≤m �= ∅ and L(Nj) ∩ Σ≤m �= ∅

The predicate Test is certainly decidable. Define

f(〈i, j, k, l,m〉) df=(c, d)

where c and d are the indices of the machines described below.

9

• Mc on input x: If Test(i, j, k, l,m, x), then accept if and only if x ∈ L(Ni)−L(Nj). Otherwise,
accept if and only if x ∈ A.

• Md on input x: If Test(i, j, k, l,m, x), then accept if and only if x ∈ L(Nj)−L(Ni). Otherwise,
accept if and only if x ∈ B.

We show that C is effectively presented by f .

Clearly, f is total and computable. Also, Mc and Md halt on all inputs, which shows Statement 1
in Definition 4.4. Statement 2 is shown by the following claims.

Claim 4.6 For every (c, d) ∈ range(f), (L(Mc), L(Md)) ∈ DisjNP and

(A,B)≡pp
T (L(Mc), L(Md)).

Proof. Choose i, j, k, l,m such that (c, d) = f(〈i, j, k, l,m〉). By definitions of Mc and Md it holds
that L(Mc) ∩ L(Md) = ∅.
Case 1: Assume Test(i, j, k, l,m, x) holds for all x. Then L(Ni) ∩ L(Nj) = ∅, L(Ni) �= ∅ and
L(Nj) �= ∅. So L(Mc) = L(Ni) �= ∅ and L(Md) = L(Nj) �= ∅, and hence, (L(Mc), L(Md)) ∈ DisjNP.

We show (A,B)≤pp
T (L(Mc), L(Md)) via machine Tk and (L(Mc), L(Md))≤pp

T (A,B) via Tl. Let S′

be an arbitrary separator of (L(Mc), L(Md)). Assume there exists y ∈ A such that TS′
k (y) rejects.

So T S
k (y) rejects where S df= S′∩Σ≤|y|k+k. Hence Statement 2 in the definition of Test does not hold

for x = 0|y|k+k. This contradicts our assumption in Case 1. It follows that if y ∈ A, then TS′
k (y)

accepts. Analogously, if y ∈ B, then T S′
k (y) rejects. This shows that L(T S′

k) is a separator of (A,B)
and hence, (A,B)≤pp

T (L(Mc), L(Md)). Similar arguments show (L(Mc), L(Md))≤pp
T (A,B).

Case 2: Assume there exists x such that Test(i, j, k, l,m, x) does not hold. Then Test(i, j, k, l,m, y)
does not hold for all y such that |y| ≥ |x|. So by the definitions of Mc and Md, L(Mc) is a finite varia-
tion of A, and L(Md) is a finite variation of B. Hence, trivially (A,B)≡pp

T (L(Mc), L(Md)). Note that
both A and B are infinite sets. So L(Mc) �= ∅ and L(Md) �= ∅ and hence, (L(Mc), L(Md)) ∈ DisjNP.
This finishes the proof of Claim 4.6.

�

Claim 4.7 For all (X,Y) ∈ DisjNP such that (A,B)≡pp
T (X,Y), there exists n such that f(n) =

(c, d), L(Mc) = X, and L(Md) = Y .

Proof. Let X and Y be as above and choose indices i, j such that X = L(Ni) and Y = L(Nj).
Moreover, choose k, l such that (A,B)≤pp

T (L(Ni), L(Nj)) via Tk and (L(Ni), L(Nj))≤pp
T (A,B) via

Tl. Choose m large enough such that X ∩ Σ≤m �= ∅ and Y ∩ Σ≤m �= ∅. Let n = 〈i, j, k, l,m〉 and
(c, d) = f(n).

We claim that Test(i, j, k, l,m, x) holds for all x. Clearly, Statement 1 in the definition of Test
holds for all x. So does Statement 4 by the choice of m. Assume Statement 2 does not

10

hold. So there exist x and y such that |y|k + k ≤ |x| and there exists S ⊆ Σ≤|x| separating
(L(Ni) ∩ Σ≤|x|, L(Nj) ∩ Σ≤|x|) such that (y ∈ A and T S

k (y) rejects) or (y ∈ B and T S
k (y) accepts).

