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Abstract

We study the question of whether the cl@®sf disjoint pairs(A, B) of NP-sets contains a complete pair.
The question relates to the question of whether optimal proof systems exist, and we relate it to the previously
studied question of whether there exists a disjoint pair of NP-sets that is NP-hard. We show under reasonable
hypotheses that nonsymmetric disjoint NP-pairs exist, which provides additional evidence for the existence
of P-inseparable disjoint NP-pairs.

We construct an oracle relative to which the class of disjoint NP-pairs does not have a complete pair

and an oracle relative to which complete pairs exist, but no pair is NP-hard. Both oracles satisfy additional
interesting properties.



1 Introduction

We study the clas® of disjoint pairs(A, B), where A and B are nonempty, disjoint sets belonging to

NP. Such disjoint NP-pairs are interesting for at least two reasons. First, Grollmann and Selman [GS88]
showed that the question of whetif2icontains P-inseparable disjoint NP-pairs is related to the existence of
public-key cryptosystems. Second, Razborov [Raz94] anddRyEBLdO01] demonstrated that these pairs are
closely related to the theory of proof systems for propositional calculus. Specifically, Razborov showed that
existence of an optimal propositional proof system implies existence of a complete fir Fsimarily in

this paper we are interested in the question raised by Razborov [Raz94] of whetleatains a complete

pair. We show connections between this question and earlier work on disjoint NP-pairs, and we exhibit an
oracle relative to whictD does not contain any complete pair.

From a technical point of view, disjoint pairs are simply an equivalent formulation of promise problems.
There are natural notions of reducibilities between promise problems [ESY84, Sel88] that disjoint pairs
inherit easily [GS88]. Hence, completeness and hardness notions follow naturally. We begin in the next
section with these definitions, some easy observations, and a review of the known results.

The preliminary section tends to details concerning reductions between disjoint NP-pairs. In Section 3
we observe that iD does not contain a Turing-complete disjoint NP-pair, tieetioes not contain a disjoint
NP-pair all of whose separators are Turing-hard for NP. The latter is a conjecture formulated by Even,
Selman, and Yacobi [ESY84] and it has several known consequences: Public-key cryptosystems that are
NP-hard to crack do not exisNP # UP, NP # coNP, andNPMV ¢ . NPSV. Our main result in this
section is an oraclé relative to whichD does not contain a disjoint Turing-complete NP-pair and relative
to whichP # UP. Relative toX, by Razborov’'s result [Raz94], optimal propositional proof systems do
not exist. P-inseparable disjoint NP-pairs exist relative&(tobecausd # UP [GS88]. Most researchers
believe that P-inseparable disjoint NP-pairs exist and we believe that no disjoint NP-pair has only NP-hard
separators. Both of these properties hold relative to X. This is the first oracle relative to which both of
these conditions hold simultaneously. Homer and Selman [HS92] obtained an oracle relative to which all
disjoint NP-pairs are P-separable, so the conjecture of Even, Selman, and Yacobi holds relative to their
oracle only for this trivial reason. Now lets say a few things about the construction of oracle X. Previous
researchers have obtained oracles relative to which certain (promise) complexity classes do not have disjoint
Turing-complete NP-pairs. However, the technique of Gurevich [Gur83], who provedNihat coNP
has Turing-complete sets if and only if it has many-one-complete sets, does not apply. Neither does the
technique of Hemaspaandra, Jain, and Vereshchagin [HJV93], who demonstrated, among other results, an
oracle relative to which FewP does not have a Turing-complete set.

In Section 4 we show that the question of whetBazontains a disjoint Turing-complete NP-pair has an
equivalent natural formulation as an hypothesis about classes of single-valued partial functions. Section 5
studiessymmetricdisjoint NP-pairs. Pudk [Pud01] defined a disjoint pait4, B) to be symmetric if
(A, B) is many-one reducible t6B, A). We easily show that P-separable implies symmetric. We give
complexity-theoretic evidence of the existence of nonsymmetric disjoint NP-pairs. As a consequence, we
obtain new ways to demonstrate existence of P-inseparable sets. Also, we use symmetry to show under
reasonable hypotheses that many-one and Turing reducibilities differ for disjoint NP-pairs. (All reductions
in this paper are polynomial-time-bounded.) Concrete candidates for P-inseparable disjoint NP-pairs come
from problems in UP or ilNP N coNP. Nevertheless, Grollmann and Selman [GS88] proved that the
existence of P-inseparable disjoint NP-pairs implies the existence of P-inseparable disjoint NP-pairs, where
both sets are NP-complete. Here we prove two analogous results. Existence of nonsymmetric disjoint NP-
pairs implies existence of nonsymmetric disjoint NP-pairs, where both sets are NP-complete. If there exists a



