
Disjoint NP-Pairs
(Extended Abstract)

Christian Glaßer1 Alan L. Selman Samik Sengupta
Liyu Zhang

Department of Computer Science and Engineering,
University at Buffalo, Buffalo, NY 14260

Email: {cglasser,selman,samik,lzhang7}@cse.buffalo.edu

January 12, 2003

1Supported by a postdoctoral grant from the German Academic Exchange Service (Deutscher Akademischer Aus-
tauschdienst – DAAD).

Abstract

We study the question of whether the classD of disjoint pairs(A,B) of NP-sets contains a complete pair.
The question relates to the question of whether optimal proof systems exist, and we relate it to the previously
studied question of whether there exists a disjoint pair of NP-sets that is NP-hard. We show under reasonable
hypotheses that nonsymmetric disjoint NP-pairs exist, which provides additional evidence for the existence
of P-inseparable disjoint NP-pairs.

We construct an oracle relative to which the class of disjoint NP-pairs does not have a complete pair
and an oracle relative to which complete pairs exist, but no pair is NP-hard. Both oracles satisfy additional
interesting properties.

1 Introduction

We study the classD of disjoint pairs(A,B), whereA andB are nonempty, disjoint sets belonging to
NP. Such disjoint NP-pairs are interesting for at least two reasons. First, Grollmann and Selman [GS88]
showed that the question of whetherD contains P-inseparable disjoint NP-pairs is related to the existence of
public-key cryptosystems. Second, Razborov [Raz94] and Pudlák [Pud01] demonstrated that these pairs are
closely related to the theory of proof systems for propositional calculus. Specifically, Razborov showed that
existence of an optimal propositional proof system implies existence of a complete pair forD. Primarily in
this paper we are interested in the question raised by Razborov [Raz94] of whetherD contains a complete
pair. We show connections between this question and earlier work on disjoint NP-pairs, and we exhibit an
oracle relative to whichD does not contain any complete pair.

From a technical point of view, disjoint pairs are simply an equivalent formulation of promise problems.
There are natural notions of reducibilities between promise problems [ESY84, Sel88] that disjoint pairs
inherit easily [GS88]. Hence, completeness and hardness notions follow naturally. We begin in the next
section with these definitions, some easy observations, and a review of the known results.

The preliminary section tends to details concerning reductions between disjoint NP-pairs. In Section 3
we observe that ifD does not contain a Turing-complete disjoint NP-pair, thenD does not contain a disjoint
NP-pair all of whose separators are Turing-hard for NP. The latter is a conjecture formulated by Even,
Selman, and Yacobi [ESY84] and it has several known consequences: Public-key cryptosystems that are
NP-hard to crack do not exist;NP 6= UP, NP 6= coNP, andNPMV 6⊆c NPSV. Our main result in this
section is an oracleX relative to whichD does not contain a disjoint Turing-complete NP-pair and relative
to whichP 6= UP. Relative toX, by Razborov’s result [Raz94], optimal propositional proof systems do
not exist. P-inseparable disjoint NP-pairs exist relative toX, becauseP 6= UP [GS88]. Most researchers
believe that P-inseparable disjoint NP-pairs exist and we believe that no disjoint NP-pair has only NP-hard
separators. Both of these properties hold relative to X. This is the first oracle relative to which both of
these conditions hold simultaneously. Homer and Selman [HS92] obtained an oracle relative to which all
disjoint NP-pairs are P-separable, so the conjecture of Even, Selman, and Yacobi holds relative to their
oracle only for this trivial reason. Now lets say a few things about the construction of oracle X. Previous
researchers have obtained oracles relative to which certain (promise) complexity classes do not have disjoint
Turing-complete NP-pairs. However, the technique of Gurevich [Gur83], who proved thatNP ∩ coNP
has Turing-complete sets if and only if it has many-one-complete sets, does not apply. Neither does the
technique of Hemaspaandra, Jain, and Vereshchagin [HJV93], who demonstrated, among other results, an
oracle relative to which FewP does not have a Turing-complete set.

In Section 4 we show that the question of whetherD contains a disjoint Turing-complete NP-pair has an
equivalent natural formulation as an hypothesis about classes of single-valued partial functions. Section 5
studiessymmetricdisjoint NP-pairs. Pudlák [Pud01] defined a disjoint pair(A,B) to be symmetric if
(A,B) is many-one reducible to(B,A). We easily show that P-separable implies symmetric. We give
complexity-theoretic evidence of the existence of nonsymmetric disjoint NP-pairs. As a consequence, we
obtain new ways to demonstrate existence of P-inseparable sets. Also, we use symmetry to show under
reasonable hypotheses that many-one and Turing reducibilities differ for disjoint NP-pairs. (All reductions
in this paper are polynomial-time-bounded.) Concrete candidates for P-inseparable disjoint NP-pairs come
from problems in UP or inNP ∩ coNP. Nevertheless, Grollmann and Selman [GS88] proved that the
existence of P-inseparable disjoint NP-pairs implies the existence of P-inseparable disjoint NP-pairs, where
both sets are NP-complete. Here we prove two analogous results. Existence of nonsymmetric disjoint NP-
pairs implies existence of nonsymmetric disjoint NP-pairs, where both sets are NP-complete. If there exists a

1

many-one-complete disjoint NP-pair, then there exist such a pair, where both sets are NP-complete. Natural
examples of nonsymmetric or≤pp

m - complete disjoint NP-pairs arise either from cryptography or from proof
systems [Pud01]. Our theorems show that the existence of such pairs will imply that nonsymmetric (or≤pp

m -
complete) disjoint NP-pairs exist where both sets of the pair are≤p

m -complete for NP.
Section 6 constructs an oracleO that possesses several interesting properties. Relative toO, many-one-

complete NP-pairs exist. Therefore, while we expect that disjoint complete NP-pairs do not exist, this is
not provable by relativizable techniques. P-inseparable NP-pairs exist relative toO, which we obtain by
proving that nonsymmetric NP-pairs exist. The conjecture of Even, Selman and Yacobi holds relative to
O. Therefore, while nonexistence of Turing-complete disjoint NP-pairs is a sufficient condition for this
conjecture, the converse does not hold, even in a world in which P-inseparable pairs exist. Also, relative to
O, there exists a P-inseparable set that is symmetric. Whereas nonsymmetric implies P-inseparable, again,
the converse does not hold relative toO.

The construction ofO involves some aspects that are unusual in complexity theory. We introduce unde-
cidable requirements, and as a consequence, the oracle is undecidable. In particular, we need to define sets
A andB, such that relative toO, the pair(A,B) is many-one complete. Therefore, we need to show that
for every two nondeterministic, polynomial-time-bounded oracle Turing machinesNMi andNMj , either
L(NMO

i) andL(NMO
j) are not disjoint or there is a reduction from the disjoint pair(L(NMO

i), L(NMO
j))

to (A,B). We accomplish this as follows: GivenNMi, NMj , and a finite initial segmentX of O, we prove
that either there is a finite extensionY of X such that for all oraclesZ that extendY ,

L(NMZ
i) ∩ L(NMZ

j) 6= ∅

or there is a finite extensionY of X such that for all oraclesZ that extendY ,

L(NMZ
i) ∩ L(NMZ

j) = ∅.

Then, we select the extensionY that exists. In this manner weforceone of these two conditions to hold.
In the latter case, to obtain a reduction from the pair(L(NMO

i), L(NMO
j)) to (A,B) requires encoding

information into the oracleO. The other conditions that we wantO to satisfy require diagonalizations. In
order to prove that there is room to diagonalize, we need to carefully control the number of words that must
be reserved for encoding. This is a typical concern in oracle constructions, but even more so here. We
manage this part of the construction by inventing a unique data structure that stores words reserved for the
encoding, and then prove that we do not store too many such words.

2 Preliminaries

We fix the alphabetΣ = {0, 1} and we denote the length of a wordw by |w|. The set of all (resp., nonempty)
words is denoted byΣ∗ (resp.,Σ+). Let Σ<n df={w ∈ Σ∗ ∣∣ |w| < n}, and defineΣ≤n, Σ=n, Σ≥n, andΣ>n

analogously. For a set of wordsX let X<n df=X∩Σ<n, and defineX≤n, X=n, X≥n, andX>n analogously.
For sets of words we take the complement w.r.t.Σ∗.

The set of (nonzero) natural numbers is denoted byN (by N+, respectively). Moreover, we fix a
polynomial-time computable and polynomial-time invertible pairing function〈·, ·〉 : N+× N+→ N+. For a
functionf , dom(f) denotes the domain off .

2.1 Disjoint Pairs, Separators, and the ESY-Conjecture

Definition 2.1 A disjointNP-pair (NP-pair for short) is a pair of nonempty setsA andB such thatA,B ∈
NP andA ∩B = ∅. LetD denote the class of all disjointNP- pairs.

2

Given a disjointNP-pair (A,B), a separatoris a setS such thatA ⊆ S andB ⊆ S; we say thatS
separates(A,B). LetSep(A,B) denote the class of all separators of(A,B). For disjointNP-pairs(A,B),
the fundamental question is whetherSep(A,B) contains a set belonging to P. In that case the pair isP-
separable; otherwise, the pair isP-inseparable. The following proposition summarizes the known results
about P-separability.

Proposition 2.2 1. P 6= NP ∩ co-NP impliesNP containsP-inseparable sets.

2. P 6= UP impliesNP containsP-inseparable sets [GS88].

3. If NP containsP-inseparable sets, thenNP containsNP-completeP-inseparable sets [GS88].

While it is probably the case thatNP containsP-inseparable sets, there is an oracle relative to which
P 6= NP andP-inseparable sets in NP do not exist [HS92]. SoP 6= NP probably is not a sufficiently strong
hypothesis to show existence ofP-inseparable sets inNP.

Definition 2.3 Let (A,B) be a disjointNP-pair.

1. (A,B) is NP-hardif every separator of(A,B) is NP-hard.

2. (A,B) is uniformly NP-hard if there is a deterministic polynomial-time oracle Turing machineM
such that for everyA ∈ Sep(A,B), SAT≤p

TA via M .

Grollmann and Selman [GS88] show that NP-hard implies uniformly NP-hard, i.e., both statements of the
definition are equivalent. Even, Selman, and Yacobi [ESY84] conjectured that there does not exist a disjoint
NP-pair (A,B) such that all separators of(A,B) are≤p

T hard forNP.

Conjecture 2.4 ([ESY84]) There do not exist disjointNP-pairs that areNP-hard.

If Conjecture 2.4 holds, then no public-key cryptosystem is NP-hard to crack. This conjecture is a
strong hypothesis with the following known consequences. In Section 3 we show a sufficient condition for
Conjecture 2.4 to hold.

Proposition 2.5 ([ESY84, GS88, Sel94])If Conjecture 2.4 holds, thenNP 6= coNP, NP 6= UP, and
NPMV 6⊆cNPSV.

2.2 Reductions for Disjoint Pairs

We review the natural notions of reducibilities between disjoint pairs [GS88].

Definition 2.6 (non-uniform reductions for pairs) Let (A,B) and(C,D) be disjoint pairs.

1. (A,B) is many-one reducible in polynomial timeto (C,D), (A,B)≤pp
m (C,D), if for every separator

T ∈ Sep(C,D), there exists a separatorS ∈ Sep(A,B) such thatS≤p
mT .

2. (A,B) is Turing reducible in polynomial timeto (C,D), (A,B)≤pp
T (C,D), if for every separator

T ∈ Sep(C,D), there exists a separatorS ∈ Sep(A,B) such thatS≤p
TT .

Definition 2.7 (uniform reductions for pairs) Let (A,B) and(C,D) be disjoint pairs.

3

1. (A,B) is uniformly many-one reducible in polynomial timeto (C,D), (A,B)≤pp
um(C,D), if there

exists a polynomial-time computable functionf such that for every separatorT ∈ Sep(C,D), there
exists a separatorS ∈ Sep(A,B) such thatS≤p

mT via f .

2. (A,B) is uniformly Turing reducible in polynomial timeto (C,D), (A,B)≤pp
uT (C,D), if there exists

a polynomial-time oracle Turing machineM such that for every separatorT ∈ Sep(C,D), there
exists a separatorS ∈ Sep(A,B) such thatS≤p

TT via M .

If f andM are as above, then we also say that(A,B)≤pp
um(C,D) via f and (A,B)≤pp

uT (C,D) via M .
Observe that if(A,B)≤pp

m (C,D) and(C,D) is P-separable, then so is(A,B) (and the same holds for≤pp
T ,

≤pp
um , and≤pp

uT). We retain the promise problem notation in order to distinguish from reducibilities between
sets. Grollmann and Selman proved that Turing reductions and uniform Turing reductions are equivalent.

Proposition 2.8 ([GS88]) (A,B)≤pp
T (C,D) ⇔ (A,B)≤pp

uT (C,D) for all disjoint pairs (A,B) and
(C,D).

In order to obtain the corresponding theorem for≤pp
um , we can adapt the proof of Proposition 2.8, but a

separate argument is required. We omit the proof in this version.

Theorem 2.9 ≤pp
m = ≤pp

um .

We obtain the following useful characterization of many-one reductions.

Theorem 2.10 (A,B)≤pp
m (C,D) if and only if there exists a polynomial-time computable functionf such

thatf(A) ⊆ C andf(B) ⊆ D.

Proof By Theorem 2.9 there is a polynomial-time computable functionf such for everyA ∈ Sep(S, T),
f−1(A) ∈ Sep(Q,R). That is, ifS ⊆ A andT ⊆ A, thenQ ⊆ f−1(A) andR ⊆ f−1(A), which implies
that f(Q) ⊆ A andf(R) ∩ A = ∅. Well, S ∈ Sep(S, T). Sof(Q) ⊆ S. Also, T ∈ Sep(S, T). So
f(R) ∩ T = ∅. That is,f(R) ⊆ T . The converse is immediate. 2

3 Complete Disjoint NP-Pairs

Keeping with common terminology, a disjoint pair(S, T) is≤pp
m -complete (≤pp

T - complete) for the classD
if (S, T) ∈ D and for every disjoint pair(Q,R) ∈ D, (Q,R)≤pp

m (S, T) ((Q,R)≤pp
T (S, T), respectively).

Consider the following assertions:

1. D does not have a≤pp
T -complete disjoint pair.

2. D does not have a≤pp
m -complete disjoint pair.

3. D does not contain a disjoint pair all of whose separators are≤p
T -hard for NP (i.e., Conjecture 2.4

holds).