Extend S to a separator S′ of (L(Ni), L(Nj)) such that S = S′ ∩ Σ≤|x|. The computation T S
k (y)

cannot ask strings longer than |y|k + k ≤ |x|. Therefore, either (y ∈ A and T S′
k (y) rejects) or

(y ∈ B and T S′
k (y) accepts). So T S′

k (y) is not a separator of (A,B) showing that (A,B) does not
Turing reduce to (L(Ni), L(Nj)) = (X,Y) via machine Tk. This contradicts our assumption and
therefore Statement 2 in the definition of Test holds for all x. Similar arguments show Statement 3
holds for all x. So we know that Test(i, j, k, l, x) holds for all x. It follows that L(Mc) = L(Ni) = X
and L(Md) = L(Nj) = Y . This proves Claim 4.7. �

This finishes the proof of Theorem 4.5. �

If we remove the argument l and Statement 3 in the definition of the predicate Test and change f
accordingly, the same proof shows the following:

Theorem 4.8 For every disjoint NP-pair (A,B), the class of disjoint NP-pairs

{(C,D) ∈ DisjNP | (C,D)≤pp
T (A,B)}

is effectively presentable.

We will also need the following property of effectively presentable classes of disjoint pairs:

Theorem 4.9 If C1 and C2 are both effectively presentable classes of disjoint pairs, then C1 ∪ C2 is
an effectively presentable class of disjoint pairs.

Proof. Since C1 and C2 are effectively presentable, there exist total computable functions f1 and
f2 such that

• for all (i, j) ∈ range(f1) ∪ range(f2), Mi and Mj halt on all inputs,

• C1 = {(L(Mi), L(Mj)) | (i, j) ∈ range(f1)}, and

• C2 = {(L(Mi), L(Mj)) | (i, j) ∈ range(f2)}.

Define a function f as follows: f(n) = f1(n
2) if n is even and f(n) = f2(n−1

2) if n is odd. Clearly,
f is total computable too. For every (i, j) ∈ range(f), either (i, j) = f1(n

2) for some even number
n or (i, j) = f2(n−1

2) for some odd number n. So (i, j) ∈ range(f1) ∪ range(f2) and hence, Mi

and Mj halt on all inputs. Now let (X,Y) ∈ C = C1 ∪ C2. Then (X,Y) ∈ C1 or (X,Y) ∈ C2.
So (X,Y) = (L(Mi), L(Mj)), where (i, j) = f1(n1) for some n1 ∈ N or (i, j) = f2(n2) for
some n2 ∈ N. Therefore, (X,Y) = (L(Mi), L(Mj)), where (i, j) = f(2n1) for some n1 ∈ N or
(i, j) = f(2n2 + 1) for some n2 ∈ N. This shows C ⊆ {(L(Mi), L(Mj)) | (i, j) ∈ range(f)}. For
the other direction, Let (i, j) ∈ range(f). As shown above, (i, j) ∈ range(f1) ∪ range(f2). So
{(L(Mi), L(Mj)) | (i, j) ∈ range(f)} ∈ C1 ∪ C2 = C. �

11

4.3 The Embedding Theorem

For a function f , let f0(x) = x and fn+1(x) = f(fn(x)). For any strictly increasing function
f : N → N, define the n-th f -interval If

n as follows:

If
n = {x ∈ Σ∗ | fn(0) ≤ |x| < fn+1(0)}.

For α ⊆ N, define
If
α =

⋃
n∈α

If
n .

Definition 4.10 ([Sch82]) A function f : N → N is called fast if

1. for all n ∈ N, f(n) > n, and

2. there is a Turing machine M that computes f in unary notation such that M writes a symbol
on its output tape every move of its computation.

Proposition 4.11 ([AS84]) For every fast function f and α ∈ PN, it holds that If
α ∈ P.

Definition 4.12 Let f and g be functions that map N to N. We say f dominates g if for every
n ∈ N, it holds that f(n) > g(n).

Proposition 4.13 ([Sch82]) For every total computable function f : N → N, there is a fast
function f ′ : N → N that dominates f .

Given natural numbers k and i, let kα + i = {kn + i | n ∈ α}. For two disjoint pairs (A,B) and
(C,D), we use (A,B)�(C,D) to denote (A�C)∪ (B�D) 2. Note that (A,B) = (C,D) if and only
if (A,B)�(C,D) = ∅.

Definition 4.14 A disjoint pair (A′, B′) is called a finite variation of the pair (A,B) if ‖(A�A′)∪
(B�B′)‖ is finite. A class C of disjoint NP-pairs is closed under finite variations if for all disjoint
NP-pairs (A,B) and (A′, B′) it holds that if (A,B) ∈ C, A′ and B′ are nonempty, and (A′, B′) is
a finite variation of (A,B), then (A′, B′) ∈ C.