many-one-complete disjoint NP-pair, then there exist such a pair, where both sets are NP-complete. Natural
examples of nonsymmetric e}? - complete disjoint NP-pairs arise either from cryptography or from proof
systems [Pud01]. Our theorems show that the existence of such pairs will imply that nonsymmaet#it-(or
complete) disjoint NP-pairs exist where both sets of the paikdrecomplete for NP.

Section 6 constructs an oradlethat possesses several interesting properties. RelatVerttany-one-
complete NP-pairs exist. Therefore, while we expect that disjoint complete NP-pairs do not exist, this is
not provable by relativizable techniques. P-inseparable NP-pairs exist relativewbich we obtain by
proving that nonsymmetric NP-pairs exist. The conjecture of Even, Selman and Yacobi holds relative to
O. Therefore, while nonexistence of Turing-complete disjoint NP-pairs is a sufficient condition for this
conjecture, the converse does not hold, even in a world in which P-inseparable pairs exist. Also, relative to
O, there exists a P-inseparable set that is symmetric. Whereas nonsymmetric implies P-inseparable, again,
the converse does not hold relative(@o

The construction 0® involves some aspects that are unusual in complexity theory. We introduce unde-
cidable requirements, and as a consequence, the oracle is undecidable. In particular, we need to define sets
A and B, such that relative t®), the pair(A, B) is many-one complete. Therefore, we need to show that
for every two nondeterministic, polynomial-time-bounded oracle Turing mackin®s and N M, either
L(NMP)andL(NM?) are not disjoint or there is a reduction from the disjoint &N M), L(N M?))
to (A4, B). We accomplish this as follows: Give¥iM;, N M;, and a finite initial segment’ of O, we prove
that either there is a finite extensi®nhof X such that for all oracleg that extend’,

LI(NM?)NL(NM7) # 0
or there is a finite extensioyi of X such that for all oracleg that extendy”,
LINM7)NL(NM]) = 0.

Then, we select the extensidhthat exists. In this manner werceone of these two conditions to hold.

In the latter case, to obtain a reduction from the p&irN M), L(NMjO)) to (A, B) requires encoding
information into the oracl€. The other conditions that we waétto satisfy require diagonalizations. In
order to prove that there is room to diagonalize, we need to carefully control the number of words that must
be reserved for encoding. This is a typical concern in oracle constructions, but even more so here. We
manage this part of the construction by inventing a unique data structure that stores words reserved for the
encoding, and then prove that we do not store too many such words.

2 Preliminaries

We fix the alphabet = {0, 1} and we denote the length of a wardby |w|. The set of all (resp., nonempty)
words is denoted by (resp.,.XF). Let S<" £{w € ¥* | |w| < n}, and defines=", =", 2", andx>"
analogously. For a set of word§ let X <" £ X N ¥ <", and defineX =", X=", X =" andX>" analogously.
For sets of words we take the complement wat:t.

The set of (nonzero) natural numbers is denotedNbgby N*, respectively). Moreover, we fix a
polynomial-time computable and polynomial-time invertible pairing functior) : N* x N* — N*. For a
function f, dom(f) denotes the domain ¢f.

2.1 Disjoint Pairs, Separators, and the ESY-Conjecture

Definition 2.1 AdisjointNP-pair (NP-pair for short) is a pair of nonempty setsand B such thatd, B €
NP and AN B = (). LetD denote the class of all disjoiNP- pairs.
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Given a disjointNP-pair (A, B), a separatoris a setS such thatd C S andB C S; we say thatS
separateg A, B). Let Sep(A, B) denote the class of all separatorg df B). For disjointNP-pairs(A, B),
the fundamental question is whethg¢p( A, B) contains a set belonging to P. In that case the palt-is
separable otherwise, the pair i®-inseparable The following proposition summarizes the known results
about P-separability.