4. D does not contain a disjoint pair all of whose separators are≤p
m -hard for NP.

Assertions 1 and 2 are possible answers to the question raised by Razborov [Raz94] of whetherD
contains complete disjoint pairs. Assertion 3 is Conjecture 2.4. Assertion 4 is the analog of this conjecture
using many-one reducibility.

We can dispense with Assertion 4 immediately, for it is equivalent toNP 6= coNP.

4

Proposition 3.1 NP 6= coNP if and only ifD does not contain a disjoint pair all of whose separators are
≤p

m -hard forNP.

Proof If NP = coNP, then(SAT,SAT) is a disjoint pair inD all of whose separators are≤p
m -hard for NP.

To show the other direction, consider the disjoint pair(A,B) ∈ D and assume that all of its separators
are≤p

m -hard for NP. SinceB is a separator of(A,B), SAT ≤p
mB. Therefore,SAT≤p

mB, implying that
SAT ∈ NP. Thus, NP =coNP. 2

Proposition 3.2 Assertion 1 implies Assertions 2 and 3. Assertions 2 and 3 imply Assertion 4.

This Proposition states, in part, that Assertion 1 is so strong as to imply Conjecture 2.4.
Proof It is trivial that Assertion 1 implies Assertion 2 and Assertion 3 implies Assertion 4.

We prove that Assertion 1 implies Assertion 3. Assume Assertion 3 is false and let(S, T) ∈ D such that
all separators are NP-hard. We claim that(S, T) is≤pp

T -complete forD. Let (Q,R) belong toD. Let L be
an arbitrary separator of(S, T). Note thatL is NP-hard andQ ∈ NP. SoQ≤p

TL. SinceQ is a separator of
(Q,R), this demonstrates that(Q,R)≤pp

T (S, T).
Similarly, we prove that Assertion 2 implies Assertion 4. In this case, every separatorL of (S, T) is

≤p
m -hard for NP. SoQ≤p

mL. Therefore,(Q,R)≤pp
m (S, T). 2

Homer and Selman [HS92] constructed an oracle relative to whichP 6= NP and every disjoint NP-pair is
P-separable. Relative to this oracle, Assertion 3 holds and Assertions 1 and 2 are false. To see this, let(A,B)
be an arbitrary disjoint NP-pair. We show that(A,B) is both≤pp

T -complete and≤pp
m - complete. For any

other pair(C,D) ∈ D, since(C,D) is P-separable, there is a separatorS of (C,D) that is in P. Therefore,
for any separatorL of (A,B), S trivially ≤p

m -reduces and≤p
T -reduces toL. So (C,D)≤pp

m (A,B) and
(C,D)≤pp

T (A,B).
In Theorem 3.3 we construct an oracle relative to which Assertion 1 is true, and at the same time,

P 6= UP. Therefore, by Proposition 3.2, with respect to the oracle in Theorem 3.3, all of the following
properties hold:

1. D does not have a≤pp
T -complete disjoint pair.

2. Conjecture 2.4 holds; soUP 6= NP,NP 6= coNP,NPMV 6⊆cNPSV and NP-hard public-key cryp-
tosystems do not exist [ESY84, Sel94].

3. P 6= UP; therefore P-inseparable disjoint NP- pairs exist [GS88].

4. Optimal propositional proof systems do not exist [Raz94].

5. There is a tally setT ∈ coNP−NP and a tally setT ′ ∈ coNE− E [BDG98].

Theorem 3.3 There exists an oracleX such thatDX does not have a≤pp,X
T -complete pair andPX 6=

UPX .

5

4 Function Classes and Disjoint Pairs

We show that there exists a Turing-complete disjoint NP-pair if and only if NPSV contains a partial function
that is Turing-hard for NPSV. We know already that the conjecture of Even, Selman, and Yacobi holds if
and only if NPSV does not contain an NP-hard partial function. Recall [Sel94] that NPSV is the set of all
partial, single-valued functions computed by nondeterministic polynomial-time bounded transducers.

If g is a single-valued total function, then we defineM [g], the single-valued partial function computed
by M with oracleg as follows:x ∈ dom(M [g]) if and only if M reaches an accepting state on inputx. In
this case,M [g](x) is the final value ofM ’s output tape.

The literature contains two different definitions of reductions between partial functions, because one
must decide what to do in case a query is made to the oracle function when the query is not in the domain
of the oracle function. Fenner et al [FHOS97] determined that in this case the value returned should be
a special symbol⊥. Selman [Sel94] permits the value returned in this case to be arbitrary, which is the
standard paradigm for promise problems. Here we use the promise problem definition of Selman [Sel94].

Definition 4.1 f is Turing reducible (as a promise problem) tog in polynomial time if for some deterministic
oracle transducerM , for every single-valued total extensiong′ of g, M [g′] is an extension off .

Here, if the queryq belongs to the domain ofg, then the oracle returns a value ofg(q).

Definition 4.2 A partial functionf is NP–hardif for every single-valued total extensionf ′ of f , theNP–
hard problem SAT is Turing reducible tof ′.

Theorem 4.3 NPSV contains a≤pp
T -complete partial function⇔ D contains a≤pp

T -complete pair.

Proof For anyf ∈ NPSV, define the following sets.

Rf = {〈x, y〉|x ∈ dom(f), y ≤ f(x)} (1)

Sf = {〈x, y〉|x ∈ dom(f), y > f(x)} (2)

Note that(Rf , Sf) is an NP-pair.
Claim. For every separatorA of (Rf , Sf), there is a single-valued total extensionf ′ of f such thatf ′≤p

TA.
Proof of Claim. Consider the following oracle transducerT that computesf ′ with oracleA. On inputx, if
x ∈ dom(f), T determines the values off(x) by making repeated queries toA. Note that forx ∈ dom(f)
and for anyy, if y ≤ f(x), then〈x, y〉 ∈ Rf , and ify > f(x), then〈x, y〉 ∈ Sf . If x /∈ dom(f), T outputs
0. Clearly,T computes some single-valued total extension off . This proves the claim.

Let f be a complete function for NPSV and assume thatA separatesRf andSf . By the previous claim,
there is a single-valued total extensionf ′ of f such thatf ′≤pp

T A.
Let (U, V) ∈ D. We want to show that(U, V)≤pp

T (Rf , Sf). Define

g(x) =


0, if x ∈ U
1, if x ∈ V
↑, otherwise.

g ∈ NPSV, sog≤pp
T f . By definition, there is a deterministic oracle transducerM such thatM [f ′] = g′ is a

single-valued total extension ofg.

6

DefineL = {x : g′(x) = 0}. It is easy to see thatL≤p
Tg′. Also note thatU ⊆ L andV ⊆ L, and

therefore,L separatesU andV . Then the following sequence of reductions show thatL≤p
TA.

L ≤p
T g′ ≤pp

T f ′ ≤p
T A.

Thus, for every separatorA of (Rf , Sf), there is a separatorL of (U, V) such thatL≤p
TA. Therefore,

(Rf , Sf) is≤pp
T -complete forD.

For the other direction, assume that(U, V) is≤pp
T - complete forD. Define the following function.

f(x) =


0, if x ∈ U
1, if x ∈ V
↑, otherwise.

Clearly,f ∈ NPSV.
Let f ′ be a single-valued total extension off , and letL = {x|f ′(x) = 0}. Clearly,L≤p

Tf ′. Also, since
U ⊆ L andV ⊆ L, L is a separator of(U, V).

We want to show that for anyg ∈ NPSV, g≤pp
T f . Consider the NP-pair(Rg, Sg) for the function

g as defined in Equations 1 and 2. As noted in the claim, there is a single-valued total extensiong′ of g
such thatg′≤p

TA. Also, there is a separatorA of (Rg, Sg) such thatA≤p
TL, sinceL is a separator of the

≤pp
T -complete NP-pair(U, V).

Therefore, the following sequence of reductions show thatf is complete for NPSV.

g′ ≤p
T A ≤p

T L ≤p
T f ′.

2

Corollary 4.4 1. Let f ∈ NPSV be≤pp
T -complete forNPSV. Then(Rf , Sf) is ≤pp

T -complete for
disjoint pairs ofNP sets.

2. If (U, V) is a≤pp
m -completeNP-pair, thenfU,V is complete forNPSV, where

fU,V (x) =


0, if x ∈ U
1, if x ∈ V
↑, otherwise.

3. Relative to the oracle in Theorem 3.3,NPSV does not have a≤pp
T -complete partial function.

5 Nonsymmetric Pairs and Separation of Reducibilities

Pudĺak [Pud01] defined a disjoint pair(A,B) to be symmetricif (B,A)≤pp
m (A,B). Otherwise,(A,B)

is nonsymmetric. In this section we give complexity-theoretic evidence of the existence of nonsymmetric
disjoint NP-pairs. As a consequence, we obtain new ways to demonstrate existence of P-inseparable sets
and we show that≤pp

m and≤pp
T reducibilities differ for NP-pairs.

A setL is P-printable if there isk ≥ 1 such that all elements ofL up to lengthn can be printed by a
deterministic Turing machine in timenk + k [HY84, HIS85]. Every P-printable set is sparse and belongs to
P. A setA is P-printable-immuneif no infinite subset ofA is P-printable.

A setL is p-selectiveif there is a functionf ∈ FP such that for everyx, y ∈ Σ∗, f(x, y) ⊆ {x, y}, and
{x, y} ∩ L 6= ∅ ⇒ f(x, y) ∈ L [Sel79].

7

Proposition 5.1 1. (A,B) is symmetric if and only if(B,A) is symmetric.

2. (A,B) is P-separable⇒ (A,B) is symmetric.

Proof

1. If (A,B) is symmetric, then(B,A)≤pp
m (A,B), i.e., there isf ∈ FP such thatf(A) ⊆ B and

f(B) ⊆ A. Clearly the same functionf reduces(A,B) to (B,A).

2. Let (A,B) be a P-separable disjoint NP-pair. Fixa ∈ A andb ∈ B and let the separator beS ∈ P.
Consider the following polynomial-time functionf . On inputx, if x ∈ S, f outputsb; otherwise,f
outputsa. Therefore, for everyx ∈ A, x ∈ S ⇒ f(x) = b ∈ B and∀x ∈ B, x /∈ S ⇒ f(x) = a ∈
A. Therefore,(A,B) ≤pp

m (B,A), i.e.,(A,B) is symmetric.

2

We will show the existence of a nonsymmetric NP-pair under certain hypotheses. Due to the following
proposition, that will separates≤pp

m and≤pp
T reducibilities.

Proposition 5.2 1. If (A,B) is a nonsymmetric disjointNP-pair, then(B,A) 6≤pp
m (A,B)

2. For any disjointNP-pair (A,B), (B,A) ≤pp
T (A,B)

Proof (1) follows from the definition of symmetric pairs. For (2), observe that for anyS separatingA and
B, S separatesB andA and for any setS, S ≤p

T S. 2

We will use the following proposition in a crucial way to show the existence of nonsymmetric NP-pairs.
In other words, we will seek to obtain an NP-pair(A,B) such thatA or B is p-selective, but(A,B) is not
P-separable.

Proposition 5.3 For anyNP-pair (A,B), if either A or B is p-selective, then(A,B) is symmetric if and
only if (A,B) is P- separable.

Proof We know from Proposition 5.1 that if(A,B) is P-separable, then it is symmetric. Now assume that
(A,B) is symmetric via some functionf and assume (without loss of generality) thatA is p-selective and
the P-selector function isg. The following algorithmM separatesA andB. On inputx, M runsg on the
strings(x, f(x)), and acceptsx if and only if g outputsx. If x ∈ A, f(x) ∈ B and therefore,g has to output
x. On the other hand, ifx ∈ B, thenf(x) ∈ A andg will output f(x) andM will reject x. Therefore,
A ⊆ L(M) ⊆ B. 2

Now we give evidence showing the existence of nonsymmetric NP-pairs.

Theorem 5.4 If E 6= NE ∩ coNE, then there is a setA ∈ NP ∩ coNP such that(A, A) is not symmetric.

Proof If E 6= NE ∩ coNE, then there is a tally setT ∈ NP ∩ coNP − P. From Selman [Sel79, Theorem
5], we know that the existence of such a tally set implies that there is a p-selective setA ∈ NP∩ coNP−P.
Clearly,(A,A) is not P-separable. Hence, by Proposition 5.3,(A, A) is nonsymmetric. 2

As a corollary, we obtain that ifE 6= NE ∩ coNE, then there is a setA ∈ NP ∩ coNP such that
(A, A) 6≤pp

m ((A), A), yet clearly(A,A)≤pp
T ((A), A).

8

We will show that the hypotheses in Theorem 5.5 imply the existence of a nonsymmetric NP-pair. Note
that the hypotheses in this theorem are similar to those studied by Fortnow, Pavan and Selman [FPS01] and
Pavan and Selman [PS01]; however, our hypotheses are stronger than the former and weaker than the latter.
We omit the proof in this version.

Theorem 5.5 The following are equivalent:

1. There is anUP-machineN that accepts0∗ such that no polynomial-time machine can output infinitely
many accepting computations ofN .

2. There is an infinite setS in UP accepted by anUP-machineM such thatS has exactly one string of
every length and no polynomial-time machine can compute infinitely many accepting computations of
M .

3. There is an almost-always one-one one-way functionf such that range(f) = 0∗.

4. There is a languageL ∈ P that has exactly one string of every length andL is P-printable immune.

5. There is a languageL ∈ UP that has exactly one string of every length andL is P-printable immune.

The Appendix contains the proof of the following theorem.

Theorem 5.6 Each of the hypotheses stated in Theorem 5.5 implies the existence of nonsymmetricNP-
pairs.

If the hypotheses stated in Theorem 5.5 hold, then there exists a disjoint NP-pair(A,B) so that
(A,B) 6≤pp

m (B,A) while (A,B)≤pp
T (B,A).

Grollmann and Selman [GS88] proved that the existence of P-inseparable NP-pairs implies the existence
of P-inseparable pairs where both sets of the pair are NP-complete. The following results are in the same
spirit. We note that natural examples of nonsymmetric (or≤pp

m -complete) disjoint NP-pairs arise either
from cryptography or from proof systems. However, the following theorems show that the existence of such
pairs will imply that nonsymmetric (or≤pp

m -complete) disjoint NP-pairs exist where both sets of the pair are
≤p

m -complete for NP. These results are proven in the appendix.

Theorem 5.7 There exists a nonsymmetric disjointNP-pair (A,B) if and only if there exists a nonsymmet-
ric disjoint NP-pair (C,D) where bothC andD are≤m-complete forNP.

Theorem 5.8 There exists an disjointNP-pair (A,B) that is≤pp
m -complete if and only if there exists a

disjointNP-pair (C,D) that is≤pp
m -complete where bothC andD are≤m-complete forNP.