Theorem 4.15 (Join Theorem) Let (A,B) and (C,D) be disjoint NP-pairs such that A, B, C and
D are all infinite sets. Let C0 and C1 be effectively presentable classes of disjoint NP-pairs that are
closed under finite variations such that (C⊕A,D⊕B) /∈ C0 and (∅⊕A, ∅⊕B) /∈ C1. Then there exists
a total computable function g0 : N → N such that the following holds: if g is a fast function that
dominates g0 and α ∈ PN, ‖α‖ = ∞, ‖α‖ = ∞, then ((C∩Ig

α)⊕A, (D∩Ig
α)⊕B) ∈ DisjNP−(C0∪C1).

2For any two sets X and Y , X�Y denotes the symmetric difference of X and Y . Namely, X�Y = (X − Y) ∪
(Y − X).

12

Proof. Since C0 and C1 are effectively presentable, there exist total computable functions f1 and
f2 such that

• for all (i, j) ∈ range(f1) ∪ range(f2), Mi and Mj halt on all inputs,

• C0 = {(L(Mi), L(Mj)) | (i, j) ∈ range(f0)}, and

• C1 = {(L(Mi), L(Mj)) | (i, j) ∈ range(f1)}.

Define the following functions:

g00(n) = min{m > n | (∀k ≤ n)∃z (n < |z| ≤ m)∧z ∈ (C⊕A,D⊕B)�(L(Mi), L(Mj))∧f0(k) = (i, j)}.

g01(n) = min{m > n | (∀k ≤ n)∃z (n < |z| ≤ m)∧z ∈ (∅⊕A, ∅⊕B)�(L(Mi), L(Mj))∧f1(k) = (i, j)}.
We prove that g00, g01 are total computable functions. Since (C ⊕ A,D ⊕ B) /∈ C0, for all (i, j) ∈
range(f1), (C ⊕ A,D ⊕ B) �= (L(Mi), L(Mj)). As C0 is closed under finite variations, (C ⊕ A,D ⊕
B)�(L(Mi), L(Mj)) is an infinite set. Thus, for all k, and for all n ≥ k, there is a string z such
that |z| > n and z ∈ (C ⊕ A,D ⊕ B)�(L(Mi), L(Mj)), where (i, j) = f0(k). Observe that the
relation defined by “z ∈ (C ⊕ A,D ⊕ B)�(L(Mi), L(Mj)) ∧ f1(k) = (i, j)” is decidable, because
A, B, C and D are all decidable, both Mi and Mj halt on all inputs and f0 is total computable.
Min is a computable operator, so g00 is computable. Similar arguments show that g01 are total and
computable.

Define g0(n) = max(g00(n), g01(n)). Clearly, g0 is total computable too. Now fix a fast function g
that dominates g0 and fix α ∈ PN such that ‖α‖ = ∞ and ‖α‖ = ∞. We have to show

((C ∩ Ig
α) ⊕ A, (D ∩ Ig

α) ⊕ B) ∈ DisjNP (1)
((C ∩ Ig

α) ⊕ A, (D ∩ Ig
α) ⊕ B) /∈ C0 (2)

((C ∩ Ig
α) ⊕ A, (D ∩ Ig

α) ⊕ B) /∈ C1 (3)

Statement (1) clearly holds since Ig
α ∈ P and A, B are infinite sets. For (2), we need to show for

every k ∈ N that ((C ∩ Ig
α) ⊕ A, (D ∩ Ig

α) ⊕ B) �= (L(Mi), L(Mj)), where (i, j) = f0(k). Now fix k
and choose n ≥ k and n ∈ α. Substituting n with gn(0) in the definition of g0 gives

∃z (gn(0) < |z| ≤ g0(gn(0)) ≤ gn+1(0)) ∧ z ∈ (C ⊕ A,D ⊕ B)�(L(Mi), L(Mj)). (4)

Take a string z given by (4). If z = 0x for some x, then gn(0) ≤ |x| ≤ gn+1(0) − 1 < gn+1(0). So
x ∈ Ig

α. Hence, z ∈ C⊕A ⇔ z ∈ (C∩Ig
α)⊕A ⇔ x ∈ C and z ∈ D⊕B ⇔ z ∈ (D∩Ig

α)⊕B ⇔ x ∈ D.
Therefore, (4) implies z ∈ ((C ∩ Ig

α) ⊕ A, (D ∩ Ig
α) ⊕ B)�(L(Mi), L(Mj)).

