
Non-Mitotic Sets �

Christian Glaßer a, Alan L. Selman b,2, Stephen Travers a,1, and
Liyu Zhang c

aTheoretische Informatik, Julius-Maximilians-Universität Würzburg,
D-97074 Würzburg, Germany

bDepartment of Computer Science and Engineering, University at Buffalo, USA
cDepartment of Computer and Information Sciences, University of Texas at

Brownsville, USA

Abstract

We study the question of the existence of non-mitotic sets in NP. We show under
various hypotheses that

• 1-tt-mitoticity and m-mitoticity differ on NP.

• T-autoreducibility and T-mitoticity differ on NP (this contrasts the situation in
the recursion theoretic setting, where Ladner showed that autoreducibility and
mitoticity coincide).

• 2-tt autoreducibility does not imply weak 2-tt-mitoticity (from this it follows that
autoreducibility and mitoticity are not equivalent for all reducibilities between 2-
tt and T, although the notions coincide for m- and 1-tt-reducibility).

Key words: Computational Complexity, Autoreducibility, Mitoticity

� A preliminary version of this paper was presented at the 27th International Con-
ference on Foundations of Software Technology and Theoretical Computer Science,
2007.
1 Supported by the Konrad-Adenauer-Stiftung.
2 Research supported in part by NSF grant CCR-0307077 and by the Alexander
von Humboldt-Stiftung.

Preprint submitted to Elsevier February 18, 2008

1 Introduction

A recursive set A is T-mitotic if there is a set B ∈ P such that A ≡p
T A∩B ≡p

T

A ∩ B. Ambos-Spies [2] introduced this notion of mitoticity into complex-
ity theory and he also showed how to construct recursive non-mitotic sets.
Buhrman, Hoene, and Torenvliet [10] showed that EXP contains non-mitotic
sets. Here we investigate the question of the existence of non-mitotic sets
in NP. This is a difficult question because there are no natural examples of
non-mitotic sets. Natural NP-complete sets are all paddable, and for this rea-
son are T-mitotic. Moreover, Glasser et al. [12] proved that all NP-complete
sets are m-mitotic (and therefore T-mitotic). Also, nontrivial sets belonging
to the class P are T-mitotic. So any unconditional proof of the existence of
non-mitotic sets in NP would prove at the same time that P �= NP.

Our first result was prompted by the question of whether NP contains sets that
are not m-mitotic. We prove that if EEE �= NEEE∩coNEEE, then there exists
an L ∈ (NP ∩ coNP) − P that is 1-tt-mitotic but not m-mitotic. From this,
it follows that under the same hypothesis, 1-tt-reducibility and m-reducibility
differ on sets in NP. On the one hand, this consequence explains the need for a
reasonably strong hypothesis. On the other hand, with essentially known tech-
niques using P-selective sets, we show that 1-tt-reducibility and m-reducibility
separate within NP under the weaker hypothesis that E �= NE ∩ coNE.

This foray into questions about 1-tt-reducibility and m-reducibility provides a
segue into our next result: We would like to know whether 1-tt-complete sets
for NP are m-complete as well. We prove under a reasonable hypothesis that
every 1-tt-complete sets for NP is complete under nonuniform m-reductions.
The hypothesis states that the NP-complete set SAT does not infinitely-often
belong to the class coNP.

In Glasser et al. [12] the authors proved that every m-autoreducible set is m-
mitotic. The same result follows for 1-tt-autoreducibility. In contrast, Ambos-
Spies [2] proved that T-autoreducible does not imply T-mitotic. Also, Glasser
et al. [12] constructed a 3-tt-autoreducible set that is not weakly-T-mitotic.
Hence, it is known that autoreducibility and mitoticity are not equivalent for
all polynomial-time-bounded reductions between 3-tt-reducibility and Turing-
reducibility. However, the question for 2-tt-reducibility has been open. Here
we settle this question by showing the existence of a set in EXP that is 2-tt-
autoreducible, but not weakly 2-tt-mitotic.

The last result to be proved gives evidence of non-mitotic sets in NP. We show
that if NP∩coNP contains n-generic sets, then there exists a set L ∈ NP∩coNP
such that L is 2-tt-autoreducible and L is not T-mitotic. Roughly speaking,
a set L is n-generic [3] if membership of x in L cannot be predicted from the

2

Assumption Conclusion Remark

NP ∩ coNP contains
n-generic sets

∃A ∈ NP that is 2-
tt-autoreducible but not
T-mitotic

A ∈ (NP∩coNP)−P

EEE �= NEEE ∩
coNEEE

∃A ∈ NP that is 1-tt-
mitotic but not m-mitotic

A ∈ (NP∩coNP)−P

E �= NE ∩ coNE ∃A,B ∈ NP such that
A≤p

1−ttB but A �≤p
mB

A,B ∈ (NP ∩
coNP) − P

NP
i.o.⊆/ coNP 1-tt-complete sets for

NP are nonuniformly
m-complete

Table 1
Summary of our results related to NP

initial segment L|x in time 2n, for almost all x, where |x| = n. This result
is interesting, since under the mentioned hypothesis it shows that within NP
the notions of T-autoreducibility and T-mitoticity differ. In contrast, Lad-
ner [16] showed that in the recursion theoretic setting, unbounded Turing-
autoreducibility and unbounded Turing-mitoticity coincide.

2 Preliminaries

We recall basic notions. Σ denotes a finite alphabet with at least two letters,
Σ∗ denotes the set of all words, and |w| denotes the length of a word w. A
tally set is a subset of 0∗.

The language accepted by a machine M is denoted by L(M). L denotes the
complement of a language L and coC denotes the class of complements of
languages in C.

FP denotes the class of functions computable in deterministic polynomial time.

We recall standard polynomial-time reducibilities [17]. A set B many-one-
reduces to a set C (m-reduces for short; in notation B≤p

mC) if there exists a
total, polynomial-time-computable function f such that for all strings x,

x ∈ B ⇔ f(x) ∈ C.

A set B Turing-reduces to a set C (T-reduces for short; in notation B≤p
TC) if

3

there exists a deterministic polynomial-time-bounded oracle Turing machine
M such that for all strings x,

x ∈ B ⇔ M with C as oracle accepts the input x.

Let Q(M, x) denote the set of all queries to the oracle made by the nonadaptive
oracle Turing machine M on input x.

A set B truth-table-reduces to a set C (tt-reduces for short; in notation B≤p
ttC)

if there exists a deterministic polynomial-time-bounded oracle Turing machine
M that behaves non-adaptively such that for all strings x,

x ∈ B ⇔ M with C as oracle accepts the input x.

This means there exists a polynomial-time function g such that on input x,
g(x) = cq1c . . . cqn where c �∈ Σ and for all 1 ≤ i ≤ n, qi ∈ Σ∗, and Q(M, x) =
{q1, . . . , qn}.

Furthermore, B 1-tt reduces to C (in notation B≤p
1−ttC) if for some M , B≤p

ttC
via M and for all x, |Q(M, x)| = 1. Similarly, we define 2-tt, and so on.

Non-uniform reductions are of interest in cryptography. There they are a model
of an adversary who is capable of long preprocessing [9]. They also have appli-
cations in structural complexity theory. Agrawal [1] and Hitchcock and Pavan
[13] investigate non-uniform reductions and show under reasonable hypotheses
that every many-one complete set for NP is also hard for length-increasing,
non-uniform reductions.

If B≤p
mC and C≤p

mB, then we say that B and C are many-one-equivalent
(m-equivalent for short, in notation B ≡p

m C). Similarly, we define equivalence
for other reducibilities.

A set B is many-one-hard (m-hard for short) for a complexity class C if every
B ∈ C m-reduces to B. If additionally B ∈ C, then we say that B is many-
one-complete (m-complete for short) for C. Similarly, we define hardness and
completeness for other reducibilities. We use “C-complete” as an abbreviation
for m-complete for C.

A set B is p-selective [19] if there exists a total function f ∈ FP (the selector
function) such that for all x and y, f(x, y) ∈ {x, y} and if either of x and y
belongs to B, then f(x, y) ∈ B.

Definition 1 ([2]) A set A is polynomial-time T-autoreducible (T-auto-
reducible, for short) if there exists a polynomial-time-bounded oracle Turing
machine M such that A = L(MA) and for all x, M on input x never queries

4

x. A set A is polynomial-time m-autoreducible (m-autoreducible, for short) if
A≤p

mA via a reduction function f such that for all x, f(x) �= x.