6 Many-One Complete NP-Pairs Relative to an Oracle

In this section we construct an oracleO that possesses several interesting properties. Relative toO, many-
one complete NP-pairs exist. Therefore, while we expect that complete NP-pairs do not exist, this is not
provable by relativizable techniques. Since nonexistence of≤pp

m -complete NP-pairs implies Conjecture 2.4,
it is natural to ask whether the converse holds. In this section we construct an oracle relative to which the
converse is false. Relative to this oracle all of the following properties hold:

1. There exist≤pp
m -completeNP-pairs.

9

2. There exist nonsymmetricNP-pairs.

3. Conjecture 2.4 holds, and therefore alsoUP 6= NP 6= coNP andNPMV 6⊆cNPSV.

4. There existP-inseparable NP-pairs that are symmetric.

Here we show that there is a relativized world where both Conjecture 2.4 holds andP-inseparableNP-pairs
exist, yet≤pp

m -completeNP-pairs exist. Also note that our oracle is natural in the sense that, apart from the
existence of≤pp

m -complete NP-pairs, all of its properties are expected for the unrelativized case1.
Property 1 requires coding information into the oracle. Properties 2 and 3 require diagonalizations.

(Property 4 will be easy to obtain.) Unlike several previous oracle constructions (e.g., [BGS75, Rac82,
HS92]) that balance coding requirements and diagonalizations, we cannot start with a PSPACE-complete
oracle, because that would make it difficult to obtain nonsymmetric NP-pairs.

Theorem 6.1 There exists an oracle relative to which the following holds:

(i) There exist≤pp
m -completeNP-pairs.

(ii) There exist nonsymmetricNP-pairs.

(iii) Conjecture 2.4 holds.

Corollary 6.2 The oracleO from Theorem 6.1 has the following additional properties.

(i) UPO 6= NPO 6= coNPO andNPMVO 6⊆cNPSVO

(ii) There exists a≤pp
m -completeNPO-pair (A,B) that satisfies the following:

– For everyNPO-pair (E,F) there exists anf ∈ FP with E≤p
mA via f andF≤p

mB via f .

– (A,B) is PO-inseparable but symmetric.

Acknowledgements.The authors thank Avi Wigderson for informing them of the paper by Ben-David and
Gringauze [BDG98].

1We believe that statement 4 holds since Pudlák [Pud01] shows that the canonical pair of resolution is symmetric, and we expect
that this pair isP-inseparable.

10

References

[BDG98] S. Ben-David and A. Gringauze. On the existence of propositional proof systems and oracle-
relativized propositional logic. Technical Report 5, Electronic Colloquium on Computational
Complexity, 1998.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=NP problem.SIAM Journal on
Computing, 4:431–442, 1975.

[ESY84] S. Even, A. Selman, and J. Yacobi. The complexity of promise problems with applications to
public-key cryptography.Information and Control, 61:159–173, 1984.

[FHOS97] S. Fenner, S. Homer, M. Ogihara, and A. Selman. Oracles that compute values.SIAM Journal
on Computing, 26:1043–1065, 1997.

[FPS01] L. Fortnow, A. Pavan, and A. Selman. Distributionally hard languages.Theory of Computing
Systems, 34:245–261, 2001.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems.SIAM Journal
on Computing, 17(2):309–335, 1988.

[Gur83] Y. Gurevich. Algebras of feasible functions. InProceedings of the 24th Annual Symposium on
Foundations of Computer Science, pages 210–214. IEEE Computer Society Press, 1983.

[HIS85] J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP - P: EXPTIME versus NEXP-
TIME. Information and Control, 65:158–181, 1985.

[HJV93] L. Hemaspaandra, S. Jain, and N. Vereshchagin. Banishing robust Turing completeness.Inter-
national Journal of Foundations of Computer Science, 3-4:245–265, 1993.

[HS92] S. Homer and A. Selman. Oracles for structural properties: The isomorphism problem and
public-key cryptography.Journal of Computer and System Sciences, 44(2):287–301, 1992.

[HY84] J. Hartmanis and Y. Yesha. Computation times of NP sets of different densities.Theoretical
Computer Science, 34:17–32, 1984.

[PS01] A. Pavan and A. Selman. Separation of NP-completeness notions. InProceedings 16th Compu-
tational Complexity. IEEE Computer Society, 2001.

[Pud01] P. Pudĺak. On reducibility and symmetry of disjoint NP-pairs. InProceedings 26th International
Symposium on Mathematical Foundations of Computer Science, volume 2136 ofLecture Notes
in Computer Science, pages 621–632. Springer-Verlag, Berlin, 2001.

[Rac82] C. Rackoff. Relativized questions involving probabilistic algorithms.Journal of the ACM,
29:261–268, 1982.

[Raz94] A. Razborov. On provably disjoint NP-pairs. Technical Report TR94-006, Electronic Collo-
quium on Computational Complexity, 1994.

[Sel79] A. Selman. P-selective sets, tally languages, and the behavior of polynomial-time reducibilities
on NP.Mathematical Systems Theory, 13:55–65, 1979.

11

[Sel88] A. Selman. Promise problems complete for complexity classes.Information and Computation,
78:87–98, 1988.

[Sel94] A. Selman. A taxonomy on complexity classes of functions.Journal of Computer and System
Sciences, 48:357–381, 1994.

12

Appendix

Theorem 3.3 There exists an oracleX such thatDX does not have a≤pp,X
T -complete disjoint pair and

PX 6= UPX .

Since oracle access requires full access, we define the following notions.

Definition 3.4 For any setX, a pair of disjoint sets(A,B) is polynomial time Turing reducible relative
to X (≤pp,X

T) to a pair of disjoint sets(C,D) if for any separatorS that separates(C,D), there exists a
polynomial time deterministic oracle Turing MachineM such thatMS⊕X accepts a language that separates
(A,B).

Definition 3.5 For any setX, defineDX = {(A,B)|A ∈ NPX , B ∈ NPX and A ∩ B = ∅}. DX has
≤pp,X

T -complete set forDX if ∃(C,D) ∈ DX and for all (A,B) ∈ DX , (A,B) ≤pp,X
T (C,D).

Similarly,DX has≤pp
T -complete set forDX if ∃(C,D) ∈ DX and for all (A,B) ∈ DX , (A,B) ≤pp

T

(C,D).

However, the following proposition shows that if there exists a pair that is Turing-complete relative to
X for DX , then there is a pair that is Turing complete forDX , where the reduction between the separators
does not access the oracle.

Proposition 3.6 For any setX,DX has a Turing-complete disjoint pair relative toX if and only ifDX has
a Turing-complete disjoint pair.

Proof The if direction is trivial. We only show theonly if direction. Suppose(C,D) is Turing complete
relative toX for DX . We claim that(C ⊕X, D ⊕X) 2 is a Turing-complete pair of disjoint sets forDX .
Consider any(A,B) ∈ DX . Let S′ be any set that separates(C ⊕X, D ⊕X). DefineS = {x|0x ∈ S′},
thenS separates(C,D) andS′ = S ⊕ X. Since(C,D) is Turing-complete relative toX for DX , there
must exist a polynomial time deterministic oracle Turing MachineM using oracleX andS that separates
(A,B). Hence we can obtain a polynomial time deterministic oracle Turing machineM ′ using oracleS′

that separates(A,B): M ′ on any input does exactly the same asM except wheneverM queries some string
x to oracleS, M ′ queries0x to oracleS′ and wheneverM queries some stringx to oracleX, M ′ queries1x
instead. It is easy to see thatM ′ gets the same answer asM for each query, hence accepts the same language
asM does, andM ′ witnesses that(A,B) ≤pp

uT (C⊕X, D⊕X). So(C⊕X, D⊕X) is a Turing-complete
disjoint pair forDX . 2

It is easy to see that Theorem 3.3 can be obtained by modifying the proof of the following theorem.

Theorem 3.7 There exists an oracleX such thatDX does not have a≤pp,X
T -complete disjoint pair.

Proof Since Proposition 2.8 and Proposition 3.6 relativizes to all oracles, it suffices to show there is no
≤pp

T -complete pair of disjoint sets inDX under uniform Turing reduction. So we will construct an oracleX
such that for every(C,D) ∈ DX there exists a disjoint pair(A,B) ∈ DX , (A,B) 6≤pp

uT (C,D).
Suppose{Mk}k and{Ni}i are respectively enumerations of deterministic and non-deterministic poly-

nomial time oracle Turing machines. Letrk andpi be the corresponding polynomial time bounds forMk

2A⊕B
def
= {0x|x ∈ A} ∪ {1y|y ∈ B}

13

andNi. For anyr, s, d, let Σd
rs = 0r10s1Σd andldrs = r + s + d + 2, the length of strings inΣd

rs. For each
i, j, define

Aij = {0n|∃x|x| = n ∧ 0i10j10x ∈ X}

and
Bij = {0n|∃x|x| = n ∧ 0i10j11x ∈ X}.

We construct the oracleX in stages. Initially we setX = ∅. In Stagem = 〈i, j, k〉, we will put strings
from Σn+1

ij into X such that eitherL(Ni) ∩ L(Nj) 6= ∅ or (Aij , Bij) is not uniformly Turing reducible to
(L(Ni), L(Nj)) via Mk, wheren = nm is some number chosen at Stagem. We will show later that the
construction above ensures that for anyi andj, (L(Ni), L(Nj)) is not Turing-complete forDX .

LetXm be the oracle before Stagem. X0 = ∅. For the current stagem = 〈i, j, k〉, letm−1 = 〈i′, j′, k′〉
andm + 1 = 〈i′′, j′′, k′′〉. We choose some numbern = nm such thatn is minimal and all the following
hold (For Stage 0, we just setn0 = 1.):

• n > nm−1

• ln+1
ij > l

nm−1+1
i′j′

• ln+1
ij > max(pi′(nm−1), pj′(nm−1))

• ln+1
ij > max(pi′(rk′(nm−1)), pj′(rk′(nm−1)))

• 2n > rk(n)pi(rk(n))pj(rk(n))

Obviously,ln+1
ij andl

nm−1+1
i′j′ are, respectively, the length of strings we add into the oracle at Stagem and

m− 1.
Suppose for someS ⊆ Σn+1

ij , L(Ni) ∩ L(Nj) 6= ∅ using oracleXm ∪ S. Then lets ∈ L(NXm∪S
i) ∩

L(NXm∪S
j). DefineXm+1 = Xm ∪S, nm = |s| and go to the next stagem + 1. From now on we will skip

any later Stagel, wherel = 〈i, j, k′′′〉.
Otherwise, we have that

for anyS ⊆ Σn+1
ij , L(Ni) ∩ L(Nj) = ∅ using oracleXm ∪ S. (3)

We will consider the computation ofMk on0n in this case and try to add a string inΣn+1
ij to the oracle

so that either

0nm ∈ Aij and 0nm 6∈ L(ML(N
Xm+1
i)∪Q

k)

or

0nm ∈ Bij and 0nm ∈ L(ML(N
Xm+1
i)∪Q

k)

after Stagem.
Note that this would imply(Aij , Bij) does not reduce to(L(NXm+1

i), L(NXm+1

j)) via Mk.
The difficulty rises mainly from the fact that if we want to preserve the computation ofMk on 0n in a

straightforward way (by reserving all strings inΣn+1
ij that are queried) to do the diagonalization, we will end

up with having to reserve all strings inΣn+1
ij , which leaves no room for the diagonalization. Fortunately, we

can do better by the following lemma.

14

Lemma 3.8 Let M andN be nondeterministic polynomial-time oracle Turing machines with polynomial
time boundspM andpN respectively. LetY be an oracle andq ∈ Σ∗, |q| = n.

Then, for any setT with ‖T‖ > pM (|q|)pN (|q|), at least one of the following holds.

• ∃S ⊆ T with ‖S‖ ≤ pM (|q|) + pN (|q|) such thatL(MY ∪S) ∩ L(NY ∪S) 6= ∅

• ∃S′ ⊆ T, ‖S′‖ ≤ pM (|q|) ∗ pN (|q|), such that either for anyS ⊆ T , S ∩ S′ = ∅, MY ∪S(q) rejects
or for anyS ⊆ T , S ∩ S′ = ∅, NY ∪S(q) rejects.

This lemma is essential to our proof. Intuitively this lemma says that we can enforce at least one ofNi

andNj to always reject some queryq by reserving only polynomially many strings. Since we have only
polynomially many queries, we then will just need to reserve polynomially many strings inΣn+1

ij in total to
preserve eitherNi’s rejection orNj ’s rejection on0n, and thus have room for diagonalization.

Now we will construct a setQ, the set of strings to be added to the oracle ofMk to make the oracle a
separator of(L(Ni), L(Nj)), and reserve strings forXm+1 at the same time to preserve eitherNi’s rejection
or Nj ’s rejection on0n.

Initially we set Q = ∅. We run Mk on 0n using oracleL(NXm
i) ∪ Q, which is a separator of

(L(NXm
i , L(NXm

j)), until it makes some queryq. Then apply Lemma 3.8 withM = Ni, N = Nj ,

Y = Xm, T = Σn+1
ij Considering condition 3, we know that there is a setS′ ⊆ Σn+1

ij such that either

(A) ∀S(S ⊆ Σn+1
ij ∧ S ∩ S′ = ∅), q 6∈ L(Ni)Xm∪S

or
(B) ∀S(S ⊆ Σn+1

ij ∧ S ∩ S′ = ∅), q 6∈ L(Nj)Xm∪S .

We then reserve all strings inS′ (‖S′‖ ≤ pi(rk(n))pj(rk(n))) for Xm+1. If (A) is true, we continue
runningMk with the oracle unchanged. (Hence answer “no” to queryqu.) Otherwise we continue running
Mk on 0n with Q = Q ∪ {qu}. (Hence answer “yes” to queryqu and addqu to the oracle.) We continue
runningMk until it makes the next query and then we do the same thing as above again. We keep doing this
until the end of the computation ofMk on0n. The number of strings inΣn+1

ij we reserved forXm+1 during
the above process is at mostrk(n)pi(rk(n))pj(rk(n)) < 2n since the running time ofMk is bounded by
rk(n). So there exist both a string0i10j10x and a string0i10j11y in Σn+1

ij that are not reserved forXm+1.