Otherwise, z = 1x for some x. Then z ∈ C ⊕ A ⇔ z ∈ (C ∩ Ig
α) ⊕ A ⇔ x ∈ A and z ∈ D ⊕ B ⇔

z ∈ (D ∩ Ig
α)⊕B ⇔ x ∈ B. So (4) implies z ∈ ((C ∩ Ig

α)⊕A, (D ∩ Ig
α)⊕B)�(L(Mi), L(Mj)). This

completes the proof of (2). The proof of (3) is similar (we choose n ∈ α instead). �

13

Theorem 4.16 (First Meet Theorem) For every disjoint NP-pair (C,D) there exists a total com-
putable function g1 such that the following holds. Let g be a fast function that dominates g1. Let
(A,B) be a disjoint NP-pair. Let α, β ∈ PN such that

(∀n ∈ N)(∀i ∈ {0, 1}) [(n + i ∈ α ∧ n + 1 − i ∈ β) ⇒ (n ∈ α ∩ β ∨ n + 1 ∈ α ∩ β)]. (5)

Then

d((C ∩ Ig
α∩β) ⊕ A, (D ∩ Ig

α∩β) ⊕ B)

= d((C ∩ Ig
α) ⊕ A, (D ∩ Ig

α) ⊕ B) ∧ d((C ∩ Ig
β) ⊕ A, (D ∩ Ig

β) ⊕ B).

Proof. Let MC and MD be Turing machines deciding C and D, with their running time bounded
by total computable functions tC and tD, respectively. Let g1(n) = max(tC(n), tD(n)). So g1 is
total computable. Fix g, α, β and (A,B) as in the premise of the theorem. Then Iα, Iβ and Iα∩β

all belong to P and Iα ∩ Iβ = Iα∩β. Hence, by choosing the identity function as reduction function,

((C ∩ Ig
α∩β) ⊕ A, (D ∩ Ig

α∩β) ⊕ B)≤pp
m ((C ∩ Ig

α) ⊕ A, (D ∩ Ig
α) ⊕ B)

since Ig
α∩β ⊆ Ig

α, and

((C ∩ Ig
α∩β) ⊕ A, (D ∩ Ig

α∩β) ⊕ B)≤pp
m ((C ∩ Ig

β) ⊕ A, (D ∩ Ig
β) ⊕ B)

since Ig
α∩β ⊆ Ig

β .

What remains to show is for every (E,F) ∈ DisjNP that (E,F)≤pp
T ((C ∩ Ig

α) ⊕ A, (D ∩ Ig
α) ⊕ B)

and (E,F)≤pp
T ((C ∩ Ig

β) ⊕ A, (D ∩ Ig
β) ⊕ B) implies (E,F)≤pp

T ((C ∩ Ig
α∩β) ⊕ A, (D ∩ Ig

α∩β) ⊕ B).

We can assume without loss of generality that

(a) α ∩ β = ∅,
(b) (∀n ∈ N) [(n ∈ α ⇒ n + 1, n − 1 /∈ β) ∧ (n ∈ β ⇒ n + 1, n − 1 /∈ α)].

Suppose not. Let α′ = α − β, β′ = β − α and (A′, B′) = ((C ∩ Ig
α∩β) ⊕ A, (D ∩ Ig

α∩β) ⊕ B). Then
α′ ∩ β′ = ∅. Also, if n ∈ α′, then n ∈ α and n �∈ β. Suppose n + 1 ∈ β′. Then n + 1 ∈ β and
n + 1 /∈ α. Now we have n ∈ α, n + 1 ∈ β but neither n nor n + 1 can be in α ∩ β. This is a
contradiction to (5). So n+1 /∈ β′. Similar arguments show n−1 /∈ β′. So n ∈ α′ implies n+1 /∈ β′

and n−1 /∈ β′. By symmetry, we can also show n ∈ β′ implies n+1 /∈ α′ and n−1 /∈ α′. Therefore,
α′ and β′ satisfies both (a) and (b), in place of α and β. Furthermore, we notice that

((C ∩ Ig
α) ⊕ A, (D ∩ Ig

α) ⊕ B)≡pp
T ((C ∩ Ig

α′) ⊕ A′, (D ∩ Ig
α′) ⊕ B′),

((C ∩ Ig
β) ⊕ A, (D ∩ Ig

β) ⊕ B)≡pp
T ((C ∩ Ig

β′) ⊕ A′, (D ∩ Ig
β′) ⊕ B′),

and

((C ∩ Ig
α∩β) ⊕ A, (D ∩ Ig

α∩β) ⊕ B) = (A′, B′)≡pp
T ((C ∩ Ig

α′∩β′) ⊕ A′, (D ∩ Ig
α′∩β′) ⊕ B′)

14

since α′∩β′ = ∅. So we can just work with (A′, B′), in place of (A,B). This justifies our assumptions
(a) and (b).

