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1 Introduction

A disjoint NP-pair is a pair (A, B) of nonempty, disjoint sets A and B such
that both A and B belong to the complexity class NP.3 We let DisjNP denote
the collection of all disjoint NP-pairs. A separator of a disjoint NP-pair (A, B)
is a set S such that A ⊆ S and B ⊆ S (Figure 1). A fundamental question
is whether (A, B) has a separator belonging to P. In this case the pair is P-
separable; otherwise, it is P-inseparable.

To state this fundamental question differently, we want to know whether
there is an efficient algorithm whose set of yes-instances includes the set A and
whose set of no-instances includes the set B. The algorithm behaves arbitrarily
on instances in the complement of A∪B. That is, a disjoint NP-pair is a promise
problem. To learn about promise problems we refer to Goldreich’s survey paper
[8] in this volume. The second author first became interested in promise prob-
lems, and specifically, in disjoint NP-pairs, in 1982 while working with Shimon
Even and Yacov Yacobi. At that time they formulated the problem of crack-
ing a public-key cryptosystem as a promise problem and observed that secure
public-key cryptosystems do not exist unless P-inseparable pairs exist [4].

Disjoint NP-pairs also relate naturally to the theory of proof systems for
propositional calculus [21, 20] and that is the connection we will explore here.

2 Preliminaries

The notations ≤p
m and ≤p

T denote polynomial-time-bounded many-one and Tur-
ing reducibility, respectively. Thus, we write A≤p

mB if there is a function f com-
putable in polynomial time, such that for all instances x, x ∈ A ⇔ f(x) ∈ B and
we write A≤p

TB if there is an oracle Turing machine M such that A = L(M, B)
is the language accepted by M using B as the oracle.

We let PF denote the class of all polynomial-time-computable functions. A
function f is honest if there is a polynomial q such that for every y ∈ range(f)
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Fig. 1. An NP-pair (A,B) that is separated by S.

there exists x ∈ dom(f) such that f(x) = y and |x| ≤ q(|y|). If f ∈ PF is an
honest function and A ∈ NP, then f(A) ∈ NP.

To review the definition of standard exponential-time complexity classes,

E =
⋃

{DTIME(kn) | k ≥ 1}

and
NE =

⋃

{NTIME(kn) | k ≥ 1}.

For any complexity class C, coC = {L | L ∈ C}.
A nondeterministic Turing machine that has at most one accepting compu-

tation for any input is called by Valiant [27] an unambiguous Turing machine.
Let UP denote the set of languages accepted by unambiguous Turing machines
in polynomial time. Obviously, P ⊆ UP ⊆ NP, and it is not known whether
either inclusion is proper. One reason UP is an interesting complexity class is
because there exists a one-to-one, honest function f ∈ PF whose inverse f−1 is
not computable in polynomial time if and only if P 6= UP [9].

A set A is sparse if there is a polynomial p such that for all n, A contains at
most p(n) strings of length n. We let SPARSE denote the collection of all sparse
sets.

3 Propositional Proof Systems

Resolution calculus is one well-known example of a propositional proof system.
A propositional formula φ in disjunctive normal form is a tautology if and only if
there exists a proof w in the resolution system showing that ¬φ is not satisfiable.
(Recall that a formula φ is a tautology if and only if its negation ¬φ is not
satisfiable.) All propositional proof systems have three properties in common:



1. Correctness: If there is a proof in the system, then the formula is indeed
a tautology.

2. Completeness: Every tautology can be proved within the system.
3. Verifiability: The validity of a proof can be easily verified.

Cook and Reckhow [3] formalized the intuitive notion of a proof system as fol-
lows: A propositional proof system (proof system for short) is a total function
f : Σ∗ → TAUT such that f is onto and polynomial-time-computable. (TAUT
denotes the set of tautologies.) For any tautology φ, if f(w) = φ, then w is a
proof in the system f (f -proof) showing that φ is a tautology.

That the validity of proofs is easy to verify is formalized by the requirement
that f is polynomial-time-computable. Furthermore, the definition requires that
only tautologies have proofs (correctness) and that every tautology has a proof
(completeness).