If Mk using oracleL(NXm
i) ∪ Q accepts0n, we defineXm+1 = Xm ∪ {0i10j11y}. Otherwise define

Xm+1 = Xm ∪ {0i10j10x}.
By Lemma 3.11, the oracleX = ∪Xm constructed above fulfills that there is no Turing-complete pair

in DX .
Proof (of Lemma 3.8). Let us define the following languages:

• LM = {〈P,Qy, Qn〉: For some setS ⊆ T , P is an accepting path ofMY ∪S on inputq andQy (resp.,
Qn) is the set of the positive queries (resp., negative)made onP for strings inT .

• LN = {〈P,Qy, Qn〉: For some setS ⊆ T , P is an accepting path ofNY ∪S on inputq andQy (resp.,
Qn) is the set of the positive (resp., negative) queries made onP for strings inT .

We say that(P,Qy, Qn) ∈ LM conflictswith (P ′, Q′
y, Q

′
n) ∈ LN if Qy ∩Q′

n 6= ∅ or Q′
y ∩Qn 6= ∅. In other

words, there is a conflict if at least one query is answered differently onP andP ′.
Now we consider the following cases.

15

Case I ∃ (P,Qy, Qn) ∈ LM and(P ′, Q′
y, Q

′
n) ∈ LN that do not conflict.

Let S = Qy ∪ Q′
y. We claim that in this case,L(MY ∪S) ∩ L(NY ∪S) 6= ∅. Note that since there

is no conflict, on inputq, any positive query asked byM on P to oracleS will still be answered
“yes”, and any negative query on pathP will still be answered “no”. In other words,M will still
acceptq on the pathP with oracleS. Similarly,N will acceptq on pathP ′ with oracleS. Therefore,
q ∈ L(MY ∪S) ∩ L(NY ∪S). And ‖S‖ = ‖Qy‖ ∪ ‖Qn‖ ≤ pM (|q|) + pN (|q|).

Case II Every triple(P,Qy, Qn) ∈ LM conflicts with every triple(P ′, Q′
y, Q

′
n) ∈ LN . Note that in this

case we cannot have both a triple〈P, ∅, Qn〉 in LM and a triple〈P ′, ∅, Q′
n〉 in LN simply because

these two triples do not conflict with each other.

We use the following algorithm to create the setS as claimed in the statement of this lemma.

S′ = ∅
while (LM 6= ∅ and LN 6= ∅)

(1) Choose some (P∗, Q∗y, Q
∗
n) ∈ LM

(2) S′ = S′ ∪ Q∗y ∪ Q∗n
(3) For every t = (P, Qy, Qn) ∈ LM
(4) remove t if Qy ∩ (Q∗y ∪ Q∗n) 6= ∅
(5) For every t′ = (P′, Q′y, Q

′
n) ∈ LN

(6) remove t′ if Q′y ∩ (Q∗y ∪ Q∗n) 6= ∅
end while

We claim that afterk iterations of thewhile loop, for every triple(P ′, Q′
y, Q

′
n) ∈ LN , ‖Q′

n‖ ≥ k. If
this claim is true, the while loop iterates at mostpN (|q|) times, since for any triple inLN , ‖Q′

n‖ is
bounded by the running time ofN on q, i.e.,pN (|q|). On the other hand, during each iteration,S′ is
increased by at mostpM (|q|) strings, since for any triple inLM , ‖Qy∪Qn‖ is bounded by the running
time ofM on q, i.e.,pM (|q|). Therefore,‖S′‖ ≤ pM (|q|) ∗ pN (|q|) when this algorithm terminates.

Claim 3.9 After k-th iteration of thewhile loop of the above algorithm, for everyt′ = (P ′, Q′
y, Q

′
n)

that remains inLN , ‖Q′
n‖ ≥ k.

Proof For everyk, let us denote the triple(P k, Qk
y , Q

k
n) ∈ LM that is chosen during thek-th iteration

by tk. For everyt′ = (P ′, Q′
y, Q

′
n) that remains inLN during this iteration,tk conflicts with t′

(otherwise, we will be in Case I). Therefore, there is a query in(Qk
n ∩Q′

y)∪ (Qk
y ∩Q′

n). If this query
is in Qk

n ∩ Q′
y, t′ will be removed fromLN after iterationk. Otherwise, i.e., ifQk

y ∩ Q′
n 6= ∅, let q′

be the first query made byLN that is inQk
y ∩ Q′

n. In this case,t′ will not be removed fromLN ; we
say thatt′ survivesk-th iterationdue to queryq′. Note thatt′ can survive only due to a query that is
negative inP ′. We will use this fact to prove that‖Q′

n‖ ≥ k afterk iterations.

We show now that any triple that is left inLN afterk iterations survives each iteration due to a different
query. Since these queries are all negative, this will complete the proof of the claim. Assume thatt′

survives iterationk by queryq′ ∈ Qk
y ∩Q′

n. If t′ had survived an earlier iterationl < k by the same
queryq′, thenq′ is also inQl

y ∩ Q′
n. Therefore,Ql

y ∩ Qk
y 6= ∅. Sotk = (P k, Qk

y , Q
k
n) should have

been removed (by lines (3) and (4)) after iterationl, and cannot be chosen at the beginning of iteration
k, as claimed. Hence,q′ cannot be the query by whicht′ had survived iterationl. 2

16

Therefore, now we have a setS′ of the required size such that eitherLM or LN is empty. Assume
thatLM is empty, and for some setS ⊆ Σd

rs, S ∩ S′ = ∅, M (Y ∪S) acceptsq. Therefore, the triple
(P,Qy, Qn), whereP is the accepting path ofM (Y ∪S)(q) andQy (resp.,Qn) is the set of the positive
(resp., negative) queries of length≥ ldrs, must have been inLM and has been removed during some
iteration. That implies that during that iteration,Qy ∩ S′ 6= ∅ (by line (4)), and sinceQy ⊆ S, this
contradicts the assumption thatS ∩ S′ = ∅.
A similar argument holds forLN . Hence eitherLM = ∅ andM (Y ∪S) rejectsq for anyS ∩ S′ = ∅ or
LN = ∅ andN (Y ∪S) rejectsq for anyS ∩ S′ = ∅. This ends the proof of Lemma 3.8.

2

Lemma 3.10 After every Stagem = 〈i, j, k〉, L(NXm+1)∩L(NXm+1

j) 6= ∅ or L(ML(N
Xm+1
i)∪Q

k) does not
separate(Aij , Bij), whereXm+1 is as defined in the proof of Theorem 3.7.

Proof If at Stagem condition 3 is negated by some setS ⊆ Σnm
ij , then we definedXm+1 = Xm ∪ S

henceL(NXm+1) ∩ L(NXm+1

j) 6= ∅. Otherwise, we will start to construct the setQ. From the construction

process ofQ we know that every string we add toQ is enforced to be rejected byNXm
j by reserving strings

for Xm+1. So L(NXm+1

i) ∪ Q will still be a separator of(L(NXm+1

i), L(NXm+1

j)). All queries on the

computation path ofMk on 0n using oracleL(NXm+1

i) ∪ Q will have the same answers as using oracle
L(NXm

i) ∪Q. The reason is as follows. For any queryq, if we reserve strings inΣn+1
ij for Xm+1 such that

L(NXm+1

i) always rejectsq in the above process,q will not be put intoQ hence queryq will get answer

“no” from oracleL(NXm+1

i)∪Q, which is the same as the answer from oracleL(NXm
i)∪Q. If we reserve

strings inΣn+1
ij for Xm+1 such thatL(NXm+1

j) always rejectsq, q will be put intoQ and hence get the same

answer “yes” using oracleL(NXm+1

i)∪Q as using oracleL(NXm
i)∪Q. Therefore the computation ofMk

on input0n using oracleL(NXm+1

i)∪Q will always have the same result as using oracleL(NXm
i)∪Q. So

by the way we defineXm+1, Mk using oracleL(NXm+1

i) ∪ Q does not separate(L(NXm+1

i), L(Nm+1
j)),

regardless of whetherMk accepts0n. 2

Lemma 3.11 The oracleX = ∪Xm constructed in the proof of Theorem 3.7 has the desired property.

Proof Let (C,D) be a pair inDX . SupposeC = L(NX
i) andD = L(NX

j) for somei andj. Then by
Lemma 3.10 we know that one of the following happens during the construction ofX:

• At some Stagel = 〈i, j, k〉, there exists a strings ∈ L(NXl+1

i) ∩ L(NXl+1

j) andnl = |s|. Since we

choose the numbernm at each Stagem such thatln+1
ij > max(pi′(nm−1), pj′(nm−1)), the strings

added into the oracle at a later Stagem > l will not disturb the acceptance ofs by Ni andNj . So for
anym > l we still haves ∈ L(NXm

i) ∩ L(NXm
j). ThusC = L(NX

i) ∩D = L(NX
j) 6= ∅. (C,D) is

not inDX .

• For anyk, L(ML(N
Xl+1
i)∪Q

k) does not separate(Aij , Bij), wherel = 〈i, j, k〉. Actually, we can see
from the proof of Lemma 3.10 that either

0nl ∈ Aij and 0nl 6∈ L(ML(N
Xl+1
i)∪Q

k)

17

or

0nl ∈ Bij and 0nl ∈ L(ML(N
Xl+1
i)∪Q

k)

after Stagel. Recall that we choose the numbernm at each Stagem such thatnm > nm−1 and
lnm+1
ij > max(pi′(rk′(nm−1)), pj′(rk′(nm−1))) following holds. Therefore, we know that the strings

added in a later stagem > l will not change the following:

1. The membership of0nl in Aij andBij . Only the strings of lengthnl + 1 are only added into the
oracle at Stagel.

2. The computations set up in the last part of the proof of Theorem 3.7. The maximal length of
strings that can be queried in those computations ismax(pi′(rk′(nm−1)), pj′(rk′(nm−1))) <
lnm+1
ij .

For any later Stagem > l, we also have either

0nl ∈ Aij and 0nl 6∈ L(ML(N
Xm+1
i)∪Q

k)

or

0nl ∈ Bij and 0nl ∈ L(ML(N
Xm+1
i)∪Q

k).

So (Aij , Bij), which is inDX , is not uniformly Turing-reducible to the pair(C,D). Hence in this
case(C,D) could not be a complete pair forDX .

2

This completes the proof of the theorem. 2

Theorem 5.6 Each of the hypotheses stated in Theorem 5.5 implies the existence of nonsymmetricNP-
pairs.

Proof Let us define the following function.

dt(i) =

{
1 if i = 0

22dt(i−1)
otherwise

Let M be the UP-machine accepting0∗ as in the first hypothesis in Theorem 5.5. Letan be the accepting
computation ofM on0n. We can assume that|an| = m wherem is some fixed polynomial inn. We define
the following sets.

LM = {〈0n, w〉 : w ≤ an, n = dt(i) for somei > 0}
RM = {〈0n, w〉 : w > an, n = dt(i) for somei > 0}

Note that(LM , RM) is a disjoint NP-pair. We claim thatLM is p-selective. The description of a selectorf
for LM follows: Assume that〈0k, w1〉 and〈0l, w2〉 are input tof . If k = l, thenf outputs the lexicograph-
ically smaller one ofw1 andw2. Otherwise, assume thatk < l. In that case,l ≥ 22k

> 2|ak|. Recall that
the accepting computation ofM on 0k is ak. The functionf can find out the actual accepting computation
of M on 0k by checking all possible strings of length|ak|. Therefore, inO(l) time, f outputs〈0k, w1〉 if
w1 ≤ ak, and outputs〈0l, w2〉 otherwise. Similarly, we can show thatRM is p-selective.

18

We claim that(LM , RM) is a nonsymmetric NP-pair. Assume on the contrary that this pair is sym-
metric. Therefore, by Proposition 5.3(LM , RM) is P-separable, i.e., there isS ∈ P that is a separator
for (LM , RM). Using a standard binary search technique, a polynomial-time machine can compute the ac-
cepting computation ofM on any0n wheren = dt(i) for somei > 0. Since the length of the accepting
computation ofM on0n is m, this binary search algorithm can takes timeO(m), i.e., time polynomial inn.
This contradicts Hypothesis H, since we assumed that no polynomial-time machine can compute infinitely
many accepting computations ofM . Therefore,(LM , RM) is a nonsymmetric NP-pair. 2

Theorem 5.7 There exists a nonsymmetric disjointNP-pair (A,B) if and only if there exists a nonsymmet-
ric disjoint NP-pair (C,D), where bothC andD are≤p

m -complete forNP.

Proof The if direction is trivial. We prove theonly if direction.
Let {NMi}i≥1 be an enumeration of polynomial-time bounded nondeterministic Turing machines with

associated polynomial time bounds{pi}i≥1. It is well known that the following setK is NP-complete
[BGS75].

K = {〈i, x, 0n〉| some computation ofNMi acceptsx in at mostn steps}.

For every setA ∈ NP there existsi ≥ 1 such thatA = L(NMi) and there exists an honest many-one
reductionf from A to K defined byf(x) = 〈i, x, 0pi(|x|)〉. Let (A,B) be a nonsymmetric disjoint NP-pair
and letf be an honest reduction fromA to K.

Our first goal is to show that(f(B),K) is nonsymmetric. Sincef is a reduction fromA to K and
A ∩ B = ∅, f(A) ⊆ K andf(B) ⊆ K, and sof(B) andK are disjoint sets. Observe thatf(B) is in
NP because on any inputy, we can guess ax ∈ B and verify thatf(x) = y. Therefore,(K, f(B)) is an
NP-pair with one of them being≤p

m-complete for NP.
In order to prove that this pairs is nonsymmetric, assume otherwise: then(K, f(B)) ≤pp

m (f(B),K)
and therefore,∃g ∈ PF such thatg(K) ⊆ f(B) andg(f(B)) ⊆ K. Consider the following polynomial-
time computable functionh. On inputx, h computesy = g(f(x)). If y = 〈i, x′, 0pi(|x′|)〉 for somex′, h
outputsx′; otherwise, it returns a fixed stringa ∈ A. We claim thath(A) ⊆ B andh(B) ⊆ A, thereby
making(A,B) symmetric. For anyx ∈ A, we know thatf(x) ∈ K and henceg(f(x)) ∈ f(B) since
g(K) ⊆ f(B). Soh(x) = 〈i, x′, 0pi(|x′|)〉 for somex′ ∈ B, and soh(x) = x′ ∈ B. For anyx ∈ B,
y = g(f(x)) ∈ K, sinceg(f(B)) ⊆ K. If y = 〈i, x′, 0pi(|x|)〉 for somex′, thenx′ must be inA; else
h will return a ∈ A, and so, in either case,x ∈ B will imply that h(x) ∈ A. Therefore,h(A) ⊆ B and
h(B) ⊆ A. Thus(A,B) ≤pp

m (B,A), contradicting the fact that(A,B) is nonsymmetric. Hence(K, f(B))
is a nonsymmetric NP-pair.