Proposition 2.2 1. P # NP N co-NP impliesNP containsP-inseparable sets.
2. P # UP impliesNP containsP-inseparable sets [GS88].

3. If NP containsP-inseparable sets, theédP containsNP-completeP-inseparable sets [GS88].

While it is probably the case th&P containsP-inseparable sets, there is an oracle relative to which
P # NP andP-inseparable sets in NP do not exist [HS92].15¢ NP probably is not a sufficiently strong
hypothesis to show existencelfinseparable sets INP.

Definition 2.3 Let (A, B) be a disjointNP-pair.
1. (A, B) is NP-hardif every separator of A, B) is NP-hard

2. (A, B) is uniformly NP-hardif there is a deterministic polynomial-time oracle Turing machivie
such that for everyl € Sep(A, B), SAT<?. A via M.

Grollmann and Selman [GS88] show that NP-hard implies uniformly NP-hard, i.e., both statements of the
definition are equivalent. Even, Selman, and Yacobi [ESY84] conjectured that there does not exist a disjoint
NP-pair (A, B) such that all separators 0fl, B) are<’. hard forNP.

Conjecture 2.4 ([ESY84]) There do not exist disjoilP-pairs that areNP-hard.

If Conjecture 2.4 holds, then no public-key cryptosystem is NP-hard to crack. This conjecture is a
strong hypothesis with the following known consequences. In Section 3 we show a sufficient condition for
Conjecture 2.4 to hold.

Proposition 2.5 ([ESY84, GS88, Sel94])f Conjecture 2.4 holds, thelNP =# coNP, NP # UP, and
NPMV ¢ .NPSV.

2.2 Reductions for Disjoint Pairs
We review the natural notions of reducibilities between disjoint pairs [GS88].
Definition 2.6 (non-uniform reductions for pairs) Let(A, B) and(C, D) be disjoint pairs.

1. (4, B) ismany-one reducible in polynomial timte (C, D), (A, B)<}?(C, D), if for every separator
T € Sep(C, D), there exists a separatat € Sep(A, B) such thatS<?,T.

2. (A, B) is Turing reducible in polynomial timéo (C, D), (A, B)<""(C, D), if for every separator
T € Sep(C, D), there exists a separatdt € Sep(A, B) such thatS<7.T..

Definition 2.7 (uniform reductions for pairs) Let(A, B) and(C, D) be disjoint pairs.



1. (A, B) is uniformly many-one reducible in polynomial tinte (C, D), (A, B)<.r,(C, D), if there
exists a polynomial-time computable functipisuch that for every separatd € Sep(C, D), there
exists a separatof € Sep(A, B) such thatS<?,T via f.

2. (A, B) is uniformly Turing reducible in polynomial time (C, D), (A, B)<"".(C, D), if there exists
a polynomial-time oracle Turing machin® such that for every separatd € Sep(C, D), there
exists a separatof € Sep(A, B) such thatS<".T via M.

If f andM are as above, then we also say thdt B)</7,(C, D) via f and (A, B)<"".(C, D) via M.
Observe thatif A, B)</V(C, D) and(C, D) is P-separable, then so(id, B) (and the same holds fet’?,
<%im, and<’7.). We retain the promise problem notation in order to distinguish from reducibilities between
sets. Grollmann and Selman proved that Turing reductions and uniform Turing reductions are equivalent.

Proposition 2.8 ([GS88]) (A, B)<'"(C, D) < (A, B)<'.(C,D) for all disjoint pairs (A, B) and
(C,D).

In order to obtain the corresponding theorem+4d},,, we can adapt the proof of Proposition 2.8, but a
separate argument is required. We omit the proof in this version.

Theorem 2.9 <F? = <P
We obtain the following useful characterization of many-one reductions.

Theorem 2.10 (A, B)<!P(C, D) if and only if there exists a polynomial-time computable funcficuch
that f(A) C Cand f(B) C D.