Let ≤p
r be a polynomial time reducibility.

Definition 2 ([2]) A recursive set A is polynomial-time r-mitotic (r-mitotic,
for short) if there exists a set B ∈ P such that:

A ≡p
r A ∩ B ≡p

r A ∩ B.

A recursive set A is polynomial-time weakly r-mitotic (weakly r-mitotic, for
short) if there exist disjoint sets A0 and A1 such that A0 ∪ A1 = A, and

A ≡p
r A0 ≡p

r A1.

Let EEE = DTIME(222O(n)

) and let NEEE = NTIME(222O(n)

). A is paddable
[8] if there exists p(·, ·), a polynomial-time computable, polynomial-time in-
vertible function, such that for all a and x,

a ∈ A ⇐⇒ p(a, x) ∈ A.

3 Separation of Mitoticity Notions

Ladner, Lynch, and Selman [17] and Homer [14,15] ask for reasonable assump-
tions that imply separations of polynomial-time reducibilities within NP. In
this section we demonstrate that a reasonable assumption on exponential-time
classes allows a separation of mitoticity notions within NP. This implies a sep-
aration of the reducibilities ≤p

m and ≤p
1−tt within NP. Then we show the same

separation under an even weaker hypothesis. On the technical side, a key in-
gredient to our proof is the observation by Beigel and Feigenbaum [7] that
very sparse sets lack certain redundancy properties.

Theorem 3 If EEE �= NEEE ∩ coNEEE, then there exists an L ∈ (NP ∩
coNP) − P that is 1-tt-mitotic but not m-mitotic.

PROOF. Choose B ∈ (NEEE∩ coNEEE)−EEE. So there exists a constant

c ≥ 1 such that B and B are decidable in nondeterministic time 222c·n
. Let

t(x) =def 22x2c

be a tower function and let A =def {0t(n)
∣∣∣ n ≥ 0} and C =def

{0t(x)
∣∣∣ x ∈ B} (note that we identify Σ∗ with the natural numbers). Note

A ∈ P.

Claim 4 C ∈ (NP ∩ coNP) − P.

5

PROOF. A membership test for C has to decide x ∈ B on input y = 022x2c

.
The test x ∈ B can be carried out in nondeterministic time

222c·|x| ≤ 222c·2·log x

= 22x2c

= |y|.

Therefore, C ∈ NP and analogously C ∈ coNP, since B ∈ coNEEE.

Assume C ∈ P. Then B can be decided as follows: On input x we construct

the string y = 022x2c

and simulate the deterministic polynomial-time decision
procedure for C. Clearly, this algorithm decides C.

|y| = 22x2c ≤ 22(2|x|)2c

= 222(2c|x|)

So the described algorithm has a running time that is polynomial in 222(2c|x|)
.

This shows B ∈ EEE which contradicts the choice of B. So C /∈ P which
proves Claim 4. �

We define the language that we show to be 1-tt-mitotic, but not m-mitotic.

L = C ∪ 0(C ∩ A)

Note that the union above is disjoint, since C consists of strings of length
t(n) while 0(C ∩ A) consists of strings of length t(n) + 1. Observe that L ∈
(NP ∩ coNP) − P.

Claim 5 L is 1-tt-mitotic.

PROOF. The separator is S = A. First, we describe the 1-tt-reduction from
L to L∩S on input x: If x /∈ A∪ 0A, then reject. If x ∈ A, then accept if and
only if x ∈ L ∩ S. Otherwise, accept if and only if y /∈ L ∩ S where x = 0y.
Second, we describe the 1-tt-reduction from L ∩ S to L ∩ S on input x: If
x /∈ S, then reject. Otherwise, accept if and only if 0x /∈ L ∩ S. Finally, we
describe the 1-tt-reduction from L ∩ S to L on input x: If x ∈ S, then reject.
Otherwise, accept if and only if x ∈ L. This shows that L is 1-tt-mitotic. �

Claim 6 L is not m-mitotic.

PROOF. Assume L is m-mitotic. Hence L is m-autoreducible [2], i.e., L≤p
mL

via a reduction such that f(x) �= x. Let p be a polynomial bounding the
computation time of f . Choose the smallest number k such that for all n ≥ k
it holds that p(t(n) + 1) < t(n + 1). This choice is possible because

p(t(n) + 1) ≤ t(n)d =
(
22n2c

)d

= 2d·2n2c ≤ 22d+n2c

< 22n+n2c ≤ 22(n+1)2c

6

for a suitable constant d ≥ 1. Define the finite set

L′ =def {w
∣∣∣ |w| ≤ t(k) + 1 and w ∈ L}.

The following algorithm decides in polynomial time whether the input z be-
longs to L.

(1) x := z

(2) if |x| ≤ t(k) + 1 then accept if and only if x ∈ L′

(3) if |f(x)| ≥ |x| then reject

(4) x := f(x), goto 2

The algorithm runs in polynomial time, since each iteration decreases the
length of x. Also, since f is an m-autoreduction, at any point of the execution
of the algorithm it holds that

z ∈ L ⇔ x ∈ L. (1)

So if we stop in line 2, then we accept if and only if z ∈ L. It remains to argue
for a stop in line 3.

Assume z ∈ L but we reject in line 3; we will derive a contradiction. By (1),
at the moment we reject, it holds that

x ∈ L and |x| ≥ t(k) + 1 (2)

In particular, x ∈ A ∪ 0A, i.e., x = 0t(n) or x = 0t(n)+1 for a suitable n. By
definition,

0t(n) ∈ L ⇔ 0t(n)+1 /∈ L.

It follows that f(x) �= 0t(n) and f(x) �= 0t(n)+1, since otherwise either f(x) = x
or (0t(n) ∈ L ⇔ 0t(n)+1 ∈ L). Note that n ≥ k, since otherwise |x| ≤ t(n)+1 <
t(k) + 1 which contradicts (2). Therefore, by the choice of k,

|f(x)| ≤ p(|x|) ≤ p(t(n) + 1) < t(n + 1).

However, besides x there are no words in L that have a length in [t(n), t(n +
1)− 1]. It follows that |f(x)| < |x|, since f(x) must belong to L. This contra-
dicts our assumption that we reject in line 3. Therefore, if we stop in line 3,
then z /∈ L. So the algorithm above decides L in polynomial time. This is a
contradiction. So L is not m-mitotic. �

This proves the theorem. �

Selman [20] showed under the hypothesis E �= NE ∩ coNE that there exist
A, B ∈ NP−P such that A tt-reduces to B but A does not positive-tt-reduce

7

to B. The separation of mitoticity notions given in the last theorem allows us
to prove a similar statement:

Corollary 7 If EEE �= NEEE ∩ coNEEE, then there exist A, B ∈ (NP ∩
coNP) − P such that A≤p

1−ttB, but A �≤p
mB.

PROOF. Take the set L from Theorem 3 and let S ∈ P be a separator
that witnesses L’s 1-tt-mitoticity, i.e., L, L ∩ S, and L ∩ S are pairwise 1-tt-
equivalent. These sets cannot be pairwise m-equivalent, since otherwise L is
m-mitotic. This gives us A and B. �

However, a weaker assumption separates 1-tt-reducibility from m-reducibility
within NP.

Theorem 8 If E �= NE ∩ coNE, then there exist A, B ∈ (NP ∩ coNP) − P
such that A≤p

1−ttB, but A �≤p
mB.

PROOF. If E �= NE∩coNE, then there exists a tally set T ∈ NP∩coNP−P
and there exists a p-selective set A such that A ≡p

T T [19]. Trivially, A≤p
1−ttA,

and since A is p-selective, and not in P, A is not m-reducible to A. �

3.1 2-tt Autoreducibility Does Not Imply Weak 2-tt-Mitoticity

We now discuss that autoreducibility and weak mitoticity do not coincide for
2-tt reducibility. This completes a result by Glaßer et al. [12] which shows
that for all reducibilities between 3-tt and T, autoreducibility does not imply
weak mitoticity. We present a counterexample in EXP, i.e., we construct a set
L ∈ EXP such that L is 2-tt-autoreducible but not weakly 2-tt-mitotic.