To complete the proof of the theorem, apply the construction once again, this time with an honest
reductionf ′ from f(B) to K. Namely,f ′(f(B)) ⊆ K andf ′(K) ⊆ K. Then,K andf ′(K) are disjoint
NP-complete sets and the argument already given shows that(f ′(K),K) is nonsymmetric. 2

Theorem 5.8 There exists an disjointNP-pair (A,B) that is≤pp
m - complete if and only if there exists a

disjointNP-pair (C,D) that is≤pp
m -complete where bothC andD are≤m-complete forNP.

Proof The proof idea is similar to the proof of Theorem 5.7. Consider the one-to-one functionf : f(x) =
〈i, x, 0pi(|x|)〉 that many-one reducesA to the canonical NP-complete setK.

Obviously(A,B) ≤pp
m (K, f(B)) sincef(A) ⊆ K andB ⊆ fi(B) andK ∩ fi(B) = ∅ as shown

in the proof of Theorem 5.7. Similar to that theorem, we apply the one-to-one functionf ′ that many-one

19

reducesf(B) to K to obtain another disjoint NP-pair(f ′(K),K) where(K, f(B)) ≤pp
m (f ′(K),K). So

(A,B) ≤pp
m (K, f(B)) ≤pp

m (f ′(K),K). Therefore(f ′(K),K) is also a≤pp
m -complete NP-pair withf ′(K)

andK both being≤p
m -complete sets for NP. 2

Theorem 6.1 There exists an oracleO relative to which the following holds:

(i) There exist≤pp
m -completeNP-pairs.

(ii) There exist nonsymmetricNP-pairs.

(iii) Conjecture 2.4 holds.

Proof We fix the following enumerations:{NM i}i is an effective enumeration of nondeterministic, polyno-
mial time-bounded oracle Turing machines;{Mi}i is an effective enumeration of deterministic, polynomial
time-bounded oracle Turing machines;{Ti}i is an effective enumeration of deterministic, polynomial time-
bounded oracle Turing transducers. Moreover,NM i, Mi andTi have running timepi = ni independent of
the choice of the oracle. LetfZ

i denote the function thatTZ
i computes.

We use the following model of nondeterministic polynomial-time oracle Turing machines. On some in-
put the machine starts the first phase of its computation, during which it is allowed to make nondeterministic
branches. In this phase the machine is not allowed to ask any queries. At the end of the first phase the ma-
chine has computed a list of queriesq1, . . . , qn, a list of guessed answersg1, . . . , gn, and a character, which
is either+ or−. Now the machine asks in parallel all queries and gets the vector of answersa1, . . . , an. The
machine accepts if the computed character is+ and(a1, . . . , an) = (g1, . . . , gn); otherwise the machine
rejects. An easy observation shows that for all oraclesX, a languageL is in NPX if and only if there exists
a nondeterministic polynomial-time oracle Turing machineN such thatN works in the described way and
L = L(NX).3

A nondeterministic polynomial-time oracle Turing machineN and an inputx determine a computation
pathP . P contains all nondeterministic guesses, all queries and all guessed answers. A computation path
P that has the character+ (resp.,−) is called a positive (resp., negative) path. The set of queries that are
guessed to be answered positively (resp., negatively) is denoted byP yes (resp.,P no); the set of all queries
is denoted byP all df=P yes ∪P no. The length ofP (i.e., the number of computation steps) is denoted by|P |.
Note that this description of paths makes it possible to talk about paths of computations without specifying
the oracle, i.e., we can say that a computationN(x) has a positive pathP such thatP yes andP no satisfy
certain conditions. However, when talking about accepting and rejecting paths we always have to specify
the oracle. (A positive path can be accepting for certain oracles, and it can be rejecting for other oracles.)

In this proof we need to consider injective, partial functionsN+ → N+× N+ that have a finite domain.
Usually, such functions are denoted byµ. We do not distinguish between the function and the set of all
(n, i, j) with µ(n) = (i, j). Both are denoted byµ. For X, Y ⊆ Σ∗ we write Y⊇mX if and only if
X ⊆ Σ≤m andY ≤m = X. We writeY⊆mX if and only if X⊇mY .

Definition 6.2 Let µ and µ′ be injective, partial functionsN+ → N+× N+ that have a finite domain. If
µ 6= ∅, thenµmax

df=max(dom(µ)). We writeµ � µ′ if either µ = ∅, or µ ⊆ µ′ and µmax < n for all
n ∈ dom(µ′ − µ). We writeµ ≺ µ′ if µ � µ′ andµ 6= µ′.

3Note that for this equivalence we need both, the character to be+ and thegi to be guessed correctly. If the machine accepted
just when the answers were guessed correctly, then we would miss the machine that accepts∅ for every oracle.

20

In our construction we use the following witness languages, which depend on an oracleZ.

A(Z) df= {w
∣∣ w = 0n10t1x for n, t ≥ 1, x ∈ Σ∗ and(∃y ∈ Σ|w|+1)[0wy ∈ Z]}

B(Z) df= {w
∣∣ w = 0n10t1x for n, t ≥ 1, x ∈ Σ∗ and(∃y ∈ Σ|w|+1)[1wy ∈ Z]}

C(Z) df= {0k
∣∣ k ≡ 1(mod 4), (∃y ∈ Σk−1)[0y ∈ Z]}

D(Z) df= {0k
∣∣ k ≡ 1(mod 4), (∃y ∈ Σk−1)[1y ∈ Z]}

E(Z) df= {0k
∣∣ k ≡ 3(mod 4), (∃y ∈ Σk)[y ∈ Z]}

These languages are inNPZ . We construct the oracleO such thatA(O)∩B(O) = C(O)∩D(O) = ∅ and
the following holds.

(i) (A(O), B(O)) is≤pp
m -complete. That is,

(∀(F,G)∈DO)(∃f ∈FP)[f(F)⊆A(O) ∧ f(G)⊆B(O) ∧ f(F ∪G)⊆A(O) ∪B(O)]. (4)

(ii) (C(O), D(O)) is nonsymmetric. That is,

(∀f ∈ FPO)[f(C(O)) 6⊆ D(O) ∨ f(D(O)) 6⊆ C(O)]. (5)

(iii) E(O) 6≤pp,O
T (A(O), B(O)). That is,

(∃S, A(O) ⊆ S ⊆ B(O))[E(O) /∈ PS]. (6)

In (4) and (6) we really meanf ∈ FP andE(O) /∈ PS ; we explain why this is equivalent tof ∈ FPO and
E(O) /∈ PS,O. We have to see that the expressions (4), (5), and (6) imply the statements (i), (ii), and (iii) of
the theorem. For (4) and (5) this follows from Theorem 2.10 and the fact thatf ∈ FP impliesf ∈ FPO.
Note that in (4) we actually do not need the inclusionf(F ∪G) ⊆ A(O) ∪B(O). We state it here because
the proof yields this condition, which in turn shows that the oracle even applies to a notion stronger than
≤pp

m . In (iii) we actually should haveE(O) /∈ PS,O since the reducing machine has access to the oracleO.
However, since (i) holds and since(O,O) ∈ DO, there exists anf ∈ FP with f(O) ⊆ A(O) ⊆ S and
f(O) ⊆ B(O) ⊆ S. Hence,q ∈ O ⇔ f(q) ∈ S. So we can transform queries toO into queries toS, i.e.,
it suffices to showE(O) /∈ PS .

We define the following listT of requirements. At the beginning of the construction,T contains all
pairs(i, n) with i ∈ {0, 1, 2} andn ∈ N+. These pairs have the following interpretations.

• (0, 〈i, j〉) means: ensureL(NMO
i) ∩ L(NMO

j) 6= ∅ or (L(NMO
i), L(NMO

j))≤pp
m (A(O), B(O))

• (1, i) means: ensure[0n ∈ C(O) ∧ TO
i (0n) /∈ D(O)] or [0n ∈ D(O) ∧ TO

i (0n) /∈ C(O)]

• (2, i) means: ensure that(A(O), B(O)) has a separatorS with 0n ∈ E(O) ⇔ 0n /∈ L(MS
i)

Once a requirement is satisfied we delete it from the list. The latter two types of conditions are reachable by
the construction of one counter example. In contrast, if we cannot reachL(NMO

i)∩L(NMO
j) 6= ∅ for a con-

dition of the first type, then we have to ensure(L(NMO
i), L(NMO

j))≤pp
m (A(O), B(O)). But this condition

cannot be reached by a finite segment of an oracle; instead it influences the whole remaining construction of
the oracle. We have to encode answers to queries “doesx belong toL(NMO

i) or toL(NMO
j)” into the ora-

cleO. For this reason we introduce the notion of(µ, k)-valid oracles. Herek is a natural number andµ is an

21

injective, partial functionN+→ N+×N+ that has a finite domain. Each(µ, k)-valid oracle is a subset ofΣ≤k.
Roughly speaking,µ can be thought of as a finite set of pairs(i, j), for whichL(NMO

i) ∩ L(NMO
j) = ∅

is forced, and therefore, we must constructO so that(L(NMO
i), L(NMO

j))≤pp
m (A(O), B(O)) holds. For

the latter condition we have to encode certain information intoO, and the numberk says up to which level
this encoding have been done. So(µ, k)-valid oracles should be considered as finite prefixes of oracles
that contain these encodings. For the moment we postpone the formal definition of(µ, k)-valid oracles
(Definition 6.4); instead we mention its essential properties, which will be proved later.

(a) The oracle∅ is (∅, 0)-valid.

(b) If X is a finite oracle that is(µ, k)-valid, then for allµ′ � µ, X is (µ′, k)-valid.

(c) If O is an oracle such thatO≤k is (µ, k)-valid for infinitely manyk, thenA(O) ∩ B(O) = C(O) ∩
D(O) = ∅, and for all(i, j) ∈ range(µ) it holds that(L(NMO

i), L(NMO
j))≤pp

m (A(O), B(O)) via

somef ∈ FP. Even more it holds thatf(L(NMO
i) ∪ L(NMO

j)) ⊆ A(O) ∪B(O).

The properties (a), (b), and (c) will be proved later in Proposition 6.5. Moreover, the following holds for all
i, j ≥ 1 and all(µ, k)-valid X.

P1: There exists anl > k and a(µ′, l)-valid Y⊇kX, µ � µ′ such that

• either for allZ⊇lY , L(NMZ
i) ∩ L(NMZ

j) 6= ∅,
• or (i, j) ∈ range(µ′).

P2: There exists anl > k and a(µ, l)-valid Y⊇kX such that for allZ⊇lY , if C(Z) ∩ D(Z) = ∅, then
(C(Z), D(Z)) does not≤pp,O

m -reduce to(D(Z), C(Z)) via TZ
i .

P3: There exists anl > k and a(µ, l)-valid Y⊇kX such that for allZ⊇lY , if A(Z) ∩ B(Z) = ∅, then
there exists a separatorS of (A(Z), B(Z)) such thatE(Z) 6= L(MS

i).

We will prove the properties P1, P2, and P3 in the Propositions 6.11, 6.12, and 6.14. In the following, we
construct an ascending sequence of finite oraclesX0⊆k0X1⊆k1X2⊆k2 · · · such that eachXr is (µr, kr)-
valid, k0 < k1 < k2 < · · · andµ0 � µ1 � µ2 � · · · . By definition,O =

⋃
r≥0 Xr. By items (b) and

(c), A(O) ∩ B(O) = C(O) ∩ D(O) = ∅ follows immediately. We claim that for eachr ≥ 0 andi ≥ 1,
Xr+i⊇krXr andµr � µr+i.

1. r := 0, kr := 0, µr := ∅, andXr := ∅. Then by (a),Xr is (µr, kr)-valid.

2. Remove the next requiremente from T and do the following:

• If e = (0, 〈i, j〉), then we apply property P1 toXr. Definekr+1 = l, µr+1 = µ′ andXr+1 = Y .
Thenkr < kr+1, µr � µr+1 andXr+1⊇krXr is (µr+1, kr+1)-valid such that

– either for allZ⊇kr+1Xr+1, L(NMZ
i) ∩ L(NMZ

j) 6= ∅,
– or (i, j) ∈ range(µr+1).

Comment:If the former holds, then, sinceO⊇kr+1Xr+1, it holds thatL(NMO
i) ∩ L(NMO

j) 6= ∅, and therefore,

(L(NMO
i), L(NMO

j)) /∈ DO. Otherwise,(i, j) ∈ range(µr+1). By (b), for all i ≥ 1, Xr+i is (µr+1, kr+i)-valid.

Therefore, by (c),(L(NMO
i), L(NMO

j))≤pp
m (A(O), B(O)) via somef ∈ FP.

22

• If e = (1, i), thenµr+1
df=µr and apply property P2 toXr. We definekr+1 = l andXr+1 =

Y . Thenkr+1 > kr andXr+1⊇krXr is (µr+1, kr+1)-valid so that for allZ⊇kr+1Xr+1, with

C(Z) ∩D(Z) = ∅, (C(Z), D(Z)) does not≤pp,O
m -reduce to(D(Z), C(Z)) via TZ

i .

Comment:SinceO⊇kr+1Xr+1 andC(O) ∩D(O) = ∅ this ensures that(C(O), D(O)) does not≤pp,O
m -reduce to

(D(O), C(O)) via T O
i .

• If e = (2, i), thenµr+1
df=µr and apply property P3 toXr. We definekr+1 = l andXr+1 =

Y . Thenkr+1 > kr and Xr+1⊇krXr is (µr+1, kr+1)-valid such that for allZ⊇kr+1Xr+1,
A(Z) ∩B(Z) = ∅, there exists a separatorS of (A(Z), B(Z)) such thatE(Z) 6= L(MS

i).

Comment:SinceO⊇kr+1Xr+1 andA(O)∩B(O) = ∅ this ensures that there exists a separatorS of (A(O), B(O))

such thatE(O) 6= L(MS
i).

3. r := r + 1, go to step 2.

We see that this construction ensures (i), (ii), and (iii). This proves the theorem except to show that we can
define an appropriate notation of a(µ, k)-valid oracle that has the properties (a), (b), (c), and P1, P2, P3.

We want to construct our oracle such that(A(O), B(O)) is a≤pp
m -completeNPO-pair. So we have to

make sure that pairs(L(Mi), L(Mj)) that are enforced to be disjoint (which means that(i, j) ∈ range(µ))
can be many-one reduced to(A(O), B(O)). Therefore, we put certain code-words intoO if and only if the
computationMO

i (x) (resp.,MO
j (x)) accepts withint steps.