Proof By Theorem 2.9 there is a polynomial-time computable funcfisuch for everyd € Sep(S,T),
f~YHA) € Sep(Q, R). Thatis, ifS C AandT C A, thenQ C f~1(A4)andR C f~1(A), which implies
that f(Q) C Aandf(R)N A = (0. Well, S € Sep(S,T). Sof(Q) C S. Also, T € Sep(S,T). So
f(R)NT = 0. Thatis,f(R) C T. The converse is immediate. O

3 Complete Disjoint NP-Pairs

Keeping with common terminology, a disjoint p&#$, ') is </!-complete £7- complete) for the clasP
if (S,T) € D and for every disjoint paifQ, R) € D, (Q, R)<i (S, T) ((Q, R)<"(S,T), respectively).
Consider the following assertions:

1. D does not have &””-complete disjoint pair.
2. D does not have al?-complete disjoint pair.

3. D does not contain a disjoint pair all of whose separators<dfehard for NP (i.e., Conjecture 2.4
holds).

4. D does not contain a disjoint pair all of whose separatorsyehard for NP.

Assertions 1 and 2 are possible answers to the question raised by Razborov [Raz94] of ®hether
contains complete disjoint pairs. Assertion 3 is Conjecture 2.4. Assertion 4 is the analog of this conjecture
using many-one reducibility.

We can dispense with Assertion 4 immediately, for it is equivaleMRo# coNP.
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Proposition 3.1 NP # coNP if and only if D does not contain a disjoint pair all of whose separators are
<P -hard for NP.

Proof If NP = coNP, then(SAT, SAT) is a disjoint pair inD all of whose separators ar&,-hard for NP.

To show the other direction, consider the disjoint gait B) € D and assume that all of its separators
are <h,-hard for NP. SinceB is a separator ofA, B), SAT <}, B. Therefore SAT<}, B, implying that
SAT € NP. Thus, NP =oNP. O

Proposition 3.2 Assertion 1 implies Assertions 2 and 3. Assertions 2 and 3 imply Assertion 4.

This Proposition states, in part, that Assertion 1 is so strong as to imply Conjecture 2.4.
Proof Itis trivial that Assertion 1 implies Assertion 2 and Assertion 3 implies Assertion 4.

We prove that Assertion 1 implies Assertion 3. Assume Assertion 3 is false aift] Bt € D such that
all separators are NP-hard. We claim thsit7') is <’?-complete forD. Let (Q, R) belong toD. Let L be
an arbitrary separator ¢f, T'). Note thatL is NP-hard and) € NP. SoQ<”.L. SinceQ is a separator of
(Q, R), this demonstrates théf), R) <" (S, T).

Similarly, we prove that Assertion 2 implies Assertion 4. In this case, every sepdratb(S, T') is
<P.-hard for NP. S@Q <7, L. Therefore(Q, R)<IP (S, T). O

Homer and Selman [HS92] constructed an oracle relative to wihighNP and every disjoint NP-pair is
P-separable. Relative to this oracle, Assertion 3 holds and Assertions 1 and 2 are false. To see4hi3) let
be an arbitrary disjoint NP-pair. We show that, B) is both <’”-complete and<?}- complete. For any
other pair(C, D) € D, since(C, D) is P-separable, there is a separataf (C, D) that is in P. Therefore,
for any separatoL of (A4, B), S trivially <7,-reduces and<’.-reduces taL. So (C,D)</7 (4, B) and
(C, D)< (A, B).

In Theorem 3.3 we construct an oracle relative to which Assertion 1 is true, and at the same time,
P # UP. Therefore, by Proposition 3.2, with respect to the oracle in Theorem 3.3, all of the following
properties hold:

1. D does not have &””-complete disjoint pair.

2. Conjecture 2.4 holds; 6P # NP, NP # coNP,NPMV ¢ .NPSV and NP-hard public-key cryp-
tosystems do not exist [ESY84, Sel94].

3. P # UP; therefore P-inseparable disjoint NP- pairs exist [GS88].
4. Optimal propositional proof systems do not exist [Raz94].

5. There is a tally se€f’ € coNP — NP and a tally sef” € coNE — E [BDG98].

Theorem 3.3 There exists an oracl& such thatDX does not have a_:%?’x-complete pair andPX £
UPX.