The following function shows that the resolution calculus can be interpreted
as a propositional proof system in the formal sense.

f(w) =



















φ : if w = (φ, u) and u is a resolution refutation of ¬φ

φ : if w = (φ, u) and |u| ≥ 2|φ| and φ is a tautology

true : otherwise

Note that in this definition, both lines, the first and the second one, are necessary.
The first line makes sure that tautologies in disjunctive normal form have f -
proofs not much longer than the corresponding resolution proofs. The second
line takes care of all the tautologies that are not in disjunctive normal form.
Note that in this line, the test for tautology can be done by exhaustive search
in polynomial time, since 2|φ| ≤ |w|.

A propositional proof system f is not necessarily honest; it is possible that
a formula φ ∈ TAUT has only exponentially long proofs w, i.e., f(w) = φ and
|w| = 2Ω(|φ|). A proof system f is polynomially bounded if the function f is
honest. Cook and Reckhow demonstrated that NP = coNP if and only if there
exists a polynomially-bounded proof system, and they proposed attacking the
question of whether NP equals coNP by studying propositional proof systems.

Let f and f ′ be two proof systems. We say that f simulates f ′ if there
is a polynomial p and a function h : Σ∗ → Σ∗ such that for every w ∈ Σ∗,
f(h(w)) = f ′(w) and |h(w)| ≤ p(|w|). So for every f ′-proof w, h(w) is an f -
proof of the same tautology. If f simulates f ′, then f -proofs are not much longer
than f ′-proofs. If additionally h ∈ PF, then we say that f p-simulates f ′.

A proof system is optimal (resp., p-optimal) if it simulates (resp., p-simulates)
every other proof system. The notion of simulation between proof systems is
analogous to the notion of reducibility between problems. Using that analogy,
optimal proof systems correspond to complete problems.

It is not known whether there exist optimal propositional proof systems, but
the question is interesting, because if there is an optimal proof system f , then
there is a polynomially-bounded proof system if and only if f is polynomially-
bounded. The question of whether optimal propositional proof systems exist



has been studied in detail. Kraj́ıček and Pudlák [19, 13] showed that NE =
coNE implies the existence of optimal proof systems. Ben-David and Gringauze
[1] and Köbler, Meßner, and Torán [12] obtained the same conclusion under
weaker assumptions. On the other hand, Meßner and Torán [18] and Köbler,
Meßner, and Torán [12] proved that existence of optimal proof systems results
in the existence of ≤p

m -complete sets for the promise class NP∩SPARSE. In the
same paper, they showed that there exist p-optimal proof systems only if the
complexity class UP has a many-one complete set. These results hold relative to
all oracles. Therefore, optimal proof systems exist relative to any oracle in which
NE = coNE holds. Kraj́ıček and Pudlák [13], Ben-David and Gringauze [1], and
Buhrman et al. [2] constructed oracles relative to which optimal proof systems
do not exist. In addition, NP∩ SPARSE does not have complete sets relative to
the latter oracle.

Razborov [21] related the study of propositional proof systems to disjoint NP-
pairs. For every propositional proof system f , he associated a canonical disjoint
NP-pair. Furthermore, he showed that if f is an optimal proof system, then the
canonical pair for f is a complete disjoint NP-pair. We will explain these results
in Section 5, but first, in order to define the notion of completeness for disjoint
NP-pairs, it is necessary to describe reducibilities between disjoint NP-pairs.

4 Reductions between disjoint NP-Pairs

Since disjoint pairs are simply an equivalent formulation of promise problems,
disjoint pairs easily inherit the natural notions of reducibilities that exist between
promise problems [4, 26, 9]. Hence, completeness and hardness notions follow
naturally also. We review these here.

Definition 1. Let (A, B) and (C, D) be disjoint pairs.

1. (A, B) is many-one reducible in polynomial-time to (C, D), (A, B)≤pp
m(C, D),

if for every separator T of (C, D), there exists a separator S of (A, B) such

that S≤p
mT .

2. (A, B) is Turing reducible in polynomial-time to (C, D), (A, B)≤pp

T (C, D),
if for every separator T of (C, D), there exists a separator S of (A, B) such

that S≤p

TT .