The proof is based on the diagonalization proof by Glasser et al. [12]. However,
a straightforward adaptation does not work. The reason is that if one considers
groups of three strings at certain super-exponential lengths for diagonalization,
the set constructed as in the previous proof will have to be 2-tt-mitotic if we
were to make it 2-tt-autoreducible. The new idea is to consider two groups of
three strings at super-exponential lengths that overlap at one string. This way
we can make the set 2-tt-autoreducible while not 2-tt-mitotic.

Furthermore we explain that our proof technique cannot be generalized to
show that there exists a set in EXP that is 2-tt-autoreducible, but not weakly
T-mitotic.

8

Theorem 9 There exists L ∈ SPARSE ∩ EXP such that

• L is 2-tt-autoreducible, but
• L is not weakly 2-tt-mitotic.

PROOF. Define a tower function by t(0) = 4 and

t(n + 1) = 2222
2t(n)

.

For any word s, let W1(s) = {s000, s001, s010}, W2(s) = {s000, s011, s100},
and W (s) = W1(s)∪W2(s). We will define L such that it satisfies the following:

(i) If w ∈ L, then there exists n such that |w| = t(n).
(ii) For all n, all s ∈ Σt(n)−3, and all i ∈ {1, 2}, it holds that Wi(s)∩L either

is empty or contains exactly two elements.

It is easy to see that such an L is 2-tt-autoreducible: On input w, determine
n such that |w| = t(n). If such n does not exist, then reject. Otherwise, let
s be w’s prefix of length |w| − 3. Accept if and only if the set L ∩ (Wi(s) −
{w}) contains one element, where w ∈ Wi(s), i ∈ {1, 2}. This is a 2-tt-
autoreduction.

We turn to the construction of L. Let M1, M2, . . . be an enumeration of deter-
ministic, polynomial-time-bounded nonadaptive oracle Turing machines such
that for all i, the running time of Mi is ni + i and Mi makes two different
queries on all inputs. Let 〈·, ·〉 be a pairing function such that 〈x, y〉 > x + y.
We construct L stagewise such that in stage n we determine which of the
words of length t(n) belong to L. In other words, at stage n we define a set
Sn ⊆ Σt(n), and finally we define L to be the union of all Sn.

We start by defining S0 = ∅. Suppose we are at stage n > 0. Let m = t(n)
and determine i and j such that n = 〈i, j〉. If such i and j do not exist, then
let Sn = ∅ and go to stage n + 1. Otherwise, i and j exist. In particular,
i + j < log log m. Let O =def S0 ∪ · · · ∪ Sn−1 be the part of L that has
been constructed so far. Let O1, O2, . . . , Ol be the list of all subsets of O
(lexicographically ordered according to their characteristic sequences). Since
O ⊆ Σ≤t(n−1) we obtain ‖O‖ ≤ 2t(n−1)+1. Therefore,

l ≤ 22t(n−1)+1 ≤ 222t(n−1)

= log log t(n) = log log m. (3)

We give some intuition for the claim below. If L is weakly 2-tt-mitotic, then in
particular, there exists a partition L = L1 ∪ L2 such that L≤p

2−ttL1 via some
machine Mi. Hence O ∩ L1 must appear (say as Ok) in our list of subsets of
O. The following claim makes sure that we can find a list of words s1, . . . , sl

9

of length m − 3 such that for all k ∈ [1, l] it holds that if the partition of L
is such that O ∩ L1 = Ok, then Mi on input of a string from W (sk) does not
query the oracle for words from W (sr) if r �= k. Also, we will construct L such
that

L ∩ Σt(n) ⊆ W (s1) ∪ W (s2) · · ·W (sl).

Hence, if Mi on input of a string from W (sk) queries a word of length m that
does not belong to W (sk), then it always gets a no answer. So the following
is the only information about the partition of L that can be exploited by Mi:

• the partition of O = Σ<t(n) ∩ L
• the partition of W (sk) ∩ L

In particular, Mi cannot exploit information about the partition of W (sr)∩L
for r �= k. This independence of Mi makes our diagonalization possible.

Claim 10 There exist pairwise different words s1, . . . , sl ∈ Σm−3 such that
for all k, r ∈ [1, l], k �= r, and all y ∈ W (sk), neither MO−Ok

i (y) nor MOk
j (y)

queries the oracle for words in W (sr).

PROOF. For s ∈ Σm−3, let

Qs =def {s′ ∈ Σm−3
∣∣∣∃y ∈ W (s), ∃q ∈ W (s′) such that q is
queried by Mi or Mj on input y }.

Observe that for every s ∈ Σm−3,

‖Qs‖ ≤ 5[2 + 2] = 20. (4)

We identify numbers in [1, 2m−3] with strings in Σm−3. Considered in this way,
each Qs is a subset of [1, 2m−3]. By (4), Q1, Q2, . . . , Q2m−3 are sets of cardinality
≤ 20. Clearly, 1, 2, . . . , 2m−3 are pairwise different numbers. By (3),

2m−3 ≥ (32)log m ≥ (20 + 2)2l

.

Therefore, we can apply Lemma 4.1 in Glaßer et al. [12] with m′ = l, l′ = 20,
and k′ = 2m−3. We obtain indices s1, . . . , sl such that for all k, r ∈ [1, l],

r �= k ⇒ sr /∈ Qsk
. (5)

Assume there exist k, r ∈ [1, l], k �= r, and y ∈ W (sk) such that some
q ∈ W (sr) is queried by MO−Ok

i (y) or MOk
j (y). Hence sr ∈ Qsk

. This con-
tradicts (5) and finishes the proof of Claim 10. �

Let s1, . . . , sl ∈ Σm−3 be the words assured by Claim 10. We define Sn such
that for every k ∈ [1, l] we define a set Vk ⊆ W (sk), and finally we define Sn

to be the union of all Vk. Each Vk has size 0, 2 or 3 and satisfies Condition
(ii).

10

Fix some k ∈ [1, l]. Let Qk =def O − Ok. Let a =def sk000, b =def sk001,
c =def sk010, d =def sk011 and e =def sk100. Let Qi(x) (Qj(x)) denote the set
of queries of Mi (Mj) on input x. Note that for any x, ‖Qi(x)‖ = ‖Qj(x)‖ = 2.

Case 1: For some x ∈ W (sk), MOk
i (x) accepts or MQk

j (x) accepts. Define
Vk =def ∅.

Case 2: For all x ∈ W (sk), both MOk
i (x) and MQk

j (x) reject and b �∈ Qi(b) ∪
Qj(b). Define Vk =def {b, c}.

Case 3: For all x ∈ W (sk), both MOk
i (x) and MQk

j (x) reject and Qr(a) = {d, e}
for some r ∈ {i, j}. Let Pr = Ok if r = i and Pr = Qk if r = j. There are 3
subcases here.

Case 3a: MPr∪{d}
r (a) rejects. Define Vk =def {a, b, d}.

Case 3b: MPr∪{e}
r (a) rejects. Define Vk =def {a, b, e}.

Case 3c: Both MPr∪{d}
r (a) and MPr∪{e}

r (a) accepts. Define Vk =def {d, e}.

Case 4: For all x ∈ W (sk), both MOk
i (x) and MQk

j (x) reject and Qr(a) = {y, z}
for some r ∈ {i, j}, y /∈ {a, d, e} and z ∈ {d, e}. Let y′ ∈ {b, c} − {y} and
z′ ∈ {d, e}. Define Vk = {a, y′, z′}.

In the cases 5-7 we will assume that the following three statements hold; the
case where these statements do not hold is covered with Case 8.

(1) for all x ∈ W (sk), both MQk
i (x) and MOk

j (x) reject;
(2) b ∈ Qi(b) ∪ Qj(b);
(3) Qi(a) = {a, u} and Qj(a) = {a, v}, where {u, v} = {d, e}.

Case 5: b ∈ Qi(b) ∩ Qj(b). There are 4 subcases in this case.

Case 5a: c /∈ Qi(b) ∪ Qj(b). Define Vk =def {b, c}.
Case 5b: c ∈ Qi(b) ∪Qj(b) and a /∈ Qi(b) ∪Qj(b). Then in this subcase either
d /∈ Qi(b) ∪ Qj(b) or e �∈ Qi(b) ∪ Qj(b). If d /∈ Qi(b) ∪ Qj(b), then define
Vk =def {a, b, d}. Otherwise, define Vk =def {a, b, e}.
Case 5c: Qi(b) = {b, a} and Qj(b) = {b, c}. Let y ∈ {d, e} − Qj(a). Define
Vk =def {a, b, y}.
Case 5d: Qi(b) = {b, c} and Qj(b) = {b, a}. Let y ∈ {d, e} − Qi(a). Define
Vk =def {a, b, y}.