Now given (E,F) ∈ DisjNP, suppose (E,F)≤pp
T ((C ∩ Ig

α)⊕A, (D ∩ Ig
α)⊕B) via a polynomial time

oracle Turing machine M1 and (E,F)≤pp
T ((C ∩ Ig

β)⊕A, (D ∩ Ig
β)⊕B) via a polynomial time oracle

Turing machine M2. Let p be a polynomial that bounds the running time of M1 and M2. We have to
show (E,F)≤pp

T ((C∩Ig
α∩β)⊕A, (D∩Ig

α∩β)⊕B). Note that ((C∩Ig
α∩β)⊕A, (D∩Ig

α∩β)⊕B)≡pp
T (A,B)

by Assumption (a).

We use the following algorithm to separate (E,F) relative to a separator S of (A,B):

//Algorithm for separating (E,F) relative to a separator S of (A,B).
0 On input x

1 Compute n such that 0p(|x|) ∈ Ig
n;

2 If n ∈ α or n − 1 ∈ α then
3 Simulate M2(x) as follows:
4 If a query is 0y and y /∈ Ig

β then answer NO;

5 If a query is 0y and y ∈ Ig
β then answer YES iff MC(y) accepts;

6 If a query is 1y then answer YES iff y ∈ S;
7 Else
8 Simulate M1(x) as follows:
9 If a query is 0y and y /∈ Ig

α then answer NO;
10 If a query is 0y and y ∈ Ig

α then answer YES iff MD(y) rejects;
11 If a query is 1y then answer YES iff y ∈ S;

The algorithm is self-explanatory and clearly correct. It remains to show the algorithm runs in
polynomial time. Since g is fast, an argument similar to the one in Proposition 4.11 shows line 1
can be executed in polynomial time. It suffices to show that line 5 and line 10 can be executed
in polynomial time in |x|. At line 5, if the query is 0y and y ∈ Ig

β, then y ∈ Ig
m for some m ∈ β.

Since |y| < |0y| ≤ p(|x|), we have m ≤ n. If n ∈ α, then n /∈ β by our assumption (a) and n + 1,
n−1 /∈ β by our assumption (b). So m ≤ n−2. Similarly we can show n−1 ∈ α implies m ≤ n−2
too. Thus, since y ∈ Ig

m, we have |y| < gn−1(0). So the running time of MC on y is no more than
g1(|y|) ≤ g(|y|) < gn(0) ≤ p(|x|). For line 10, we just need to observe that if the query is 0y and
y ∈ Ig

α at line 10, then y ∈ Ig
m for some m ≤ n − 2. The rest of the proof is the same as that for

line 5. This finishes the proof of Theorem 4.16. �

For a set α ⊆ N and i ∈ N, let 2α + i df={2n + i
∣∣ n ∈ α}.

Corollary 4.17 (Second Meet Theorem) For every disjoint NP-pair (C,D) there exists a total
computable function g1 such that the following holds. Let g be a fast function that dominates g1.
Let (A,B) be a disjoint NP-pair. Let α, β ∈ PN. Then for i ∈ {0, 1},

d((C ∩ Ig
2α+i∩2β+i) ⊕ A, (D ∩ Ig

2α+i∩2β+i) ⊕ B)

= d((C ∩ Ig
2α+i) ⊕ A, (D ∩ Ig

2α+i) ⊕ B) ∧ d((C ∩ Ig
2β+i) ⊕ A, (D ∩ Ig

2β+i) ⊕ B).

15

Proof. Take α′ = 2α + i and β′ = 2β + i. Then (5) holds trivially for α′ and β′. So the First Meet
Theorem applies. �

Theorem 4.18 (Embedding Theorem) Let (A,B) and (C,D) be disjoint NP-pairs such that
(A,B)≤pp

T (C,D) but (C,D) �≤pp
T (A,B), where A, B, C and D are all infinite sets.3 Let C and