The definitions tell us that for every separator of (C, D), there is a separator
of (A, B) that is no more complex. In particular, if (C, D) is P-separable, then
it follows immediately that (A, B) is P-separable. On the other hand, these
definitions are nonuniform. Looking at (A, B)≤pp

T (C, D), for example, if S1 is a
separator of (C, D), then there is an oracle Turing machine M1 such that the
set L(M1, S1) is a separator of (A, B). However, for a different separator S2 of
(C, D), there might be a different Turing machine M2 so that L(M2, S2) is a
separator of (A, B). This nonuniformity makes these definitions difficult to work
with. Fortunately, they have the following equivalent formulations [9, 6]. Observe
that the formulation for many-one reducibility simplifies enormously.



Theorem 1 (uniform reductions for pairs). Let (A, B) and (C, D) be dis-

joint pairs.

1. (A, B) is many-one reducible in polynomial-time to (C, D) if and only if

there exists a polynomial-time computable function f such that f(A) ⊆ C
and f(B) ⊆ D.

2. (A, B) is Turing reducible in polynomial-time to (C, D) if and only if there

exists a polynomial-time oracle Turing machine M such that for every sepa-

rator T of (C, D), there exists a separator S of (A, B) such that S≤p

TT via

M . That is, S = L(M, T ).

Now we clearly have uniformity. The same oracle Turing machine M is used
for all separators T .

The abbreviation ‘pp’ in ≤pp

T , for example, stands for polynomial-time-bounded

promise reduction. We retain the promise problem notation in order to distin-
guish reductions between disjoint NP-pairs from reducibilities between sets.

If (A, B)≤pp
m (C, D) and (C, D)≤pp

m (A, B), then we write (A, B)≡pp
m (C, D); if

(A, B)≤pp

T (C, D) and (C, D)≤pp

T (A, B), then we write (A, B)≡pp

T (C, D). Obvi-
ously, ≡pp

m and ≡pp

T are equivalence relations.
Keeping with common terminology, a disjoint pair (A, B) is ≤pp

m -complete
(≤pp

T -complete) for the class DisjNP if (A, B) ∈ DisjNP and for every disjoint
pair (C, D) ∈ DisjNP, (C, D)≤pp

m (A, B) ((C, D)≤pp

T (A, B), respectively).
Razborov raised the question of whether DisjNP contains complete pairs (i.e.,

complete disjoint NP-pairs). Although we are primarily interested in the ques-
tion of whether there exist many-one complete pairs, let’s pause for a moment
to consider the question of whether there exist Turing-complete pairs. Even, Sel-
man, and Yacobi [4] conjectured that DisjNP does not contain a disjoint pair
all of whose separators are NP-hard (i.e., ≤p

T -hard for NP.) The conjecture has
strong consequences, for it implies that NP 6= coNP, NP 6= UP, and no public-
key cryptosystem is NP-hard to crack [4, 9]. For example, if NP = coNP, then
for every NP-complete S, the pair (S, S) is in DisjNP and all of its separators
are NP-hard (since S is the only separator). We conjecture that DisjNP does not
contain Turing-complete pairs, but it would be difficult to prove this, because
the the latter conjecture implies the former conjecture (which in turn implies
NP 6= coNP).

Proposition 1. If there do not exist ≤pp

T -complete pairs for the class DisjNP,

then DisjNP does not contain a disjoint pair all of whose separators are NP-hard.

Proof. Suppose there is a disjoint pair (A, B) ∈ DisjNP such that all separators
are NP-hard. We claim that (A, B) is ≤pp

T -complete for DisjNP. Let (C, D)
belong to DisjNP. Let S be an arbitrary separator of (A, B). Note that S is NP-
hard and C ∈ NP. So C≤p

TS. Since C is a separator of (C, D), this demonstrates
that (C, D)≤pp

T (A, B). ⊓⊔

Glaßer et al. [6] constructed an oracle relative to which Turing-complete pairs
do not exist for DisjNP.



5 Canonical disjoint NP-Pairs

The canonical pair of a propositional proof system f [21] is the disjoint NP-pair
(SAT∗, REFf ) where

SAT∗ = {(x, 0n)
∣

∣x ∈ SAT and n ∈ N} and

REFf = {(x, 0n)
∣

∣¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.

Informally, SAT∗ is the set of satisfiable formulas (i.e., formulas whose nega-
tions are not tautologies), and REFf is the set of easily refutable formulas (i.e.,
formulas whose negations have short proofs). It is straightforward to see that
SAT∗ and REFf are disjoint and that they belong to NP.

The following easy to prove proposition states a strong connection between
proof systems and disjoint NP-pairs.