Case 6: b ∈ Qi(b) and b /∈ Qj(b). We have 3 subcases here.

Case 6a: a /∈ Qj(b). If Qj(b) = {d, e}, then define Vk = {b, c}. Otherwise, let
y ∈ {d, e} − Qj(b) and define Vk = {a, b, y}.
Case 6b: c /∈ Qj(b). Define Vk = {b, c}.
Case 6c: b ∈ Qi(b) and Qj(b) = {a, c}. Let y ∈ {d, e} − {u}. Define Vk =

11

{a, b, y}.

Case 7: b /∈ Qi(b) and b ∈ Qj(b). We have 3 subcases here.

Case 7a: a /∈ Qi(b). If Qi(b) = {d, e}, then define Vk = {b, c}. Otherwise, let
y ∈ {d, e} − Qi(b) and define Vk = {a, b, y}.
Case 7b: c /∈ Qi(b). Define Vk = {b, c}.
Case 7c: Qi(b) = {a, c} and b ∈ Qj(b). Let y ∈ {d, e} − {v}. Define Vk =
{a, b, y}.

Case 8: If Vk cannot be defined in any of the above cases, then it must hold
that {d, e} �⊆ Qi(a) ∪ Qj(a). Now we consider the computations Mi(d) and
Mj(d) (and Mi(a) and Mj(a)) similarly, and try to define Vk in one of the
cases above except with b, c and d, e switched, respectively. If Vk still cannot
be defined, then by symmetry it must be the case that {b, c} �⊆ Qi(a)∪Qj(a).
Now let y ∈ {d, e} − Qi(b) ∪ Qj(a) and z ∈ {b, c} − Qi(b) ∪ Qj(a). Define
Vk = {a, y, z}.

This finishes the construction of Vk. We define Sn =def
⋃

k∈[1,l] Vk. Finally, L is
defined as the union of all Sn.

Note that by the construction, Sn ⊆ Σt(n) which shows (i). Observe that the
construction also ensures (ii). We argue for L ∈ EXP: Since l ≤ log log m,
there are not more than 2m log log m possibilities to choose the strings s1, . . . , sl.
For each such possibility we have to simulate O(l2) computations Mi(y) and
Mj(y). This can be done in exponential time in m. For the definition of each
Vk we have to simulate a constant number of computations Mi(y) and Mj(y).
This shows that L is printable in exponential time. Hence L ∈ EXP. From
the construction it follows that L ∩ Σm ≤ 3l ≤ 3 log log m. In particular,
L ∈ SPARSE. It remains to show that L is not weakly 2-tt-mitotic.

Assume L is weakly 2-tt-mitotic. So L can be partitioned into L = L1 ∪L2 (a
disjoint union) such that

(iii) L≤p
2−ttL1 via machine Mi and

(iv) L≤p
2−ttL2 via machine Mj .

Let n = 〈i, j〉, m = t(n), and O = S0 ∪ · · · ∪ Sn−1, i.e., O = L ∩ Σ<t(n). Let
O1, O2, . . . , Ol be the list of all subsets of O (again lexicographically ordered
according to their characteristic sequences). Let s1, . . . , sl and V1, . . . , Vl be
as in the definition of Sn. Choose k ∈ [1, l] such that L1 ∩ Σ<t(n) = Ok. Let
Qk = O − Ok. So L2 ∩ Σ<t(n) = Qk. Clearly, Vk must be defined according to
one of the cases above.

Assume Vk was defined according to Case 1: So Vk = ∅ and for every x ∈
W (sk), x /∈ L1. Without loss of generality assume that MOk

i (x) accepts for

12

some x ∈ W (sk). ML1
i (x) has running time mi + i < mm + m < t(n + 1).

Hence ML1
i (x) behaves like ML1∩Σ≤t(n)

i (x). Since sk was chosen according to
Claim 10, for all r ∈ [1, l] − {k}, MOk

i (x) does not query the oracle for words
in W (sr). Note that L ∩ W (sk) = Vk = ∅. Therefore, ML1

i (x) behaves like

ML1∩Σ<t(n)

i (x) which is the same as MOk
i (x). The latter accepts, but x /∈ L1.

This contradicts (iii).

Assume Vk was defined according to Case 2: So Vk = {b, c} = L ∩ W (sk).
Therefore, either c /∈ L1 or c /∈ L2. Suppose c /∈ L1. Then as above, Mi(b)
with oracle L1 behaves the same way as Mi(b) with oracle Ok. The latter
rejects because we are in Case 2. But since b ∈ L, this contradicts (iii). The
case c /∈ L2 is similar.

Assume Vk was defined according to Case 3: Without loss of generality, assume
Qi(a) = {d, e}. Assume Vk was defined according to Case 3a. Then L∩W (sk) =
Vk = {a, b, d}. So e /∈ L1. Suppose d /∈ L1. Then ML1

i (a) behaves the same way
as MOk

i (a) since Qj(a) = {d, e}. The latter rejects because we are in Case 3.
Since a ∈ L, this contradicts (iii). Now suppose d ∈ L1. So ML1

i (a) behaves

the same way as M
Ok∪{d}
i . The latter rejects because we are in Case 3a. Since

a ∈ L, this contradicts (iii). Case 3b is similar.

Assume Vk was defined according to Case 3c. Then L ∩ W (sk) = Vk = {d, e}.
Assume d ∈ L1 and e /∈ L1. Then ML1

i (a) behaves the same way as M
Ok∪{d}
i (a).

The latter accepts because we are in Case 3c. Since a /∈ L, this contradicts (iii).
Similar arguments show the assumption d /∈ L1 and e ∈ L1 contradicts (iii)
too. So it must be the case that either L1∩W (sk) = ∅ or L1∩W (sk) = {d, e}. In
the former case, ML1

i (d) behaves the same way as MOk
i (d), which rejects. Since

d ∈ L, we obtain the contradiction to (iii). In the latter case, L2 ∩W (sk) = ∅.
So ML2

j (d) behaves the same way as MQk
j (d), which rejects. We obtain the

contradiction to (iv).

Assume Vk was defined according to Case 4. Without loss of generality, assume
Qi(a) = {y, z}, where y /∈ {a, d, e} and z ∈ {d, e}, and Vk = {a, y′, z′},
where y′ ∈ {b, c} − {y} and z′ ∈ {d, e} − {z}. So Vk ∩ Qi(a) = ∅. Since
Vk = L∩W (sk) = (L1 ∪L2)∩W (sk), Mi(a) with oracle L1 behaves the same
as Mi(a) with oracle Ok. The latter rejects. So this is a contradiction to (iii),
since a ∈ L.

Now assume Vk was defined according to Case 5. So b ∈ Qi(b) ∩ Qj(b).

Assume Vk was defined according to Case 5a: So L ∩ W (sk) = {b, c}. Then
either b /∈ L1 or b /∈ L2. Without loss of generality, assume b /∈ L1. Then
ML1

i (b) behaves the same way as MOk
i (b) since c /∈ Qi(b). The latter rejects

because we are in Case 4. Since b ∈ L, this contradicts (iii).

13

Assume Vk was defined according to Case 5b: So c ∈ Qi(b) ∪ Qj(b) and a /∈
Qi(b)∪Qj(b). Suppose d /∈ Qi(b)∪Qj(b). Then L∩W (sk) = Vk = {a, b, d}. So
either b /∈ L1 or b /∈ L2. A similar argument to Case 4a gives the contradiction
to (iii). The case e /∈ Qi(b) ∪ Qj(b) is similar.

Assume Vk was defined according to Case 5c: So Qi(b) = {b, a} and Qj(b) =
{b, c}. Note that ‖Qj(a) ∩ {d, e}‖ = 1 and L ∩ W (sk) = Vk = {a, b, y}, where
y ∈ {d, e} − Qj(a). We argue that b ∈ L2 and a ∈ L1. Suppose b /∈ L2. Then

ML2
j (b) behaves the same as MQk

j (b). The latter rejects, which contradicts (iv).