Definition 6.3 (µ-code-word) Letµ : N+→ N+×N+be an injective, partial function with a finite domain.
A word w is calledµ-code-wordif w = 00n10t1xy or w = 10n10t1xy such that|y| = |00n10t1x| and
µ(n) = (i, j). If w = 00n10t1xy, then we say thatw is aµ-code-word for(i, t, x); if w = 10n10t1xy, then
we say it is aµ-code-word for(j, t, x).

Condition (i) of Theorem 6.1 opposes the conditions (ii) and (iii), because for (i) we have to encode
information aboutNPO computations intoO, and (ii) and (iii) say that we cannot encode too much infor-
mation (e.g., enough information forUPO = NPO). For this reason we have to look at certain finite oracles
that contain the needed information for (i) and that allow all diagonalization needed to reach (ii) and (iii).
We call such oracles(µ, k)-valid.

Definition 6.4 ((µ, k)-valid oracle) Letk ≥ 0 and letµ : N+→ N+× N+ be an injective, partial function
with a finite domain. We define a finite oracleX to be(µ, k)-valid by induction over the size of the domain
of µ.

• If ‖µ‖ = 0, thenX is (µ, k)-valid
df⇐⇒ X ⊆ Σ≤k andA(X) ∩B(X) = C(X) ∩D(X) = ∅.

• If ‖µ‖ > 0, thenµ = µ′ ∪ {(µmax, i0, j0)} for a suitableµ′ ≺ µ. X is (µ, k)-valid
df⇐⇒

1. k ≥ µmax andX is (µ′, k)-valid.

2. For all (n, i, j) ∈ µ, t ≥ 1 andx ∈ Σ∗ with 2 · |00n10t1x| ≤ k,

(a) (∃y, |y| = |00n10t1x|)[00n10t1xy ∈ X] ⇔ NMX
i (x) accepts withint steps, and

(b) (∃y, |y| = |10n10t1x|)[10n10t1xy ∈ X] ⇔ NMX
j (x) accepts withint steps.

3. For all l≥µmax and all (µ′, l)-valid Y , Y ≤µmax = X≤µmax , L(NMY
i0)∩L(NMY

j0)∩Σ≤l = ∅.

23

Due to the last condition,(µ, k)-valid oracles can be extended to(µ, k′)-valid oracles withk′ > k
(Lemma 6.9). There we really need the intersection withΣ≤l; otherwise it would be possible that for a
small oracleY ⊆ Σ≤l both machines accept the same wordw that is much longer thanl, but there is no
way to extendY in a valid way to the level|w| such that both machines still acceptw (the reason is that the
reservations (Definition 6.6) become to large).

Proposition 6.5 (basic properties of validity) 1. The oracle∅ is (∅, 0)-valid. (property (a))

2. For every(µ, k)-valid X and everyµ′ � µ, X is (µ′, k)-valid. (property (b))

3. If X is (µ, k)-valid andk is even, then for everyS ⊆ Σk+1, if C(S) ∩ D(S) = ∅, thenX ∪ S is
(µ, k + 1)-valid.

4. For every(µ, k)-valid X and every(i, j) ∈ range(µ), L(NMX
i) ∩ L(NMX

j) ∩ Σ≤k = ∅.
5. If X is (µ, k)-valid, then for everyl, µmax ≤ l ≤ k, it holds thatX≤l is (µ, l)-valid.

6. Let O be an oracle such that for infinitely manyk, O≤k is (µ, k)-valid. Then the following hold:
(property (c))

• A(O) ∩B(O) = C(O) ∩D(O) = ∅.
• For all (i, j) ∈ range(µ) it holds thatL(NMO

i) ∩ L(NMO
j) = ∅ and there exists some

f ∈ FP such that(L(NMO
i), L(NMO

j))≤pp
m (A(O), B(O)) via f . Even more, it holds that

f(L(NMO
i) ∪ L(NMO

j)) ⊆ A(O) ∪B(O).

Proof The statements 6.5.1 and 6.5.2 follow immediately from Definition 6.4.
We prove statement 6.5.3 by induction on‖µ‖. First of all we note thatA(S) = B(S) = ∅ sinceS

contains only words of odd length. If‖µ‖ = 0, then, by Definition 6.4,X ∪S is (µ, k+1)-valid. So assume
‖µ‖ > 0 and chooseµ′, i0, j0 as in Definition 6.4. We assume as induction hypothesis that ifX is (µ′, k)-
valid, thenX ∪ S is (µ′, k + 1)-valid. We have to verify the statements 6.4.1–6.4.3 forX ∪ S andk + 1.
Clearly,k + 1 > k ≥ µmax. SinceX is (µ, k)-valid it is also(µ′, k)-valid. By induction hypothesis we
obtain thatX ∪S is (µ′, k +1)-valid, i.e., 6.4.1 holds. Sincek is even, the condition2 · |00n10t1x| ≤ k +1
is equivalent to2 · |00n10t1x| ≤ k. Moreover, sincet < k the computations mentioned in 6.4.2 cannot ask
queries longer thank. This means that in 6.4.2 we can change the oracle fromX ∪ S to X. The resulting
condition holds sinceX is (µ, k)-valid. Therefore, 6.4.2 holds forX ∪ S andk + 1. Finally, 6.4.3 holds for
X ∪ S andk + 1, since this condition does not depend onk and(X ∪ S)∩Σ≤k = X≤k. This proves 6.5.3.

Assume thatL(NMX
i) ∩ L(NMX

j) ∩ Σ≤k 6= ∅ for some(i, j) ∈ range(µ). Choosen such that
(n, i, j) ∈ µ. Let µ′ df={(n′, i′, j′) ∈ µ

∣∣ n′ < n} and observe thatµ′ ∪ {(n, i, j)} � µ. By 6.5.2,X is
(µ′∪{(n, i, j)}, k)-valid and also(µ′, k)-valid. Together with 6.4.3 this implies thatL(NMX

i)∩L(NMX
j)∩

Σ≤k = ∅, which contradicts our assumption. This shows 6.5.4.
Statement 6.5.5 follows from Definition 6.5 by induction on‖µ‖. This induction is similar to that used

in the proof of 6.5.3.
Let O be as in statement 6.5.6 and let(i, j) ∈ range(µ). Choosen such that(n, i, j) ∈ µ. Assume that

A(O)∩B(O) 6= ∅ and letw ∈ A(O)∩B(O). Then, fork = 2·(|w|+1), w is already inA(O≤k)∩B(O≤k).
This contradicts the assumption that there exists ak′ ≥ k such thatO≤k′ is (µ, k′)-valid. Therefore,A(O)∩
B(O) = ∅. Analogously we see thatC(O) ∩ D(O) = ∅ andL(NMO

i) ∩ L(NMO
j) = ∅ (Here we use

Proposition 6.5.4.). By our assumption and Definition 6.4, for infinitely manyk the following holds: For all
t ≥ 1 andx ∈ Σ∗ with 2 · |00n10t1x| ≤ k,

• (∃y, |y| = |00n10t1x|)[00n10t1xy ∈ O≤k] ⇔ NMO≤k

i (x) accepts withint steps, and

24

• (∃y, |y| = |10n10t1x|)[10n10t1xy ∈ O≤k] ⇔ NMO≤k

j (x) accepts withint steps.

During the firstt steps a machine can only ask queries of length≤ t < k. Therefore, above we can replace
NMO≤k

i (x) andNMO≤k

j (x) by NMO
i (x) andNMO

j (x), respectively. Since all this holds for infinitely
manyk, the following holds for allt ≥ 1 andx ∈ Σ∗.

• (∃y, |y| = |00n10t1x|)[00n10t1xy ∈ O] ⇔ NMO
i (x) accepts withint steps, and

• (∃y, |y| = |10n10t1x|)[10n10t1xy ∈ O] ⇔ NMO
j (x) accepts withint steps.

This shows that(L(NMO
i), L(NMO

j))≤pp
m (A(O), B(O)) via somef ∈ FP.4 Even more, if both ma-

chines do not acceptx within t steps, then0n10t1x is neither inA(O) nor is in B(O). This means

f(L(NMO
i) ∪ L(NMO

j)) ⊆ A(O) ∪B(O). 2

Remember that our construction consists of a coding part to obtain condition (i) of Theorem 6.1 and of
separating parts to obtain conditions (ii) and (iii). In order to diagonalize, we will fix certain words that are
needed for the coding part and we will change our oracle on nonfixed positions to obtain the separation.
For this we introduce the notion of a reservation for an oracle. A reservation consists of two setsY andN
whereY contains words that are reserved for the oracle whileN contains words that are reserved for the
complement of the oracle. This notion has two important properties:

• Whenever an oracleX agrees with a reservation that is not too large, we can find an extension ofX
that agrees with the reservation (Lemma 6.8).

• If we want to fix a certain word to be in the oracle, then this is possible by a reservation of small
size. For this reason we can fix certain words to be in the oracle and still be able to diagonalize.
(Lemma 6.10)

Definition 6.6 ((µ, k)-reservation) (Y, N) is a (µ, k)-reservation forX if X is (µ, k)-valid, Y ∩N = ∅,
Y ≤k ⊆ X, N ⊆ X, all words inY >k areµ-code-words, and ifw ∈ Y >k is aµ-code-word for(i, t, x), then
NM i(x) has a positive pathP with |P | ≤ t, P yes ⊆ Y andP no ⊆ N .

Proposition 6.7 (basic properties of reservations)The following holds for every(µ, k)-valid X.

1. (∅, ∅) is a (µ, k)-reservation forX.

2. If (Y, N) is a (µ, k)-reservation forX, then also(Y, N ∪N ′) for everyN ′ ⊆ Y ∪X.

3. For everyN ⊆ X, (∅, N) is a (µ, k)-reservation forX.

4. If (Y, N) is a(µ, k)-reservation forX, then(Y, N) is a(µ, k+1)-reservation for each(µ, k+1)-valid

Z⊇kX with Y =k+1 ⊆ Z=k+1 ⊆ N
=k+1

.

Proof This follows immediately from Definition 6.6. 2

Whenever a(µ, k)-reservation of some oracleX is not too large, thenX has a(µ,m)-valid extensionZ
that agrees with the reservation.

4We can usef(x)
df
= 0n10ni+j

1x, sinceNMi andNMj have computation timesni andnj , respectively.

25

Lemma 6.8 Let (Y, N) be a (µ, k)-reservation forX and letm df=max({|w|
∣∣ w ∈ Y ∪ N} ∪ {k}). If

‖N‖ ≤ 2k/2, then there exists a(µ,m)-valid Z⊇kX with Y ⊆ Z,N ⊆ Z, and Z>k contains only
µ-code-words.

Proof Assume that‖N‖ ≤ 2k/2. We show the lemma by induction onn df=m − k. If n = 0, then
Y = N = ∅ and we are done.

Now assumen > 0. First of all we want to see that it suffices to find a(µ, k + 1)-valid Z ′⊇kX such

thatY =k+1 ⊆ Z ′=k+1 ⊆ N
=k+1

andZ ′=k+1 contains onlyµ-code-words. In this case, Proposition 6.7.4
implies that(Y, N) is a(µ, k +1)-reservation forZ ′. Then we can apply the induction hypothesis to(Y, N)
considered as a(µ, k + 1)-reservation forZ ′. We obtain a(µ,m)-valid Z⊇k+1Z

′ such thatY ⊆ Z ⊆ N
andZ>k+1 contains onlyµ-code-words. Together this yieldsZ⊇kX andZ>k contains onlyµ-code-words.
It remains to find the mentionedZ ′.

If k + 1 is odd, thenY =k+1 = ∅, sinceY =k+1 contains onlyµ-code-words and such words have an
even length. By Proposition 6.5.3,X is (µ, k + 1)-valid. Therefore, withZ ′ df=X we found the desiredZ ′.

If k + 1 is even, then, starting with the empty set, we construct a setS ⊆ Σk+1 by doing the following
for each(n, i, j) ∈ µ, eacht ≥ 1 and eachx ∈ Σ∗ with 2 · |00n10t1x| = k + 1:

• If NMX
i (x) accepts withint steps, then choose somey ∈ Σ|00n10t1x| with 00n10t1xy /∈ N and add

00n10t1xy to S.

• If NMX
j (x) accepts withint steps, then choose somey ∈ Σ|10n10t1x| with 10n10t1xy /∈ N and add

10n10t1xy to S.

Observe that the choices of wordsy are possible since‖N‖ ≤ 2k/2 < 2(k+1)/2 = ‖Σ|00n10t1x|‖. For

Z ′ df=X ∪ S ∪ Y =k+1 we haveZ ′⊇kX andY =k+1 ⊆ Z ′=k+1 ⊆ N
=k+1

sinceS ⊆ N ∩ Σk+1. Moreover,
Z ′=k+1 contains onlyµ-code-words sinceS andY =k+1 do so. It remains to show thatZ ′ is (µ, k+1)-valid.

Claim 1: A(Z ′) ∩B(Z ′) = C(Z ′) ∩D(Z ′) = ∅.

SinceX is (µ, k)-valid we haveA(X) ∩B(X) = C(X) ∩D(X) = ∅. When we look at the definitions of
A(X), B(X), C(X) andD(X) we see that in order to show Claim 1, it suffices to show

A(Z ′) ∩B(Z ′) ∩ Σ
(k+1)

2
−1 = C(Z ′) ∩D(Z ′) ∩ Σk+1 = ∅.

We immediately obtainC(Z ′) ∩ D(Z ′) ∩ Σk+1 = ∅, since by definition,C(Z ′) andD(Z ′) contain only
words of odd lengths. Assume thatA(Z ′) ∩ B(Z ′) ∩ Σ(k+1)/2−1 6= ∅, and choose somew ∈ A(Z ′) ∩
B(Z ′) ∩ Σ(k+1)/2−1. So there existn, t ≥ 1, x ∈ Σ∗ andy0, y1 ∈ Σ|w|+1 such thatw = 0n10t1x and
0wy0, 1wy1 ∈ Z ′. Since all words inS and all words inY areµ-code-words, there existi, j ≥ 1 such
that (n, i, j) ∈ µ. Note that0wy0, 1wy1 ∈ S ∪ Y =k+1. We claim thatNMX

i (x) accepts withint steps,
regardless of whether0wy0 belongs toS or toY =k+1. This can be seen as follows:

• If 0wy0 ∈ S, then from the construction ofS it follows thatNMX
i (x) accepts withint steps.