Proposition 2. Let f and g be propositional proof systems. If g simulates f ,

then (SAT∗, REFf )≤pp
m (SAT∗, REFg).

Proof. By assumption there exists a total function h : Σ∗ → Σ∗ and a poly-
nomial p such that for all y, g(h(y)) = f(y) and |h(y)| ≤ p(|y|). We claim
that (SAT∗, REFf )≤pp

m (SAT∗, REFg) via reduction r where r(x, 0n)
df
=(x, 0p(n)).

Clearly, if (x, 0n) ∈ SAT∗, then (x, 0p(n)) ∈ SAT∗ as well. Let (x, 0n) ∈ REFf ,
i.e., ¬x is a tautology and there exists y such that |y| ≤ n and f(y) = ¬x. So for
y′ df

=h(y) it holds that |y′| ≤ p(n) and g(y′) = ¬x which shows (x, 0p(n)) ∈ REFg.
⊓⊔

Razborov’s result (Corollary 1 below) states that if f is an optimal proof sys-
tem, then (SAT∗, REFf ) is a ≤pp

m -complete NP-pair. This result is an immediate
consequence of Proposition 2 and the following new result [7]. The latter states
that every disjoint NP-pair is many-one equivalent to the canonical NP-pair of
some propositional proof system.

Theorem 2. For every disjoint NP-pair (A, B) there exists a proof system f
such that (SAT∗, REFf )≡pp

m (A, B).

Proof. Let 〈·, ·〉 be a polynomial-time computable, polynomial-time invertible
pairing function such that |〈v, w〉| = 2|vw|. Choose g that is polynomial-time
computable and polynomial-time invertible such that A≤p

mSAT via g (such a g
exists, since SAT is a paddable NP-complete set). Let M be an NP-machine that
accepts B in time p. Define the following function f .

f(z)
df
=



















¬g(x) : if z = 〈x, w〉, |w| = p(|x|), M(x) accepts along path w

x : if z = 〈x, w〉, |w| 6= p(|x|), |z| ≥ 2|x|, x ∈ TAUT

true : otherwise



The function is polynomial-time computable, since in the second case, |z| is
large enough so that x ∈ TAUT can be decided in deterministic time O(|z|2).
In the first case of f ’s definition, x ∈ B and so g(x) /∈ SAT. It follows that
f : Σ∗ → TAUT. The mapping is onto, since for every tautology x,

f(〈x, 02|x|

〉) = x.

Therefore, f is a propositional proof system.

Claim 1. (SAT∗, REFf )≤pp
m (A, B).

Choose arbitrary elements a ∈ A and b ∈ B. The reduction function h is as
follows.

1 input (x, 0n)

2 if n ≥ 2|x| then

3 if x ∈ SAT then output a else output b

4 endif

5 if g−1(x) exists then output g−1(x)
6 output a

The exhaustive search in Line 3 is possible in quadratic time in 2|x| ≤ n. So
h ∈ PF.

Assume (x, 0n) ∈ SAT∗. If we reach Line 3, then we output a ∈ A. Otherwise
we reach Line 5. If g−1(x) exists, then it belongs to A. Therefore, in either case
(output in Line 5 or in Line 6) we output an element from A.

Assume (x, 0n) ∈ REFf (in particular ¬x ∈ TAUT). So there exists y such
that |y| ≤ n and f(y) = ¬x. If we reach Line 3, then we output b. Otherwise
we reach Line 5 and so it holds that |y| ≤ n < 2|x| and ¬x differs from the
expression true (since the expression true does not start with the symbol ¬).
Therefore, f(y) = ¬x must be due to the first case in the definition of f . It
follows that g−1(x) exists. So we output g−1(x) which belongs to B (again by
the first case of f’s definition). This shows Claim 1.

Claim 2. (A, B)≤pp
m (SAT∗, REFf ).

The reduction function is h′(x)
df
=(g(x), 02(|x|+p(|x|))). If x ∈ A, then g(x) ∈

SAT and therefore, h′(x) ∈ SAT∗. Otherwise, let x ∈ B. Let w be an accepting
path of M(x) and define z

df
=〈x, w〉. So |w| = p(|x|) and |z| = 2(|x| + p(|x|)).