So b ∈ L2. Now assume a /∈ L1. Then ML1
i (b) behaves the same as MOk

i (b).
The latter rejects, which contradicts (iii). So a ∈ L1 and hence, a /∈ L2. Now
y /∈ Qj(a). So Qj(a)∩L2 = ∅ and hence, ML2

j (a) behaves the same as MQk
j (a).

The latter rejects, which contradicts (iv).

Case 5d is symmetric to Case 5c.

Now assume Vk was defined according to Case 6: So b ∈ Qi(b) and b /∈ Qj(b).

Assume Vk was defined according to Case 6a. So a /∈ Qj(b). Suppose Qj(b) =
{d, e}. Then L ∩ W (sk) = Vk = {b, c}. So L ∩ Qj(b) = ∅. Therefore, ML2

j (b)

behaves the same as MQk
j (b). The latter rejects. Since b ∈ L, this contradicts

(iv). Now assume Qj(b) �= {d, e}. Then L ∩ W (sk) = Vk = {a, b, y}, where
y ∈ {d, e}−Qj(b). So L∩Qj(b) = ∅. Similar arguments obtain a contradiction
to (iv).

Assume Vk was defined according to Case 6b. So c /∈ Qj(b) and L ∩ W (sk) =

Vk = {b, c}. Hence, L ∩ Qj(b) = ∅. So ML2
j (b) behaves the same as MQk

j (b).
The latter rejects. Since b ∈ L, this contradicts (iv).

Assume Vk was defined according to Case 6c. So b ∈ Qi(b), Qj(b) = {a, c}
and L ∩ W (sk) = Vk = {a, b, y}, where y ∈ {d, e} − {u}. We claim a /∈ L2.
Suppose a ∈ L2. Then a /∈ L1 and hence, L1∩W (sk)∩Qi(a) = ∅ since Qi(a) =
{a, u} in this case. So Mi(a) with oracle Ok behaves the same as Mi(a) with
oracle L1. The former rejects, and the latter accepts because a ∈ L. This is a
contradiction. So a /∈ L2. Hence, Vk∩Qj(b) = ∅. Since Vk = (L1∪L2)∩W (sk),
Mj(b) with oracle L2 behaves the same as Mj(b) with oracle Qk. The latter
rejects, which contradicts (iv).

Case 7 is symmetric to Case 6.

Assume Vk was defined according to Case 8. So {d, e} �⊆ Qi(a) ∪ Qj(a) and
{b, c} �⊆ Qi(a) ∪ Qj(a). Without loss of generality, assume d /∈ Qi(a) ∪ Qj(a)
and b /∈ Qi(a) ∪ Qj(a). Then Vk = {a, b, d} = L ∩ W (sk). So either a /∈ L1 or
a /∈ L2. Assume a /∈ L1. Then L1 ∩ Qi(a) = ∅ since b, d /∈ Qi(a). Therefore,
ML1

i (a) behaves the same as MOk
i (a). The latter rejects. So this contradicts

14

(iii). Similar arguments show that a /∈ L2 contradicts (iv). This finishes Case 8
and all cases.

From the fact that all possible cases led to contradictions, we obtain that the
initial assumption was false. Hence, L is not weakly 2-tt-mitotic. �

The following proposition shows that with our result we reached the limit of
the used proof technique. More precisely, our proof cannot be generalized to
show that there is a 2-tt-autoreducible set that is not weakly T-mitotic.

Proposition 11 For every language L that satisfies conditions (i) and (ii) in
the proof of Theorem 9, L is weakly 5-tt-mitotic.

PROOF. Let L be a language that satisfies conditions (i) and (ii). So

L ⊆ ⋃
n

(∪s∈Σt(n)−3W (s)).

For any s ∈ Σt(n)−3, let a =def s000, b =def s001, c =def s010, d =def s011, and
e =def s100.

We define the partition of L = L1 ∪ L2 according to the following table.

L ∩ W (s) L1 ∩ W (s) L2 ∩ W (s)

∅ ∅ ∅
{b, c} {b} {c}
{d, e} {d} {e}
{a, b, d} {a, b} {d}
{a, b, e} {a, e} {b}
{a, c, d} {c} {a, d}
{a, c, e} {e} {a, c}
{b, c, d, e} {c, d} {b, e}

The first column gives all possibilities of L∩W (s) while the second and third
column defines L1 ∩ W (s) and L2 ∩ W (s) in the corresponding cases, respec-
tively.

Note that sets in the column for L1 ∩ W (s) are pairwise different. So a 5-tt
reduction machine M on input x can ask for all y ∈ W (s) whether y ∈ L1,

15

where x ∈ W (s), and check which case it is according to the above table.
Then M has complete knowledge of L ∩W (s) and be able to accept or reject
x correctly. Note that it takes no more than polynomial-time to check whether
x ∈ W (s) for some s, and to generate the above table for s. So L is reduced
to L1 via a polynomial-time 5-tt reduction (since ‖W (s))‖ = 5). Similar ar-
guments show L1 is 5-tt reducible to L2 and L2 is 5-tt reducible to L, both of
which in polynomial-time. Therefore, L is weakly 5-tt mitotic. �

4 Non-Mitotic Sets of Low Complexity

Buhrman, Hoene, and Torenvliet [10] show that EXP contains non-m-mitotic
sets. We are interested in constructing non-T-mitotic sets in NP. Recall that
the existence of such sets implies that P �= NP and hence we cannot expect
to prove this without a sufficiently strong hypothesis. Moreover, the same
holds for the non-existence of non-m-mitotic sets in NP, since this implies
NP �= EXP [10].

It is known that mitoticity implies autoreducibility [2], hence it suffices to
construct non-T-autoreducible sets in NP. Beigel and Feigenbaum [7] construct
incoherent sets in NP under the assumption that NEEEXP �⊆ BPEEEXP.
In particular, these sets are non-T-autoreducible. Moreover, Buhrman and
Torenvliet [11] show that if NEE �⊆ EE, there are non-T-autoreducible sets in
NP. Under a slightly stronger assumption, we construct non-T-autoreducible
sets in (NP ∩ coNP) − P. We then prove that 2-tt-autoreducibility and T-
mitoticity (and hence r-autoreducibility and r-mitoticity for every reduction
r between 2-tt and T) do not coincide for NP. To show this, we assume that
NP ∩ coNP contains generic sets.

Theorem 12 If EEE �= NEEE ∩ coNEEE, then there exists C ∈ (NP ∩
coNP) − P such that

• C is not T-autoreducible and
• C is not T-mitotic.

PROOF. Choose B ∈ (NEEE∩ coNEEE)−EEE. So there exists a constant

c ≥ 1 such that both B and B are decidable in nondeterministic time 222c·n
.

Let t(x) =def 22x2c

be a tower function and let A =def {0t(n)
∣∣∣ n ≥ 0} and

C =def {0t(x)
∣∣∣ x ∈ B}. Note that A ∈ P. By the same argument as in the proof

of Theorem 3 we obtain C ∈ (NP ∩ coNP) − P.

We will now show that the set C is not T-autoreducible. Let us assume that

16

C is T-autoreducible. So there exists a deterministic polynomial time oracle
Turing-machine M ′ such that L(M ′C) = C. Furthermore, it holds for all x
that during its work on input x, M ′ never queries the oracle C for x.

Let k ≥ 0 such that the running-time of M ′ on inputs of length n ≥ 1 is
bounded by the polynomial nk. Observe that t(n)k <ae t(n+1). More precisely,

(
n > log(k)−1

)
=⇒ t(n)k = (22n2c

)k < t(n + 1) = 22(n+1)2c

. (6)

Let log(k) ≤ m, and assume that M ′ is running on input 0t(m). Since M ′ is
an oracle machine, it can query C for a string q. Observe that such a query
q can have length at most t(m)k. We can assume that M ′ queries C only for
strings from A (i.e. strings of the form 0t(i) for i ≥ 0). As C ⊆ A, these are the
only queries that have a chance of getting a positive answer from C. Notice
that M ′ is not allowed to query C for 0t(m) because M ′ proves that C is T-
autoreducible. Furthermore, due to (6), M ′ on input 0t(m) cannot query C for
0t(m+1) or longer strings. So M ′ on input 0t(m) can only query C for strings in
{0t(i)

∣∣∣ 0 ≤ i < m}.