• If 0wy0 ∈ Y =k+1, thenNM i(x) has a positive pathP with |P | ≤ t, P yes ⊆ Y andP no ⊆ N . Since
t < k it follows thatP yes ∪ P no ⊆ Σ≤k and therefore,P yes ⊆ X andP no ⊆ Σ≤k −X. It follows
thatNMX

i (x) accepts withint steps.

Analogously we obtain thatNMX
j (x) accepts withint steps. Since|x| ≤ k it holds thatL(NMX

i) ∩
L(NMX

j) ∩ Σ≤k 6= ∅ and(i, j) ∈ range(µ). This contradicts Proposition 6.5.4 and finishes the proof of
Claim 1.

26

Claim 2: Z ′ is (µ′, k + 1)-valid for everyµ′ � µ.

We prove the claim by induction on‖µ′‖. If ‖µ′‖ = 0, thenZ ′ is (µ′, k + 1)-valid by Claim 1.
Assume now‖µ′‖ > 0, and choose suitableµ′′, i0, j0 such thatµ′ = µ′′ ∪ {(µ′max, i0, j0)} andµ′′ ≺ µ.

From the induction hypothesis of this claim it follows thatZ ′ is (µ′′, k + 1)-valid. Together withµ′max ≤
k < k + 1 this shows 6.4.1 forZ ′ and(µ′, k + 1).

Observe that if(n, i, j) ∈ µ′, t ≥ 1 andx ∈ Σ∗ with 2 · |00n10t1x| ≤ k + 1, then the equivalences in
6.4.2 hold forZ ′ and(µ′, k + 1).

• For2 · |00n10t1x| ≤ k they hold sinceX is (µ′, k)-valid andZ ′⊇kX.

• For2 · |00n10t1x| = k + 1, the implications “⇐” in statement 6.4.2 hold sinceS ⊆ Z ′. For the other
direction, letw = 0n10t1x and assume that there exists somey ∈ Σ|w|+1 such that0wy ∈ Z ′. If
0wy ∈ S, then we have put this word toS, becauseNMX

i (x) accepts withint steps. Sincet < k,
alsoNMZ′

i (x) accepts withint steps. If0wy ∈ Y =k+1, then, since(Y, N) is a (µ, k)-reservation
for X, NM i(x) has a positive pathP with |P | ≤ t, P yes ⊆ Y andP no ⊆ N . Sincet < k, we
haveP yes ⊆ X and P no ⊆ Σ≤k − X. Hence,NMX

i (x) accepts withint steps, and therefore,
NMZ′

i (x) accepts withint steps. This shows the implication “⇒” in 6.4.2.2a. Analogously we see
the implication “⇒” in 6.4.2.2b.

Finally, statement 6.4.3 holds forZ ′ and (µ′, k + 1) sinceX is (µ′, k)-valid, µ′max ≤ k and therefore
Z ′≤µ′max = X≤µ′max . This proves Claim 2.

In particular, Claim 2 implies thatZ ′ is (µ, k + 1)-valid. This completes the proof of the lemma. 2

One of the main consequences of this lemma is that(µ, k)-valid oracles can be extended to(µ, k′)-valid
oracles for largerk′. We needed to include the third condition in Definition 6.4 in order to obtain this
property. Otherwise it would have been possible that a certain way of extending the finite oracleX to some
oracleX ′ has no extension to an infinite oracleO so thatL(NMO

i) ∩ L(NMO
j) = ∅. If this were the case,

then by statement 6.4.2, for all extensions to an infinite oracleO, A(O) andB(O) would not be disjoint.

Lemma 6.9 If X is (µ, k)-valid, then for everym > k there exists a(µ,m)-valid Z⊇kX.

Proof It suffices to show the assertion form = k + 1. Let Y = ∅ andN = 0k+1. By Proposition 6.7.3,
(Y, N) is a (µ, k)-reservation forX. Since‖N‖ = 1 ≤ 2k/2 we can apply Lemma 6.8 and we obtain a
(µ, k + 1)-valid Z⊇kX. 2

For a finiteX ⊆ Σ∗, let `(X) df=
∑

w∈X |w|.

Lemma 6.10 Let X be (µ, k)-valid and letZ⊇kX be (µ,m)-valid such thatm ≥ k and Z>k contains
only µ-code-words. For everyw ∈ Z there exists a(µ, k)-reservation(Y, N) for X such thatw ∈ Y ,
Y ∪N ⊆ Σ≤|w|, `(Y ∪N) ≤ 2 · |w| andY ⊆ Z ⊆ N .

Proof For everyY ⊆ Z let

D(Y) df={q
∣∣ Y >k contains aµ-code-word for(i, t, x) andq ∈ P all

i,t,x},

wherePi,t,x is the lexicographically smallest path among all paths ofNMZ
i (x) that are accepting and that

are of length≤ t. Note thatD(Y) is well-defined: On the one hand we know that all elements ofZ>k

27

areµ-code-words. On the other hand, ifY >k ⊆ Z contains aµ-code-word for(i, t, x), then (sinceZ is
(µ,m)-valid) the pathPi,t,x really exists.

When looking at the definition ofD(Y) we see that ifw is aµ-code-word for(i, t, x), then|Pi,t,x| ≤
t < |w|/2. Therefore, the sum of lengths ofq’s that are induced byw is at most|w|/2. This shows the
following.

Claim 1: For allY ⊆Z: `(D(Y))≤`(Y)/2 and words inD(Y) are not longer than the longest word inY .

We compute the(µ, k)-reservation(Y, N) with help of the procedure below.

1 Y0 := {w}
2 N0 := ∅
3 c := 0
4 do
5 c := c + 1
6 Yc := D(Yc−1) ∩ Z
7 Nc := D(Yc−1) ∩ Z
8 repeat until Yc = Nc = ∅
9 Y := Y0 ∪ Y1 ∪ · · · ∪ Yc
10 N := N0 ∪ N1 ∪ · · · ∪ Nc

Note that since allYc are subsets ofZ, the expressionsD(Yc−1) in the lines 6 and 7 are defined. It is
immediately clear thatw ∈ Y ⊆ Z ⊆ N and thereforeY ∩N = ∅. From Claim 1 we obtainY ∪N ⊆ Σ≤|w|

and`(Yi ∪ Ni) = `(D(Yi−1)) ≤ `(Yi−1)/2 for 1 ≤ i ≤ c. Therefore,̀ (Y ∪ N) ≤ 2 · `(Y0) = 2 · |w|. It
remains to show the following.

Claim 2: (Y, N) is a(µ, k)-reservation forX.

Clearly, Y ≤k ⊆ X ⊆ N . Moreover, all words inY >k areµ-code-words since allYi are subsets of
Z. So letv ∈ Y >k be aµ-code-word for(i, t, x). More precisely,v ∈ Yi′ for a suitablei′ < c. SinceZ
is (µ,m)-valid andv is aµ-code-word inZ it follows from Definition 6.4 thatNMZ

i (x) accepts withint
steps. Therefore, the pathPi,t,x exists and we obtainP all

i,t,x ⊆ D(Yi′). It follows thatP yes
i,t,x ⊆ Yi′+1 ⊆ Y

andP no
i,t,x ⊆ Ni′+1 ⊆ N . Therefore,NM i(x) has a positive pathP with |P | ≤ t, P yes ⊆ Y andP no ⊆ N .

This proves the claim and finishes the proof of the lemma. 2

For any(µ, k)-valid oracle either we can find a finite extension that makes the languages accepted by
NM i andNM j not disjoint, or we can force these languages to be disjoint for all valid extensions.

Proposition 6.11 (Property P1) Leti, j ≥ 1 and letX be(µ, k)-valid. There exists anl > k and a(µ′, l)-
valid Y⊇kX, µ � µ′ such that

• either for allZ⊇lY , L(NMZ
i) ∩ L(NMZ

j) ∩ Σ≤l 6= ∅

• or (i, j) ∈ range(µ′).

This proposition tells us that if the first property does not hold, then by Definition 6.4, sinceY is (µ′, l)-valid,
L(NMZ

i) ∩ L(NMZ
j) ∩ Σ≤m = ∅ for all (µ,m)-valid extensionsZ of Y , wherem ≥ l.

Proof Let i, j ≥ 1 and letX be(µ, k)-valid. By Lemma 6.9, we can assume thatk is large enough so that
2 · ki+j < 2k/2. If (i, j) ∈ range(µ), then we are done. Otherwise we distinguish two cases.

28

Case 1: There exists anl′ > k and a(µ, l′)-valid Y ′⊇kX such thatL(NMY ′
i) ∩L(NMY ′

j) ∩Σ≤l′ 6= ∅.
Choose somex ∈ L(NMY ′

i) ∩ L(NMY ′
j) ∩ Σ≤l′ and letPi, Pj be accepting paths of the computations

NMY ′
i (x), NMY ′

j (x), respectively. Note that(P yes
i ∪ P yes

j) ∩ Σ>l′ = ∅ and letN df=(P no
i ∪ P no

j) ∩ Σ>l′ .

By Proposition 6.7,(∅, N) is a(µ, l′)-reservation forY ′. Since‖N‖ ≤ 2 · |x|i+j ≤ 2 · l′i+j < 2l′/2 we can
apply Lemma 6.8. We obtain somel ≥ l′ > k and some(µ, l)-valid Y⊇l′Y

′⊇kX such thatN ⊆ Σ≤l and
Y ⊆ N . Therefore, for everyZ⊇lY the computationsNMZ

i (x) andNMZ
j (x) will accept at the pathsPi

andPj , respectively. HenceL(NMZ
i) ∩ L(NMZ

j) ∩ Σ≤l 6= ∅ for everyZ⊇lY .

Case 2: For everyl′ > k and every(µ, l′)-valid Y ′⊇kX it holds thatL(NMY ′
i)∩L(NMY ′

j)∩Σ≤l′ = ∅.
By Lemma 6.9, there exists a(µ, l)-valid Y⊇kX with l df= k + 1. Let µ′ df=µ ∪ {(l, i, j)} and observe that
µ � µ′ sincel > k ≥ µmax. We will show thatY is (µ′, l)-valid.

Sincel = µ′max and sinceY is (µ, l)-valid, 6.4.1 holds. When looking at 6.4.2 for(l, i, j) ∈ µ′ we
realize that2 · |00l10t1x| ≤ l is not possible. Therefore, we only have to verify 6.4.2 for elements fromµ.
This is immediate, sinceY is (µ, l)-valid. Finally, 6.4.3 follows from our assumption in Case 2. Therefore,
Y is (µ′, l)-valid. 2

In order to show that(C(O), D(O)) is not symmetric we have to diagonalize against every possible
reducing function, i.e., against every deterministic polynomial-time oracle transducer. The following propo-
sition makes sure that this diagonalization is compatible with the notion of valid oracles.

Proposition 6.12 (Property P2) Leti ≥ 1 and letX be (µ, k)-valid. There exists anl > k and a(µ, l)-
valid Y⊇kX such that for allZ⊇lY , if C(Z) ∩D(Z) = ∅, then(C(Z), D(Z)) does not≤pp,O

m -reduce to
(D(Z), C(Z)) via TZ

i .

Proof By Lemma 6.9 we can assume thatk ≡ 0(mod 4) and (k + 1)i + 1 < 2(k+1)/2. Consider the
computationTX

i (0k+1), let x be the output of this computation, and letN be the set of queries that are of
length greater thank. If |x| > k, then additionally we add the word0|x| to N . Note that this yields anN
such thatX ∩N = ∅ and‖N‖ ≤ (k + 1)i + 1 < 2(k+1)/2.

If x ∈ C(X) (note that this meansx = 0k′ for somek′ ≤ k), then choose somey ∈ 0Σk − N and
let S df={y}. In this case it holds that0k+1 ∈ C(X ∪ S) ∧ x /∈ D(X ∪ S). The latter holds, sinceX is
(µ, k)-valid and therefore,C(X) ∩D(X) = ∅. Otherwise, ifx /∈ C(X), then choose somey ∈ 1Σk −N
and letS df={y}. Here we obtain0k+1 ∈ D(X ∪S)∧x /∈ C(X ∪S). Together this means that we find some
y ∈ Σk+1 −N such that withS df={y} it holds that

[0k+1 ∈ C(X ∪ S) ∧ x /∈ D(X ∪ S)] ∨ [0k+1 ∈ D(X ∪ S) ∧ x /∈ C(X ∪ S)]. (7)

S ⊆ Σk+1 andC(S) ∩ D(S) = ∅. From Proposition 6.5.3 it follows thatX ∪ S is (µ, k + 1)-valid. So
by Proposition 6.7.3,(∅, N>k+1) is a (µ, k + 1)-reservation forX ∪ S. Since‖N>k+1‖ < 2(k+1)/2 we
can apply Lemma 6.8. Forl df=max({|w|

∣∣ w ∈ N} ∪ {k + 1}) we obtain a(µ, l)-valid Y⊇k+1X ∪ S such

thatY ⊆ N>k+1 andY >k+1 contains onlyµ-code-words. FromS ⊆ N it follows thatY ⊆ N ∩ Σ>k.
Therefore,T Y

i (0k+1) computesx. Since all queries asked at this computation are of length≤ l, we obtain
that TZ

i (0k+1) computesx for everyZ⊇lY . SinceY >k+1 does not contain any words of odd length we
haveC(Z) ∩ Σ≤l = C(X ∪ S) andD(Z) ∩ Σ≤l = D(X ∪ S) for eachZ⊇lY . Since0|x| ∈ N , we have
0k+1, x ∈ Σ≤l. Therefore, by equation (7), the following holds for everyZ⊇lY .

[0k+1 ∈ C(Z) ∧ TZ
i (0k+1) /∈ D(Z)] ∨ [0k+1 ∈ D(Z) ∧ TZ

i (0k+1) /∈ C(Z)] (8)

Hence, for everyZ⊇lY with C(Z) ∩ D(Z) = ∅ it holds that(C(Z), D(Z)) does not≤pp,O
m -reduce to

(D(Z), C(Z)) via TZ
i . 2

29

Recall that we want to construct the oracle in a way such that(A(O), B(O)) is not≤pp,O
T -hard forNPO.

At the beginning of this proof we have seen that it suffices to constructE(O) such that it does not≤pp
T -reduce

to (A(O), B(O)). We preventE(O)≤pp
T (A(O), B(O)) via Mi as follows: We consider the computation

Mi(0n) where the machine can ask queries to the pair(A(X), B(X)). In Lemma 6.13 we show that each
query to this pair can be forced either to be in the complement ofA(X) or to be in the complement of
B(X). For this forcing it is enough to reserve polynomially many words for the complement ofX. If we
forced the query to be in the complement ofA(X), then we can safely answer that it belongs toB(X).
Otherwise we can safely answer that it belongs toA(X). After forcing all queries of the computation, we
add an unreserved word toE(X) if and only if the computation rejects. This will show thatE(X) does not
≤pp

T -reduce to(A(X), B(X)) via Mi (Proposition 6.14).