By the first case of f’s definition, f(z) = ¬g(x). Therefore, h′(x) ∈ REFf . This
proves Claim 2 and finishes the proof of Theorem 2. ⊓⊔

Corollary 1 (Razborov). If there exists an optimal propositional proof system

f , then (SAT∗, REFf ) is a ≤pp
m -complete NP-pair.

Proof. Suppose that f is an optimal proof system. Let (A, B) be an arbitrary
disjoint NP-pair. By Theorem 2, let g be a proof system such that

(A, B)≡pp
m (SAT∗, REFg).



We only use (A, B)≤pp
m (SAT∗, REFg) and the fact that (SAT∗, REFg) ∈ DisjNP.

Since f is optimal, f simulates g. Thus, by Proposition 2,

(SAT∗, REFg)≤
pp
m (SAT∗, REFf ).

Then, (A, B)≤pp
m (SAT∗, REFf ), from which it follows that (SAT∗, REFf ) is ≤pp

m -
complete for DisjNP. ⊓⊔

Also, we state the following corollary. It is convenient for us to define the
Turing-degree of a pair (A, B) ∈ DisjNP as follows:

d(A, B) = {(C, D) ∈ DisjNP | (A, B) ≡pp
T (C, D)}.

So the Turing-degree of (A, B) is the class of pairs that are equivalent to
(A, B) with respect to Turing reductions. In a canonical way, Turing reductions
extend from pairs to Turing-degrees: d(A, B)≤pp

T d(C, D) if (A, B)≤pp

T (C, D).
The degree structure of disjoint NP-pairs is the structure of the partial ordering
({d(A, B)

∣

∣ (A, B) ∈ DisjNP},≤pp

T ).

Corollary 2. Disjoint NP-pairs and canonical pairs for proof systems have iden-

tical degree structure.

Every disjoint NP-pair we believe to be P-inseparable is many-one equivalent
to some canonical pair that is also P-inseparable. We cannot prove that P-
inseparable pairs exist, but there is evidence for their existence, for example, if
P 6= UP or if P 6= NP ∩ coNP. On the other hand, the hypothesis that P 6= NP
does not seem to be sufficient to obtain P-inseparable disjoint NP-pairs. Homer
and Selman [11] constructed an oracle relative to which P 6= NP and all disjoint
NP-pairs are P-separable.

Glaßer et al. [6] constructed an oracle O1 relative to which optimal proof sys-
tems exist, and therefore, relative to which many-one complete disjoint NP-pairs
exist. Also, they constructed an oracle O2 relative to which many-one complete
disjoint NP-pairs exist, but optimal proof systems do not exist. So relative to
this oracle, the converse of Corollary 1 does not hold. Relative to O2, there is
a propositional proof system f whose canonical pair is complete, but f is not
optimal. Hence, there is a propositional proof system g such that the canonical
pair of g many-one reduces to the canonical pair of f , but f does not simulate g.
The results of this section (Proposition 2, Theorem 2, and Corollary 2) present
tight connections between disjoint NP-pairs and propositional proof systems.
Nevertheless, relative to this oracle, the relationship is not as tight as one might
hope for.

In light of Corollary 2, we should try to understand the degree structure of
DisjNP. Glaßer, Selman, and Zhang [7] prove that between any two comparable
and inequivalent disjoint NP-pairs (A, B) and (C, D) there exist P-inseparable,
incomparable NP-pairs (E, F ) and (G, H) whose degrees lie strictly between
(A, B) and (C, D). Their result is an analogue of Ladner’s result for NP [14].
The proof is based on Schöning’s formulation [25] and uses techniques of Regan
[22, 23]. Thus, assuming that P-inseparable disjoint NP-pairs exist, the class



DisjNP has a rich, dense, degree structure—and each of these degrees contains
a canonical pair.

Observe that the premise of the following theorem is true as long as there
exist P-inseparable disjoint NP-pairs.

Theorem 3. Suppose there exist disjoint NP-pairs (A, B) and (C, D) such that

A, B, C, and D are infinite, (A, B)≤pp
T (C, D), and (C, D) 6≤pp

T (A, B). Then there

exist incomparable, strictly intermediate disjoint NP-pairs (E, F ) and (G, H)
between (A, B) and (C, D) such that E, F , G, and H are infinite. Precisely, the

following properties hold:

– (A, B)≤pp
m (E, F )≤pp

T (C, D) and (C, D) 6≤pp

T (E, F ) 6≤pp

T (A, B);
– (A, B)≤pp

m (G, H)≤pp

T (C, D) and (C, D) 6≤pp

T (G, H) 6≤pp

T (A, B);
– (E, F ) 6≤pp

T (G, H) and (G, H) 6≤pp

T (E, F ).