We construct a deterministic polynomial-time Turing-machine M such that
L(M) = C. On input x, M first checks whether x ∈ A, i.e., whether x = 0t(n)

for some n ≥ 0. If no such n exists, M rejects. Since this can easily be done in
polynomial time, we assume that there exists an n ≥ 0 such that M is running
on input 0t(n). We define

E[i] =

⎧⎪⎨
⎪⎩

1, if 0t(i) ∈ C

0, if 0t(i) �∈ C.

M will compute E[0], E[1], . . . , E[n] one after another and accept the in-
put 0t(n) if and only if E[n] = 1. Since k is a constant, we can encode
E[0], E[1], . . . , E[log(k)− 1] into the program of M . During its work on input
0t(n), M will simulate M ′. Notice that while M ′ is equipped with oracle C, M
is not an oracle machine and hence cannot query an oracle while simulating
M ′. Instead, M will make use of the values E[0], E[1], . . . it has computed so
far to answer possible oracle queries of M ′.

Let log(k) ≤ m ≤ n. We now describe how M computes E[m] if it has access
to E[0], E[1], . . . , E[m − 1]:

17

Subroutine compute E[m];
(1) Compute 0t(m).

(2) Simulate M′ on input 0t(m). For every oracle query q of M′ on

input

0t(m), proceed as follows:

(a) Compute j ≥ 0 such that q = 0t(j). // Note that

j < m.
(b) If E[j] = 0, continue the simulation of M′ with a negative

answer

to query q. If E[j] = 1, continue the simulation of M′

with a

positive answer to query q.

(3) If M′ accepts, set E[m] := 1, else set E[m] := 0.

From our above argumentation it follows that for 0 ≤ i ≤ n, the algorithm
computes E[i] correctly if it has access to E[0], . . . , E[i−1]. Since M is running
on input 0t(n) and computes E[0], E[1], . . . , E[n] one after another, M clearly
is a polynomial time machine and it holds that L(M) = C.

This proves C ∈ P, which contradicts our assumption. Hence, such machine
M ′ cannot exist. So C is not T-autoreducible and hence not T-mitotic [2]. �

Ladner [16] showed that autoreducibility and mitoticity coincide for com-
putably enumerable sets. Under the strong assumption that NP ∩ coNP con-
tains n-generic sets, we can show that the similar question in complexity theory
has a negative answer.

The notion of resource-bounded genericity was defined by Ambos-Spies, Fleis-
chhack, and Huwig [3]. We use the following equivalent definition [4,18], where
L(x) denotes L’s characteristic function on x.

Definition 13 For a set L and a string x let L|x = {y ∈ L
∣∣∣ y < x}. A

deterministic oracle Turing machine M is a predictor for a set L, if for all x,
ML|x(x) = L(x). L is a.e. unpredictable in time t(n), if every predictor for L
requires more than t(n) time for all but finitely many x.

Definition 14 A set L is t(n)-generic if it is a.e. unpredictable in time t(2n).

This is equivalent to say that for every oracle Turing machine M , if ML|x(x) =
L(x) for all x, then the running time of M is at least t(2|x|) for all but finitely
many x.

For a given set L and two strings x and y, there are 4 possibilities for the string
L(x)L(y). For 1-cheatable sets L, a polynomial-time-computable function can
reduce the number of possibilities to 2.

18

Definition 15 ([5,6]) A set L is 1-cheatable if there exists a polynomial-
time-computable function f such that f : Σ∗×Σ∗ −→ {0, 1}2×{0, 1}2 and for
all x and y, the string L(x)L(y) belongs to f(x, y).

Note that in this definition and in the following text we identify the pair
f(x, y) = (w1, w2) with the set {w1, w2}. Moreover, if f(x, y) = (w1, w2), then
f(x, y)R denotes the pair (wR

1 , wR
2) where wR denotes the reverse of the word

w.

Theorem 16 If NP ∩ coNP contains n-generic sets, then there exists a tally
set S ∈ NP ∩ coNP such that

• S is 2-tt-autoreducible and
• S is not T-mitotic.

PROOF. Let t(0) = 2 and t(n + 1) = 22t(n)
be a tower function. Let A′ =

{0t(n)
∣∣∣ n ≥ 0}, A′′ = A′ ∪ 0A′, and A′′′ = A′ ∪ 0A′ ∪ 00A′. In this way, the

number of primes indicates the number of words in the set with length around
t(n) for each n. By assumption, there exists an n-generic set L ∈ NP∩ coNP.
Define L′′ = L ∩ A′′ and observe that L′′ ∈ NP ∩ coNP.

Claim 17 L′′ is not 1-cheatable.

PROOF. Assuming that L′′ is 1-cheatable we will show that L is not n-generic.
Let f be a function that witnesses the 1-cheatability of L′′. Without loss of
generality we may assume that if f(x, y) = (v, w), then v �= w.

g(x, y) =def

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f(x, y) : if x < y

f(y, x)R : if x > y

(00, 11) : if x = y

Observe that g witnesses the 1-cheatability of L′′ such that if g(x, y) = (v, w),
then v �= w. In addition, for all x and y,

g(x, y) = g(y, x)R. (7)

19

We describe a predictor M for L on input x.

(1) if x /∈ A′′ then accept if and only if x ∈ L

(2) // here either x = 0t(n) or x = 0t(n)+1 for some n

(3) if x = 0t(n) then let y = 0t(n)+1 else let y = 0t(n)

(i.e., with y we compute the neighbor of x in A′′)
(4) compute g(x, y) = (ab, cd) where a, b, c, and d are suitable

bits

(5) if a = c then return a

(6) if b = d then accept if and only if x ∈ L

(7) // here ab = cd and hence g(x, y) = {00, 11} or g(x, y) = {01, 10}
(8) if a = b and |x| > |y| then accept if and only if y belongs to

the

oracle L|x
(9) if a = b and |x| ≤ |y| then accept if and only if x ∈ L

(10) // here g(x, y) = {01, 10}
(11) if |x| > |y| then accept if and only if y does not belong to

the

oracle L|x
(12) accept if and only if x ∈ L

In the algorithm, the term accept if and only if x ∈ L means that first,
in deterministic time 2nO(1)

, we find out whether x belongs to L, and then we
accept accordingly.

We observe that M is a predictor for L: In line 5, M predicts correctly, since
g(x, y) = (ab, ad) and therefore, L(x) = a. M predicts correctly in line 8,
since g(x, y) = {00, 11} implies x ∈ L ⇔ y ∈ L and |y| < |x| implies y ∈
L|x ⇔ y ∈ L. M predicts correctly in line 11, since g(x, y) = {01, 10} implies
x ∈ L ⇔ y /∈ L and again |y| < |x| implies y ∈ L|x ⇔ y ∈ L. Hence M is a
predictor for L.

If we do not take the lines 1, 6, 9, and 12 into account, then the running time
of M is polynomially bounded, say by the polynomial p. Now we are going to
show the following.

For all n, at least one of the following holds: ML|x(x) stops within p(|x|)
steps or ML|y(y) stops within p(|y|) steps, where x = 0t(n) and y = 0t(n)+1. (∗)

Assume (∗) does not hold for a particular n, and let x = 0t(n) and y = 0t(n)+1.
Hence, both computations, ML|x(x) and ML|y(y) must stop in one of the lines
1, 6, 9, and 12. Since, x, y ∈ A′′, these computations do not stop in line 1.

Assume ML|x(x) stops in line 6. In this case, g(x, y) = (ab, cb). By (7), the com-
putation ML|y(y) computes the value g(y, x) = (ba, bc) in line 4. So ML|y(y)
stops in line 5, which contradicts our observation that we must stop in the

20

lines 6, 9, or 12. This shows that ML|x(x) does not stop in line 6. Analogously
we obtain that ML|y(y) does not stop in line 6. So both computations must
stop in line 9 or line 12.

ML|y(y) does not stop in line 9, since in this computation, the second condition
in line 9 evaluates to false. So ML|y(y) stops in line 12. However, this is not
possible, since ML|y(y) would have stopped already in line 11. This proves (∗).