D be effectively presentable classes of disjoint NP-pairs that are closed under finite variations such
that (C ⊕ A,D ⊕ B) /∈ C and (∅ ⊕A, ∅ ⊕B) /∈ D. Then there exists a fast function g such that the
following holds. The functions fi : PN → DisjNP and f∗

i : P∗
N
→ Rpp

T,NP , where i = 0, 1, defined
by

f0(α) = ((C ∩ Ig
2α+1) ⊕ A, (D ∩ Ig

2α+1) ⊕ B), (6)
f1(α) = ((C ∩ Ig

2α∪2N+1) ⊕ A, (D ∩ Ig
2α∪2N+1) ⊕ B), (7)

f∗
i ([α]) = d(fi(α)), (8)

have the following properties:

(i) If α ∈ PN, ‖α‖ = ∞, β ∈ PN and ‖β‖ = ∞, then f0(α), f1(β) /∈ C ∪D ∪d(A,B) ∪d(C,D);

(ii) The function f∗
0 (f∗

1 , respectively) gives an embedding of the atomless Boolean lattice 〈P∗
N
;⊆∗〉

into the interval [d(A,B),d(C,D)] that preserves 0(1, respectively).

Proof. Let C0 = C∪{(E,F) ∈ DisjNP | (E,F)≤pp
T (A,B)} and C1 = D∪d(C,D). Then by Theorem

4.5, 4.8 and 4.9, both C0 and C1 are effectively presentable. Also, note that (C ⊕ A,D ⊕ B) /∈ C0

and (∅⊕A, ∅⊕B) /∈ C1, since (C,D) �≤pp
T (A,B). So we can apply the Join Theorem and the Second

Meet Theorem. Let g0 and g1 be functions as given by these Theorems. Let g be a fast function
that dominates both g0 and g1. Then (i) is immediate by the Join Theorem. To show (ii), we first
observe that range(fi) ⊆ DisjNP since Ig

α ∈ P for α ∈ PN. Now we observe the following: for every
α, β ∈ N,

α ⊆ β ⇔ Ig
α ⊆ Ig

β , (9)
‖α‖ is finite ⇔ ‖Ig

α‖ is finite, (10)
and α ∈ PN ⇒ Ig

α ∈ P. (11)

Also, for every NP-pair (E,F) and sets G0, G1 ∈ P, we have

d(E ∩ (G0 ∪ G1), F ∩ (G0 ∩ G1)) = d(E ∩ G0, F ∩ G0) ∨ d(E ∩ G1, F ∩ G1), (12)

and,

G0 ⊆ G1 ⇒ (E ∩ G0, F ∩ G0)≤pp
m (E ∩ G1, F ∩ G1). (13)

By the definitions of fi’s and by Proposition 4.2 and (12), for every α, β ∈ PN and i = 0, 1, it holds
that

d(fi(α)) ∨ d(fi(β)) = d(fi(α ∪ β)), (14)
3Note that this premise is implied by the existence of a P-inseparable disjoint NP-pair (C, D).

16

and by (9), (13) and Proposition 4.2,

α ⊆ β ⇒ (A,B)≤pp
m fi(α)≤pp

m fi(β)≤pp
m (C ⊕ A,D ⊕ B). (15)

Moreover, by (10) and the closure of NP-Turing-degrees of NP-pairs under finite variations,

α
∗= β ⇒ fi(α) ∗= fi(β) ⇒ fi(α)≡pp

T fi(β). (16)

This shows that f∗
i , where i = 0, 1, is well-defined. By (15), range(f∗

i) ⊆ [d(A,B),d(C,D)] since
(C ⊕ A,D ⊕ B)≡pp

T (C,D).

Furthermore, since f0(∅) = (∅ ⊕ A, ∅ ⊕ B)≡pp
T (A,B) and f1(N) = (C ⊕ A,D ⊕ B)≡pp

T (C,D), f∗
0

and f∗
1 preserve 0 and 1, respectively. It remains to show for i = 0, 1 that f∗

i embeds 〈P∗
N
;⊆∗〉 into

〈Rpp
T ;≤pp

T 〉. For this, we need to show for i = 0, 1 and for every α, β ∈ PN that

• [α] ⊆∗ [β] ⇔ f∗
i ([α]) ≤ f∗

i ([β]),

• f∗
i ([α ∪ β]) = f∗

i ([α]) ∨ f∗
i ([β]), and

• f∗
i ([α ∩ β]) = f∗

i ([α]) ∧ f∗
i ([β]).

By definitions of f∗
i and by (16), we may replace these by

α ⊆∗ β ⇔ fi(α)≤pp
T fi(β), (17)

d(fi(α ∪ β)) = d(fi(α)) ∨ d(fi(β)), (18)
d(fi(α ∩ β)) = d(fi(α)) ∧ d(fi(β)). (19)

Equation (18) is the same as (14). The implication from left to right in (17) is immediate by (15)
and (16). Equation (19) holds by the Second Meet Theorem and by the definitions of fi’s.