Lemma 6.13 Letk ≡ 2(mod 4) and letX be(µ, k)-valid. For everyq ∈ Σ∗, |q| ≤ 2k/2−3− 2, there exists
anN ⊆ Σ>k such that‖N‖ ≤ (4 · |q|+ 5)2 and one of the following properties holds.

1. For all (µ,m)-validZ⊇kX, if m>k, Z⊆N andZ>k+1 contains onlyµ-code-words, thenq /∈ A(Z).
2. For all (µ,m)-validZ⊇kX, if m>k, Z⊆N andZ>k+1 contains onlyµ-code-words, thenq /∈ B(Z).

Proof We can assume that there existn, t ≥ 1 andx ∈ Σ∗ such thatq = 0n10t1x. Otherwise, by definition
of A andB, q cannot belong toA(Z) ∪B(Z) for all oraclesZ, and we are done. Define the following sets.

LA
df= {(YA, NA)

∣∣ (YA, NA) is a(µ, k +1)-reservation for some(µ, k +1)-valid Z⊇kX,
`(YA ∪NA) ≤ 4 · (|q|+ 1), and(∃y ∈ Σ|q|+1)[0qy ∈ YA]}

LB
df= {(YB, NB)

∣∣ (YB, NB) is a(µ, k +1)-reservation for some(µ, k +1)-valid Z⊇kX,
`(YB ∪NB) ≤ 4 · (|q|+ 1), and(∃y ∈ Σ|q|+1)[1qy ∈ YB]}

We say that(YA, NA) ∈ LA conflictswith (YB, NB) ∈ LB if and only if YA ∩NB 6= ∅ or NA ∩ YB 6= ∅.
Note that if(YA, NA) and(YB, NB) conflict, then evenYA ∩NB ∩ Σ>k 6= ∅ or NA ∩ YB ∩ Σ>k 6= ∅.

Claim 1: Every(YA, NA) ∈ LA conflicts with every(YB, NB) ∈ LB.

Assume that there exist(YA, NA) ∈ LA and (YB, NB) ∈ LB that do not conflict. LetY ′ df=YA ∪ YB,
N ′ df=NA∪NB andZ ′ df=X∪YA

=k+1∪YB
=k+1. Sincek+1 ≡ 3(mod 4), this impliesC(Z ′)∩D(Z ′) = ∅.

By Proposition 6.5.3,Z ′ is (µ, k + 1)-valid. Observe that(Y ′, N ′) is a (µ, k + 1)-reservation forZ ′.
Moreover, from the definition ofLA andLB it follows that‖N ′‖ ≤ 8 · |q| + 10 ≤ 2k/2. By Lemma 6.8,
there exist anm ≥ k + 1 and a(µ,m)-valid Z⊇k+1Z

′ such thatY ′ ⊆ Z. Since(YA, NA) ∈ LA and
(YB, NB) ∈ LB, there existy0, y1 ∈ Σ|q|+1 such that0qy0 ∈ YA ⊆ Y ′ ⊆ Z and1qy1 ∈ YB ⊆ Y ′ ⊆ Z.
Therefore,q ∈ A(Z) ∩B(Z), which contradicts the fact thatZ is (µ,m)-valid. This proves Claim 1.

We use the following algorithm to create the setN as claimed in the statement of this lemma.

1 N := ∅
2 while (LA 6= ∅ and LB 6= ∅)
3 choose some (Y′A, N

′
A) ∈ LA

4 N := N ∪ Y′A
>k ∪ N′A

>k

5 for every (YA, NA) ∈ LA
6 remove (YA, NA) if YA ∩ (Y′A

>k ∪ N′A
>k) 6= ∅

7 for every (YB, NB) ∈ LB
8 remove (YB, NB) if YB ∩ (Y′A

>k ∪ N′A
>k) 6= ∅

9 end while

30

We claim that afterl iterations of thewhile loop, for every(YB, NB) ∈ LB, ‖NB‖ ≥ l. If this claim is
true, the while loop iterates at most4 · |q|+5 times, since for any(YB, NB) ∈ LB, `(NB) ≤ 4 · |q|+4, and
therefore,‖NB‖ ≤ 4 · |q|+ 5. On the other hand, during each iteration,N is increased by at most4 · |q|+ 5
strings. Therefore,‖N‖ ≤ (4 · |q|+ 5)2 andN ⊆ Σ>k when this algorithm terminates.

Claim 2: After l iterations of thewhile loop, for every(YB, NB) that remains inLB, ‖NB‖ ≥ l.

For everyl, let us denote the pair that is chosen during thel-th iteration in step 3 by(Y l
A, N l

A). By
Claim 1, every(YB, NB) that belongs toLB at the beginning of this iteration conflicts with(Y l

A, N l
A), i.e.,

N l
A∩YB∩Σ>k 6= ∅ orY l

A∩NB∩Σ>k 6= ∅. If N l
A∩YB∩Σ>k 6= ∅, then(YB, NB) will be removed fromLB

in step 8. Otherwise,Y l
A ∩NB ∩ Σ>k is not empty, and therefore, there exists a lexicographically smallest

wordwl in this set. In this case,(YB, NB) will not be removed fromLB; we say that(YB, NB) survivesthe
l-th iterationdue to the wordwl. Note that(YB, NB) can survive only due to a word that belongs toNB.
We will use this fact to prove that‖NB‖ ≥ l afterl iterations.

We show now that any pair(YB, NB) that is left inLB after l iterations survives each of these iteration
due to a different word. Since these words all belong toNB, this will complete the proof of the claim.
Assume that there exist iterationsl andl′ with l < l′ such thatwl = wl′ . Thenwl ∈ Y l

A ∩ NB ∩ Σ>k and
wl′ ∈ Y l′

A ∩NB ∩ Σ>k. Therefore,Y l
A ∩ Y l′

A ∩ Σ>k 6= ∅. So the pair(Y l′
B , N l′

B) should have been removed
in iterationl (step 6), and cannot be chosen at the beginning of iterationl′, as claimed. Hence,wl 6= wl′ .
This proves Claim 2.

Therefore, we now have a setN of the required size such that eitherLA or LB will be empty. Assume
thatLA is empty; we will show that 6.13.1 holds (analogously we show that ifLB is empty, then 6.13.2).
Assume that for somem ≥ k + 1 there exists a(µ,m)-valid Z⊇kX such thatq ∈ A(Z), Z ⊆ N and
Z>k+1 contains onlyµ-code-words. Hence, there exists somey ∈ Σ|q|+1 such that0qy ∈ Z. 5

Let Z ′ df=Z≤k+1. From Proposition 6.5.5 it follows thatZ ′ is (µ, k+1)-valid (sincek+1 > k ≥ µmax).
SinceZ>k+1 contains onlyµ-code-words, we can apply Lemma 6.10. We obtain a(µ, k + 1)-reservation
(Y ′, N ′) for Z ′ such that0qy ∈ Y ′, Y ′∪N ′ ⊆ Σ≤|0qy|, `(Y ′∪N ′) ≤ 2 · |0qy| andY ′ ⊆ Z ⊆ N ′. Together
with Z ⊆ N , this implies

Y ′ ∩N = ∅. (9)

Note that(Y ′, N ′) must have been inLA and has been removed during some iteration. This implies that
during that iteration,Y ′ ∩ (Y ′

A
>k ∪N ′

A
>k) 6= ∅ (by line 6). Moreover, by line 4,Y ′

A
>k ∪N ′

A
>k is a subset

of N when the algorithms stops. This impliesY ′ ∩N 6= ∅, which contradicts equation (9). This shows that
for all (µ,m)-valid Z⊇kX, if m > k, Z ⊆ N andZ>k+1 contains onlyµ-code-words, thenq /∈ A(Z). 2

Proposition 6.14 (Property P3) Leti ≥ 1 and letX be(µ, k)-valid. There exists anl > k and a(µ, l)-valid
Y⊇kX such that for allZ⊇lY , if A(Z)∩B(Z) = ∅, then there exists a separatorS of (A(Z), B(Z)) such
thatE(Z) 6= L(MS

i).

Proof Let i ≥ 1 and letX be(µ, k)-valid. By Lemma 6.9, we can assume thatk ≡ 2(mod 4) and thatk is
large enough such that16(k + 3)3i < 2k/2.

5Actually, it even holds that0qy ∈ Z − X, but we do not need this explicitly in our argumentation. In order to see this, we
assume that0qy is in X. Thenq is in A(X) and({0qy}, ∅) is a(µ, k)-reservation forX. Therefore,({0qy}, ∅) is a(µ, k + 1)-
reservation for every(µ, k + 1)-valid Z⊇kX. Hence,({0qy}, ∅) is in LA at the beginning of the algorithm. So it has been
removed during the algorithm. But this is not possible since elements inLA can only be removed in step 6, and there we remove
only (YA, NA) with YA ∩ Σ>k 6= ∅. This shows0qy ∈ Z −X.

31

We describe the construction ofSA andSB, which are sets of queries we reserve forB(Y) andA(Y),
respectively. LetSA := A(X) andSB := B(X). We simulate the computationMSA

i (0k+1) until we reach
a queryq1 that neither belongs toSA nor belongs toSB. Note that|q1| ≤ (k + 1)i ≤ 2k/2−3 − 2. From
Lemma 6.13 we obtain someN1 ⊆ Σ>k such that‖N1‖ ≤ (4 · |q1|+5)2 and either 6.13.1 or 6.13.2 holds. If
6.13.1, then addq1 to SB, otherwise addq1 to SA. Now return the answer of “q1 ∈ SA?” to the computation.
We continue the simulation until we reach a queryq2 that neither belongs toSA nor belongs toSB. Again
we apply Lemma 6.13, obtain the setN2, and addq2 either toSA or to SB. We continue the simulation
until the computation stops. Letn be the number of queries that were added toSA or SB. Observe that
SA ∩ SB = ∅ at the end of our simulation.

Let N df=N1∪· · ·∪Nn∪{02(k+1)i+2}. Then‖N‖ ≤ (k+1)i ·(4 ·(k+1)i+5)2+1 ≤ 2k/2. Hence there
exists somew ∈ Σk+1 − N . If the simulation accepts, then letY ′ df=X, otherwise letY ′ df=X ∪ {w}. By
Proposition 6.5.3,Y ′ is (µ, k+1)-valid. SinceN ⊆ Σ>k we haveN ⊆ Y ′. Therefore, by Proposition 6.7.3,
(∅, N) is a(µ, k + 1)-reservation forY ′. By Lemma 6.8, there exist anl ≥ 2(k + 1)i + 2 and a(µ, l)-valid
Y⊇k+1Y

′ such thatY ⊆ N andY >k+1 contains onlyµ-code-words. In particular, it holds thatl > k and
Y⊇kX.

Claim 1: SA ⊆ B(Z) andSB ⊆ A(Z) for everyZ⊇lY .

Assume thatSA ∩ B(Z) 6= ∅ for someZ⊇lY , and choose av ∈ SA ∩ B(Z). SinceSA contains only
words of length≤ (k + 1)i we obtainv ∈ SA ∩ B(Z≤2(k+1)i+2) = SA ∩ B(Y). Sov cannot belong to
A(Y) sinceA(Y) ∩ B(Y) = ∅. In particular this meansv ∈ SA − A(X), i.e., v = qj for a suitablej
with 1 ≤ j ≤ n. By our constructionqj was only added toSA when 6.13.2 holds. Remember thatY is
(µ, l)-valid with l > k, Y⊇kX, Y ⊆ N ⊆ Nj andY >k+1 contains onlyµ-code-words. Therefore, from
6.13.2 it follows thatv = qj /∈ B(Y), which contradictsv ∈ SA ∩ B(Y). This showsSA ⊆ B(Z). By the
symmetric argument we obtainSB ⊆ A(Z). This proves the claim.

Consider anyZ⊇lY with A(Z) ∩ B(Z) = ∅. Let S df=A(Z) ∪ SA. Assume thatS is not a separator
of (A(Z), B(Z)). SinceA(Z) ⊆ S, we must haveS ∩ B(Z) 6= ∅. SinceA(Z) ∩ B(Z) = ∅, this implies
SA ∩ B(Z) 6= ∅. This contradicts Claim 1. SoS is a separator of(A(Z), B(Z)). It remains to show
E(Z) 6= L(MS

i).
By our construction,0k+1 ∈ E(Y ′) if and only if MSA

i (0k+1) rejects. SinceZ⊇k+1Y
′ it holds that

0k+1 ∈ E(Z) if and only if MSA
i (0k+1) rejects. Assume that there exists a queryq that is answered

differently in the computationsMSA
i (0k+1) andMS

i (0k+1) (take the first such query). SinceSA ⊆ S we
obtainq ∈ S − SA, i.e., q ∈ A(Z). If q is in B(X), thenq is in B(Z) ⊆ S, which is not possible. So
q is neither inSA nor in B(X), but q is asked in the computationMSA

i (0k+1). It follows thatq = qj for
some j with1 ≤ j ≤ n, and during the construction we addedqj to SB. So we haveq ∈ SB ∩ A(Z),
which contradicts Claim 1. Therefore,MSA

i (0k+1) accepts if and only ifMS
i (0k+1) accepts. This shows

0k+1 ∈ E(Z) if and only if MS
i (0k+1) rejects, i.e.,E(Z) 6= L(MS

i). 2

This finishes the proof of Theorem 6.1. 2

Corollary 6.2 The oracleO from Theorem 6.1 has the following additional properties.

(i) UPO 6= NPO 6= coNPO andNPMVO 6⊆cNPSVO

(ii) There exists a≤pp
m -completeNPO-pair (A,B) that satisfies the following:

– For everyNPO-pair (E,F) there exists anf ∈ FP with E≤p
mA via f andF≤p

mB via f .

32

– (A,B) is PO-inseparable but symmetric.

Proof It is known that Conjecture 2.4 implies item (i) [ESY84, GS88, Sel94]. The first statement of (ii)
follows immediately from the proof of Theorem 6.1 (equation (4)). The pair(A,B) is symmetric because it
is≤pp

m -complete. If(A,B) isPO-separable, then everyNPO-pair isPO-separable, and therefore symmetric.
This contradicts item (ii) of Theorem 6.1. So(A,B) is PO-inseparable. 2

Note that statement (ii) shows that(A,B) is complete even in a stronger sense of many-one reductions.

33