From (∗) it follows that for infinitely many x, ML|x(x) stops within p(|x|)
steps. Hence L is not (log p(n))-generic and in particular, not n-generic. This
contradicts our assumption on L. (Note that we obtain also a contradiction if
we assume L to be t(n)-generic such that t(n) > c log n for all c > 0.) This
finishes the proof of Claim 17. �

So far we constructed an L′′ ∈ NP ∩ coNP such that L′′ ⊆ A′′ and L′′ is
not 1-cheatable. Now we define a set L′′′ ⊆ A′′′ (this will be the set asserted
in the theorem). For n ≥ 0 let xn = 0t(n), yn = 0t(n)+1, zn = 0t(n)+2, and
cn = L′′(xn)L′′(yn). Define L′′′ to be the unique subset of A′′′ that satisfies the
following conditions where dn = L′′′(xn)L′′′(yn)L′′′(zn):

(1) if cn = 00 then dn = 000
(2) if cn = 01 then dn = 110
(3) if cn = 10 then dn = 101
(4) if cn = 11 then dn = 011

Observe that L′′′ is a tally set in NP ∩ coNP. Moreover, note that for all n,
either 0 or 2 words from {xn, yn, zn} belong to L′′′. This implies that L′′′ is 2-tt-
autoreducible: If the input x is not in A′′′, then reject. Otherwise, determine the
n such that x ∈ {xn, yn, zn}. Ask the oracle for the two words in {xn, yn, zn}−
{x} and output the parity of the answers.

Claim 18 L′′′ is not T-mitotic.

PROOF. Assume L′′′ is T-mitotic, and let S ∈ P be a witnessing separator.
Let L′′′≤p

TL′′′ ∩ S via machine M1 and let L′′′≤p
TL′′′ ∩ S via machine M2. We

will obtain a contradiction by showing that L′′ is 1-cheatable. We define the
witnessing function h(x, y) as follows.

(1) If x = y then output (00, 11).
(2) If |x| > |y| then output h(y, x)R.
(3) If x /∈ A′′ then output (00, 01).
(4) If y /∈ A′′ then output (00, 10).
(5) // Here |x| < |y| and x, y ∈ A′′.
(6) If |y| − |x| > 1 then let a = L′′(x) and output (a0, a1).
(7) Determine n such that x = xn and y = yn.

21

(8) Distinguish the following cases.
(a) S ∩ {xn, yn, zn} = ∅: Simulate M2(xn), M2(yn), and M2(zn) where

oracle queries q of length ≤ t(n − 1) + 2 are answered according to
q ∈ L′′′ ∩ S and all other oracle queries are answered negatively. Let
dn be the concatenation of the outputs of these simulations. Let cn

be the value corresponding to dn according to the definition of L′′′.
Output (cn, 00).

(b) S ∩ {xn, yn, zn} = ∅: Do the same as in step 8a, but use M1 instead
of M2 and answer short queries q according to q ∈ L′′′ ∩ S.

(c) |S ∩ {xn, yn, zn}| = 1: Without loss of generality we assume xn ∈ S
and yn, zn /∈ S. For r ∈ {yes, no} we simulate M2(xn), M2(yn), and
M2(zn) where oracle queries q of length ≤ t(n − 1) + 2 are answered
according to q ∈ L′′′ ∩ S, the oracle query xn is answered with r,
and all other oracle queries q are answered negatively. Let dr be the
concatenation of the outputs of these simulations. Let cr be the value
corresponding to dr according to the definition of L′′′ (if such cr does
not exist, then let cr = 00). Output (cyes, cno).

(d) |S ∩ {xn, yn, zn}| = 1: Do the same as in step 8c, but use M1 instead
of M2 and answer short queries q according to q ∈ L′′′ ∩ S.

We argue that h is computable in polynomial time. Note that if we recursively
call h(y, x) in step 2, then the computation of h(y, x) will not call h again. So
the recursion depth of the algorithm is ≤ 2. In step 6, |x| < |y| and x, y ∈ A′′,
since |x| = |y| implies that we stop in line 3 or 4. From the definition of A′′ it
follows that there exists an n such that |x| ≤ t(n − 1) + 1 and |y| ≥ t(n). So
the computation of a in step 6 takes time

≤ 2|x|
O(1) ≤ 2t(n−1)O(1) ≤ 22t(n−1)

= t(n) ≤ |y|. (8)

The n in step 7 exists, since x, y ∈ A′′ and |y| − |x| = 1. In step 8, queries q of
length ≤ t(n− 1) + 2 must be answered according to q ∈ L′′′ ∩ S or according
to q ∈ L′′′ ∩ S. Similar to (8) these simulations can be done in polynomial
time in |x|. This shows that h is computable in polynomial time.

We now argue that h witnesses that L′′ is 1-cheatable, i.e., if f(x, y) = (ab, cd),
then L′′(x)L′′(y) = ab or L′′(x)L′′(y) = cd. It suffices to show this for the case
|x| < |y|. If we stop in step 3, then x /∈ L′′ and hence L′′(x)L′′(y) = 00
or L′′(x)L′′(y) = 01. Similarly, if we stop in step 4, then y /∈ L′′ and hence
L′′(x)L′′(y) = 00 or L′′(x)L′′(y) = 10. If we stop in step 6, then L′′(x) = a and
so L′′(x)L′′(y) = a0 or L′′(x)L′′(y) = a1. So it remains to argue for step 8.

Now assume the output is made in step 8a. Consider the computations
ML′′′∩S

2 (xn), ML′′′∩S
2 (yn), and ML′′′∩S

2 (zn). Since these are polynomial-time

computations, they cannot ask for words of length ≥ t(n + 1) = 22t(n)
. So xn,

yn, and zn are the only candidates for words that are of length > t(n− 1) + 2

22

and that can be queried by these computations. But by assumption of case 8a,
these words are not in L′′′ ∩ S. Therefore, the simulations of M2(xn), M2(yn),
and M2(zn) in step 8a behave the same way as the computations ML′′′∩S

2 (xn),
ML′′′∩S

2 (yn), and ML′′′∩S
2 (zn). Hence we obtain dn = L′′′(xn)L′′′(yn)L

′′′(zn) and
cn = L′′(xn)L′′(yn). So the output contains the string L′′′(x)L′′′(y). Step 8b is
argued similar to step 8a.

Assume the output is made in step 8c. We can reuse the argument from step
8a. The only difference is the words xn. It can be an element of L′′′ ∩S and it
can be queried by the computations ML′′′∩S

2 (xn), ML′′′∩S
2 (yn), and ML′′′∩S

2 (zn).
So we simulate both possibilities, the one where xn ∈ L′′′∩S and the one where
xn /∈ L′′′ ∩ S. So at least one of the strings cyes and cno equals L′′′(x)L′′′(y)
and so the output contains the string L′′′(x)L′′′(y). Step 8d is argued similar
to step 8c.

This shows that L′′ is 1-cheatable via function h. This contradicts Claim 17
and therefore, L′′′ is not T-mitotic. This finishes the proof of Claim 18. �

This proves the theorem. �

Corollary 19 If NP ∩ coNP contains n-generic sets, then T -autoreducibility
and T -mitoticity differ on NP.

PROOF. Follows from the fact that every 2-tt-autoreducible set is T-
autoreducible. �

Corollary 20 Let t(n) be a function such that for all c > 0 and all sufficiently
large n, t(n) > c log n. If NP ∩ coNP contains t(n)-generic sets, then there
exists a tally set L ∈ NP ∩ coNP that is 2-tt-autoreducible, but not T-mitotic.

PROOF. Follows from the proof of Theorem 16. �

5 Uniformly Hard Languages in NP

In this section we assume that NP contains uniformly hard languages, i.e.,
languages that are uniformly not contained in coNP. After discussing this
assumption we show that it implies that every ≤p

1−tt-complete set for NP is
nonuniformly NP-complete.

Recall that we have separated 1-tt-reducibility from m-reducibility within NP
under a reasonable assumption in Section 3. Nevertheless the main result of

23

this section indicates that these two reducibilities are pretty similar in terms
of NP-complete problems: Every ≤p

1−tt-complete set for NP is m-complete if
we allow the reducing function to use an advice of polynomial length.

Definition 21 Let C and D be complexity classes, and let A and B be subsets
of Σ∗.

(1) A
i.o.
= B

df⇐⇒ for infinitely many n it holds that A ∩ Σn = B ∩ Σn.

(2) A
i.o.∈ C df⇐⇒ there exists C ∈ C such that A

i.o.
= C.

(3) C i.o.⊆D df⇐⇒ C
i.o.∈ D for all C ∈ C.

The following proposition is easy to observe.

Proposition 22 Let C and D be complexity classes, and let A and B be sub-
sets of Σ∗.

(1) A
i.o.
= B if and only if A

i.o.
= B.