It remains to show “⇐” in (17). Fix α, β ∈ PN such that fi(α)≤pp
T fi(β). For the purpose of

contradiction, suppose ‖α − β‖ = ∞. Let γ = α − β. Note that γ ∈ PN and γ ⊆ α. So
by (15), fi(γ)≤pp

T fi(α). Therefore, fi(γ)≤pp
T fi(β). Since trivially fi(γ)≤pp

T fi(γ), by (19) we have
fi(γ)≤pp

T fi(γ ∩ β) = fi(∅). So by (15) again,

fi(γ)≡pp
T fi(∅). (20)

Now for i = 0, f0(γ)≡pp
T f0(∅) ∈ d(A,B), which contradicts (i). For i = 1,

d(f1(N)) = d(f1(γ ∪ γ)),
= d(f1(γ)) ∨ d(f1(γ)), (by (18))
= d(f1(∅)) ∨ d(f1(γ), (by (20))
= d(f1(γ)). (by (18) again)

Now we take β′ = γ. Then ‖β′‖ = ∞ and d(f1(β′)) = d(f1(N)) = d(C,D), which is a contradiction
to (i).

�

17

Corollary 4.19 Let d1,d2 ∈ Rpp
T,NP be given such that d1 < d2. Let L be a countable distributive

lattice. Then there exists an embedding of L into the interval [d1,d2] that preserves the least
element and there exists an embedding of L into the interval [d1,d2] that preserves the greatest
element.

Proof. Fix (A,B) ∈ d1 and (C,D) ∈ d2 such that A, B, C and D are all infinite sets and let
C = D = ∅. The Embedding Theorem yields embeddings f∗

i of the countable atomless Boolean
lattice 〈P∗

N
;⊆∗〉 into the interval [d1,d2] that preserves i, where i = 0, 1. It is known [Grä78, Page

64, Theorem 19] that every countable distributive lattice can be embedded into 〈P∗
N
;⊆∗〉, so we

have embeddings from every countable distributive lattice into the interval [d1,d2]. �

Corollary 4.20 Suppose there exist disjoint NP-pairs (A,B) and (C,D) such that A, B, C, and
D are infinite, (A,B)≤pp

T (C,D), and (C,D) �≤pp
T (A,B). Then there exist incomparable, strictly

intermediate disjoint NP-pairs (E,F) and (G,H) between (A,B) and (C,D) such that E, F , G,
and H are infinite. Precisely, the following properties hold:

• (A,B)≤pp
m (E,F)≤pp

T (C,D) and (C,D) �≤pp
T (E,F) �≤pp

T (A,B);

• (A,B)≤pp
m (G,H)≤pp

T (C,D) and (C,D) �≤pp
T (G,H) �≤pp

T (A,B);

• (E,F) �≤pp
T (G,H) and (G,H) �≤pp

T (E,F).

Proof. By the Embedding Theorem, we can embed the boolean lattice with two atoms into the
interval [d(A,B),d(C,D)] and obtain NP-pairs (E,F) and (G,H) that satisfy all the required
properties except that (A,B)≤pp

m (E,F) and (A,B)≤pp
m (G,H). However, by the definitions of the

functions fi in the Embedding Theorem, it follows that (E,F) and (G,H) can be chosen such that
(A,B)≤pp

m (E,F) and (A,B)≤pp
m (G,H). �

Corollary 4.21 Suppose there exists a P-inseparable disjoint NP-pair (C,D). Let (A,B) be a
P-separable disjoint NP-pair such that A and B are infinite. Then there exist incomparable, P-
inseparable, strictly intermediate disjoint NP-pairs (E,F) and (G,H) between (A,B) and (C,D)
that satisfy all of the consequences of Corollary 4.20, and in addition, satisfy the following condi-
tions:

• (A,B)≤pp
m (E,F)≤pp

m (C,D), and

• (A,B)≤pp
m (G,H)≤pp

m (C,D).

Proof. We just need to observe that now (A,B)≤pp
m (C,D). Therefore, the disjoint NP-pairs (E,F)

and (G,H) defined in the proof of Corollary 4.20 (which is obtained by applying the Embedding
Theorem) satisfies that

18

• (A,B)≤pp
m (E,F)≤pp

m (C,D), and

• (A,B)≤pp
m (G,H)≤pp

m (C,D).