Messner [16, 17] unconditionally proved the existence of propositional proof
systems f and g such that f does not simulate g and g does not simulate f .
Further he shows that the simulation order of propositional proof systems is
dense. However, from this we cannot conclude a dense degree structure for dis-
joint NP-pairs. There exist infinite, strictly increasing chains of propositional
proof systems (using simulation as the order relation ≤) such that all canonical
pairs of these proofs systems belong to the same many-one degree of disjoint
NP-pairs.

6 Uniform Enumerability

In this section we describe some recent results of Glaßer, Selman, and Sengupta
[5] on reductions between disjoint NP-pairs. The main result is a list of equivalent
statements to the assertion that there exists a many-one complete disjoint NP-
pair, which, taken together, strongly suggests that the assertion does not hold.

We begin our exposition with the following definition of strongly many-one
reductions, as defined by Köbler, Meßner, and Torán [12].

Definition 2 ([12]). (C, D) strongly many-one reduces to (A, B) in polynomial
time, (C, D)≤pp

sm(A, B), if there is a polynomial-time computable function f such

that f(C) ⊆ A, f(D) ⊆ B, and f(C ∪ D) ⊆ A ∪ B.

Clearly, the added condition f(C ∪ D) ⊆ A ∪ B states that instances violating
the promise of (C, D) are mapped into instances that violate the promise of
(A, B) (Figure 2). Equivalently, f−1(A) ⊆ C and f−1(B) ⊆ D. Therefore, if
(C, D)≤pp

sm (A, B) via f , then C≤p
mA via f , and D≤p

mB via f .
Whereas Razborov proved that existence of an optimal proof system implies

existence of a many-one complete disjoint NP-pair, Köbler, Meßner, and Torán
proved with the same hypothesis existence of a complete disjoint NP-pair with
respect to strongly many-one reductions. In particular, the result of Glaßer,
Selman, and Sengupta shows that these results of Razborov and Köbler, Meßner,
and Torán are equivalent. That is, there exists a many-one complete disjoint
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Fig. 2. A strong many-one reduction f from (A,B) to (C, D).

NP-pair if and only if there exists a complete disjoint NP-pair with respect
to strongly many-one reductions. Nevertheless, it is apparently true that the
“stronger reduction” really is stronger. This is easy to see if we permit disjoint
NP-pairs whose components are finite sets. However, for pairs whose components
are infinite and coinfinite, strongly many-one reductions are identical to many-
one reductions if and only if P = NP. We show this result now:

Theorem 4. The following are equivalent:

1. P 6= NP.

2. There are disjoint NP-pairs (A, B) and (C, D) such that A, B, C, D, A ∪ B,

and C ∪ D are infinite, and (A, B)≤pp
m (C, D) but (A, B) 6≤pp

sm(C, D).

Proof. If P = NP, then given disjoint NP-pairs (A, B) and (C, D), A, B, C, and
D are all in P. Given any string x, it can be determined whether x ∈ A, x ∈ B,
or x ∈ A ∪ B, and x can be mapped appropriately to some fixed string in C, D,
or C ∪ D. Therefore, (A, B)≤pp

sm (C, D).
For the other direction, consider the clique-coloring pair (C1, C2) such that

C1 = {〈G, k〉
∣

∣G has a clique of size k}, (1)

and
C2 = {〈G, k〉

∣

∣G has a coloring with k − 1 colors}. (2)

This is a disjoint NP-pair, and is known to be P-separable [15, 20]. Let S be
the separator that is in P. Note that (C1, C2)≤pp

m (S, S) via the identity function.
(Note that this reduction is also invertible.) Let

C = {〈G, 3〉
∣

∣G is a cycle of odd length with at least 5 vertices}.