(2) A
i.o.∈ C if and only if A

i.o.∈ coC.
(3) C i.o.⊆D if and only if coC i.o.⊆ coD.

Proposition 23 The following are equivalent:

(i) coNP
i.o.⊆/ NP

(ii) NP
i.o.⊆/ coNP

(iii) There exists an A ∈ NP such that A
i.o.∈/ coNP.

(iv) There exists a paddable NP-complete A such that A
i.o.∈/ coNP.

PROOF. The equivalence of (i) and (ii) is by Proposition 22. Moreover, from
the definition it immediately follows that ¬(ii)⇒¬(iii) and ¬(iii)⇒¬(iv).
It remains to show ¬(iv)⇒¬(ii). So we assume that for all paddable NP-
complete A it holds that A

i.o.∈ coNP. Choose any C ∈ NP and let B = 0C ∪
1SAT. Hence B is NP-complete and paddable (for paddability, observe that
elements from 0Σ∗ are first mapped to 1Σ∗ via the reduction 0C≤p

m1SAT).
By our assumption B

i.o.∈ coNP. So there exists a D ∈ coNP such that B
i.o.
= D.

Let D′ = {w
∣∣∣ 0w ∈ D} and note that D′ ∈ coNP. Observe that for every n,

if B ∩ Σn+1 = D ∩ Σn+1, then C ∩ Σn = D′ ∩ Σn. Hence C
i.o.
= D′ which shows

C
i.o.∈ coNP. �

We define polynomial-time many-one reductions with advice. Non-uniform re-
ductions are of interest in cryptography, where they model an adversary who
is capable of long preprocessing [9]. They also have applications in structural
complexity theory. Agrawal [1] and Hitchcock and Pavan [13] investigate non-
uniform reductions and show under reasonable hypotheses that every many-

24

one complete set for NP is also hard for length-increasing, non-uniform reduc-
tions.

Definition 24 A≤p/poly
m B if there exists an f ∈ FP/poly such that for all

words x, x ∈ A ⇔ f(x) ∈ B.

The following theorem assumes as hypothesis that NP
i.o.∈/ coNP. This hypothe-

sis states that for sufficiently large n, there exists a tautology of size n without
short proofs. We use this hypothesis to show that 1-tt-complete sets for NP
are nonuniformly m-complete.

Theorem 25 If NP
i.o.⊆/ coNP, then every ≤p

1−tt-complete set for NP is ≤p/poly
m -

complete.

PROOF. By assumption, there exists an NP-complete K such that
K

i.o.∈/ coNP. Choose g ∈ FP such that {(u, v)
∣∣∣ u ∈ K ∨ v ∈ K}≤p

mK via g.

Let A be ≤p
1−tt-complete for NP. So K≤p

1−ttA, i.e., there exists a polynomial-

time computable function f : Σ∗ → Σ∗ ∪ {w
∣∣∣ w ∈ Σ∗} such that for all words

x:

(1) If f(x) = w for some w ∈ Σ∗, then (x ∈ K ⇔ w ∈ A).
(2) If f(x) = w for some w ∈ Σ∗, then (x ∈ K ⇔ w /∈ A).

Moreover, choose r ∈ FP such that A≤p
mK via r. Define

EASY =def {u
∣∣∣∃v, |v| = |u|, f(g(u, v)) = w for some w ∈ Σ∗, and r(w) ∈ K}.

EASY belongs to NP. We see EASY ⊆ K as follows: Let u ∈ EASY and v, w
be as above. Then r(w) ∈ K implies w ∈ A, hence g(u, v) /∈ K, and hence
u /∈ K. From our assumption K

i.o.∈/ NP it follows that there exists an n0 ≥ 0
such that

∀n ≥ n0, K
=n �⊆ EASY=n.

So for every n ≥ n0 we can choose a word wn ∈ K
=n − EASY. For n < n0,

let wn = ε. Choose fixed z1 ∈ A and z0 /∈ A. We define a reduction which
witnesses K≤p/poly

m A.

h(v) =def

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(g(w|v|, v)) : if |v| ≥ n0 and f(g(w|v|, v)) ∈ Σ∗

z1 : if |v| ≥ n0 and f(g(w|v|, v)) = w for some w ∈ Σ∗

z1 : if |v| < n0 and v ∈ K

z0 : if |v| < n0 and v /∈ K

Observe that h ∈ FP/poly (even FP/lin) with the advice n �→ wn. We claim

25

for all v,
v ∈ K ⇔ h(v) ∈ A. (9)

This equivalence clearly holds for all v such that |v| < n0. So assume |v| ≥ n0

and let n = |v|. If f(g(wn, v)) ∈ Σ∗, then h is defined according to the first
line of its definition and equivalence (9) is obtained as follows.

v ∈ K ⇔ g(wn, v) ∈ K ⇔ f(g(wn, v)) ∈ A

Otherwise, f(g(wn, v)) = w for some w ∈ Σ∗. We claim that v must belong
to K. If not, then g(wn, v) /∈ K and hence w ∈ A (since K≤p

1−ttA via f). So
r(w) ∈ K which witnesses that wn ∈ EASY. This contradicts the choice of
wn and it follows that v ∈ K. This shows v ∈ K ⇔ h(v) = z1 ∈ A and proves
equivalence (9). �

References

[1] M. Agrawal. Pseudo-random generators and structure of complete degrees. In
IEEE Conference on Computational Complexity, pages 139–147, 2002.

[2] K. Ambos-Spies. P-mitotic sets. In E. Börger, G. Hasenjäger, and D. Roding,
editors, Logic and Machines, volume 171 of Lecture Notes in Computer Science,
pages 1–23. Springer Verlag, 1984.

[3] K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over
polynomial time computable sets. Theoretical Computer Science, 51:177–204,
1987.

[4] J. Balcazar and E. Mayordomo. A note on genericty and bi-immunity.
In Proceedings of the Tenth Annual IEEE Conference on Computational
Complexity, pages 193–196, 1995.

[5] R. Beigel. Query-Limited Reducibilities. PhD thesis, Stanford University, 1987.

[6] R. Beigel. Relativized counting classes: Relations among thresholds, parity,
mods. Journal of Computer and System Sciences, 42:76–96, 1991.

[7] R. Beigel and J. Feigenbaum. On being incoherent without being very hard.
Computational Complexity, 2:1–17, 1992.

[8] L. Berman and J. Hartmanis. On isomorphism and density of NP and other
complete sets. SIAM Journal on Computing, 6:305–322, 1977.

[9] D. Boneh and R. Venkatesan. Rounding in lattices and its cryptographic
applications. In SODA, pages 675–681, 1997.

[10] H. Buhrman, A. Hoene, and L. Torenvliet. Splittings, robustness, and structure
of complete sets. SIAM Journal on Computing, 27:637–653, 1998.

26

[11] H. Buhrman and L. Torenvliet. P-selective self-reducible sets: A new
characterization of P. Journal of Computer and System Sciences, 53:210–217,
1996.

[12] C. Glaßer, A. Pavan, A. L. Selman, and L. Zhang. Splitting NP-complete sets.
SIAM Journal on Computing, 37(5):1517–1535, 2008.

[13] J. Hitchcock and A. Pavan. Comparing reductions to NP-complete
sets. Technical Report TR06-039, Electronic Colloquium on Computational
Complexity, 2006.

[14] S. Homer. Structural properties of nondeterministic complete sets. In Structure
in Complexity Theory Conference, pages 3–10, 1990.

[15] S. Homer. Structural properties of complete problems for exponential time.
In A. L. Selman and L. A. Hemaspaandra, editors, Complexity Theory
Retrospective II, pages 135–153. Springer Verlag, New York, 1997.

[16] R. E. Ladner. Mitotic recursively enumerable sets. Journal of Symbolic Logic,
38(2):199–211, 1973.

[17] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial
time reducibilities. Theoretical Computer Science, 1:103–123, 1975.

[18] A. Pavan and A. L. Selman. Separation of NP-completeness notions. SIAM
Journal on Computing, 31(3):906–918, 2002.

[19] A. L. Selman. P-selective sets, tally languages, and the behavior of polynomial-
time reducibilities on NP. Mathematical Systems Theory, 13:55–65, 1979.

[20] A. L. Selman. Reductions on NP and p-selective sets. Theoretical Computer
Science, 19:287–304, 1982.

27