�

Corollary 4.22 Assuming there exist P-inseparable disjoint NP-pairs, there exist propositional
proof systems f and g so that f does not simulate g and g does not simulate f .

Proof. Follows from Corollary 4.21, Theorem 3.1, and Proposition 3.5. �

However, Messner [Mes00, Mes02] unconditionally proved the existence of propositional proof sys-
tems f and g such that f does not simulate g and g does not simulate f . Messner further shows that
the simulation order of propositional proof systems is dense. However, as the following argument
shows, these results do not replace our study of the degree structure of disjoint NP-pairs. Messner
[Mes] observed that there exist infinite, strictly increasing chains of propositional proof systems
(using simulation as the order relation ≤) such that all canonical pairs of these proofs systems
belong to the same many-one degree of disjoint NP-pairs.

For the sake of simplicity, here we only argue that the previous statement holds in some relativized
world (although the statement indeed holds in the real world). First, observe that for every non-
optimal propositional proof system f there is a proof system g such that g simulates f , but f does
not simulate g (i.e., f < g). (For example, for some h that is not simulated by f , let g(x) = f(x/2)
if x is even and g(x) = h((x − 1)/2) otherwise.) Glaßer et al. [GSSZ04] constructed an oracle
O2 relative to which many-one complete disjoint NP-pairs exist, but optimal propositional proof
systems do not exist. So relative to this oracle, there is a proof system f0 whose canonical pair
is complete, but optimal proof systems do not exist. By our observation, there exists an infinite,
strictly increasing chain of proof systems f0 < f1 < · · · . However, by Proposition 3.5, the canonical
pair of each fi is many-one complete.

Acknowledgments.
The authors thank Jochen Messner and Kenneth W. Regan for informing them of the methods in
their papers [Mes00, Mes02, Reg83, Reg88]. We thank an anonymous referee for finding an error
in a previous version.

References

[AS84] K. Ambos-Spies. On the structure of the polynomial time degrees of recursive sets.
Habilitationsschrift, Zur Erlangung der Venia Legendi Für das Fach Informatik an der
Abteilung Informatik der Universität Dortmund, September 1984.

[CR79] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal
of Symbolic Logic, 44:36–50, 1979.

19

[Grä78] G. Grätzer. General Lattice Theorey. Birkhäuser Verlag, 1978.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems. SIAM
Journal on Computing, 17(2):309–335, 1988.

[GSSZ04] C. Glaßer, A. Selman, S. Sengupta, and L. Zhang. Disjoint NP-pairs. SIAM Journal on
Computing, 33(6):1369–1416, 2004.

[HS92] S. Homer and A. Selman. Oracles for structural properties: The isomorphism problem
and public-key cryptography. Journal of Computer and System Sciences, 44(2):287–301,
1992.

[Lad75] R. Ladner. On the structure of polynomial-time reducibility. Journal of the ACM,
22:155–171, 1975.

[Mer02] W. Merkle. Lattice embeddings for abstract bounded reducibilities. SIAM J. Comput.,
31(4):1119–1155, 2002.

[Mes] J. Messner. Personal correspondence.

[Mes00] J. Messner. On the Simulation Order of Proof Systems. PhD thesis, Universität Ulm,
2000.

[Mes02] J. Messner. On the structure of the simulation order of proof systems. In Proceedings
of the 27rd Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science 1450, pages 581–592. Springer-Verlag, 2002.

[Pud01] P. Pudlák. On reducibility and symmetry of disjoint NP-pairs. In Proceedings 26th
International Symposium on Mathematical Foundations of Computer Science, volume
2136 of Lecture Notes in Computer Science, pages 621–632. Springer-Verlag, Berlin,
2001.

[Pud03] P. Pudlák. On reducibility and symmetry of disjoint NP-pairs. Theoretical Computer
Science, 295:323–339, 2003.

[Raz94] A. Razborov. On provably disjoint NP-pairs. Technical Report TR94-006, Electronic
Colloquium on Computational Complexity, 1994.

[Reg83] K. Regan. On diagonalization methods and the structure of language classes. In Pro-
ceedings of the Fundamentals of Computation Theory Conference, volume 158 of Lecture
Notes in Computer Science, pages 368–380. Springer Verlag, 1983.

[Reg88] K. Regan. The topology of provability in complexity theory. Journal of Computer and
System Sciences, 36:384–432, 1988.

[Sch82] U. Schöning. A uniform approach to obtain diagonal sets in complexity classes. Theo-
retical Computer Science, 18:95–103, 1982.

20