Let S1 = S − C and S2 = S − C. Both S1 and S2 are in P. Since any odd cycle
with at least 5 vertices is not 2-colorable, and does not contain any clique of size
3, C ∩ C1 = ∅, and C ∩ C2 = ∅. Therefore, (C1, C2)≤

pp
m (S1, S2) via the identity

function. Assume that (C1, C2)≤pp
sm(S1, S2). Then C1≤p

mS1, and C2≤p
mS2. Hence

C1 and C2 are in P. This is impossible, since NP 6= P, and C1 and C2 are NP-
complete. Thus, (C1, C2) 6≤pp

sm(S1, S2). ⊓⊔

Next we mention smart reductions. Grollmann and Selman [9] defined smart
reductions in order to analyze the conjecture of Even, Selman, and Yacobi [4]
that we discussed earlier.

Definition 3 ([9]). A smart reduction from (C, D) to (A, B) is a Turing re-

duction from (C, D) to (A, B) such that if the input belongs to C ∪ D, then all

queries belong to A ∪ B.

A disjoint pair (A, B) ∈ DisjNP is smart ≤pp

T -complete for DisjNP if for every
(C, D) in DisjNP there is a smart reduction from (C, D) to (A, B). Note that
if (A, B) is ≤pp

m -complete for DisjNP, then (A, B) is smart ≤pp

T -complete for
DisjNP as well.

Let {Ni}i be an effective enumeration of nondeterministic, polynomial-time
bounded Turing machines. Now we define the central concept of this section.

Definition 4. DisjNP is uniformly enumerable if there is a total computable

function f : Σ∗ → Σ∗ × Σ∗ such that

1. ∀(i, j) ∈ range(f)[(L(Ni), L(Nj)) ∈ DisjNP].
2. ∀(C, D) ∈ DisjNP ∃(i, j)[(i, j) ∈ range(f) ∧ C = L(Ni) ∧ D = L(Nj)].

The following theorem is a slight simplification of the main result of Glaßer,
Selman, and Sengupta [5].

Theorem 5. The following are equivalent.

1. There is a ≤pp
m -complete disjoint NP-pair.

2. There is a ≤pp
sm -complete disjoint NP-pair.

3. There is a smart ≤pp

T -complete disjoint NP-pair.

4. DisjNP is uniformly enumerable.

There is a long history of equating having complete sets with uniform enu-
merations. Hartmanis and Hemachandra [10], for example, proved this for the
class UP, and it holds as well for NP ∩ co-NP and BPP. More recently, Sad-
owski [24] proved that there exists an optimal propositional proof system if and
only if the class of all easy subsets of TAUT is uniformly enumerable.4 It seems
inconceivable that there would exist a total computable function that lists ex-
actly the disjoint NP-pairs, and that is why we don’t believe that many-one

4 By Corollary 1, if DisjNP is not uniformly enumerable, then the class of all easy
subsets of TAUT is also not uniformly enumerable.



complete disjoint NP-pairs exist, and hence, don’t believe that optimal proof
systems exist.

The most interesting direction of the proof is to show that if there exists a
many-one complete disjoint NP-pair, then DisjNP is uniformly enumerable. We
sketch this direction now:

Let (A, B) be a ≤pp
m -complete disjoint pair. Let NA and NB be NP-machines

that accept A and B, respectively. Let {fi}i be an effective enumeration of
polynomial-time computable functions. Input to the enumerator is a number
encoding a triple 〈i, j, k〉. Output is a pair 〈a, b〉 to be described.

Given 〈i, j, k〉, we define nondeterministic Turing machines N ′
1 and N ′

2 as
follows. On input x, N ′

1 computes fi(x) = q and then simulates both NA(q) and
NB(q). At most one of these accepts. N ′

1 accepts x if x ∈ L(Nj) and q ∈ L(NA).
N ′

2 is defined similarly, except that N ′
2 accepts x if x ∈ L(Nk) and q ∈ L(NB).

Let a and b be the indices of N ′
1 and N ′

2, respectively, and define f(〈i, j, k〉) =
〈a, b〉. It is easy to see that L(Na) and L(Nb) are disjoint. So for all i, j, and k,
(L(Na), L(Nb)) ∈ DisjNP, where f(〈i, j, k〉) = 〈a, b〉.

Now let (C, D) be a disjoint NP-pair. For some indices j and k, C = L(Nj)
and D = L(Nk). Then (C, D)≤pp

m (A, B) by fi, for some i. Consider, 〈a, b〉 =
f(〈i, j, k〉). The remainder of the proof, which is easy, shows that C = L(Na)
and D = L(Nb).
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