4 Function Classes and Disjoint Pairs

We show that there exists a Turing-complete disjoint NP-pair if and only if NPSV contains a partial function
that is Turing-hard for NPSV. We know already that the conjecture of Even, Selman, and Yacobi holds if
and only if NPSV does not contain an NP-hard partial function. Recall [Sel94] that NPSV is the set of all
partial, single-valued functions computed by nondeterministic polynomial-time bounded transducers.

If ¢ is a single-valued total function, then we defihEg|, the single-valued partial function computed
by M with oracleg as follows:xz € dom(M]|g]) if and only if M reaches an accepting state on inputn
this caseM [¢](z) is the final value of\/’s output tape.

The literature contains two different definitions of reductions between partial functions, because one
must decide what to do in case a query is made to the oracle function when the query is not in the domain
of the oracle function. Fenner et al [FHOS97] determined that in this case the value returned should be
a special symbolL. Selman [Sel94] permits the value returned in this case to be arbitrary, which is the
standard paradigm for promise problems. Here we use the promise problem definition of Selman [Sel94].

Definition 4.1 f is Turing reducible (as a promise problem}tm polynomial time if for some deterministic
oracle transduceV/, for every single-valued total extensighof g, M|[¢'] is an extension of.

Here, if the query; belongs to the domain @f, then the oracle returns a valueqif;).

Definition 4.2 A partial function f is NP-hardif for every single-valued total extensigh of f, the NP—
hard problem SAT is Turing reducible 0.

Theorem 4.3 NPSV contains a<’!-complete partial functiors D contains a<’’-complete pair.
Proof For anyf € NPSV, define the following sets.

Ry ={(z,y)|lz € dom(f),y < f(x) (1)
Sy ={{z,y)lx € dom(f),y > f(z)} )

Note that(R;, Sy) is an NP-pair.
Claim. For every separatot of (R, Sy), there is a single-valued total extensifrof f such thatf’<%. A.
Proof of Claim. Consider the following oracle transducEithat computeg’ with oracle A. On inputz, if
x € dom(f), T determines the values ¢f{x) by making repeated queries b Note that forz € dom(f)
and for anyy, if y < f(x), then(z,y) € Ry, andify > f(x), then(z,y) € Sy. If x ¢ dom(f), T outputs
0. Clearly, T computes some single-valued total extensioffi.ofhis proves the claim.

Let f be a complete function for NPSV and assume thaeparate®; and.S;. By the previous claim,
there is a single-valued total extensifhof f such thatf’ <" A.

Let (U, V) € D. We want to show thatl/, V) <" (R, Sy). Define

0, ifzeU
glz)=¢ 1, ifzeV

1, otherwise.

—

g € NPSV, sog<’? f. By definition, there is a deterministic oracle transdutesuch that\/[f'] = ¢ is a
single-valued total extension of



DefineL = {z : ¢’'(z) = 0}. Itis easy to see that<’.¢". Also note that/ C L andV C L, and
therefore,L separate$’ andV. Then the following sequence of reductions show that,. A.

b PP gl P
L<pg <p f<pA

Thus, for every separatot of (Ry, Sy), there is a separatdr of (U, V) such thatL <. A. Therefore,
(Ry, Sy) is <iP-complete forD.
For the other direction, assume tifét V) is <'?- complete forD. Define the following function.

0, ifzeU
fle)=4¢ 1, ifzeV
T, otherwise.

Clearly, f € NPSV.

Let f” be a single-valued total extension fifand letL = {z|f’(xz) = 0}. Clearly, L<%.f’. Also, since
U C LandV C L, L is a separator ofU, V).

We want to show that for any € NPSV, ¢<"?f. Consider the NP-paifR,, S,) for the function
g as defined in Equations 1 and 2. As noted in the claim, there is a single-valued total exignsfign
such thaty’<%, A. Also, there is a separatot of (R, S,) such thatA<”.L, sinceL is a separator of the
<"?-complete NP-paitU, V).

Therefore, the following sequence of reductions show fhiatcomplete for NPSV.

g <A< L<hf.

Corollary 4.4 1. Letf € NPSV be <!’-complete forNPSV. Then(Ry, Sy) is <’’-complete for
disjoint pairs ofNP sets.

2. If (U, V) is a<!P-completeNP-pair, thenfy, is complete foNPSV, where

0, ifzeU
fovi)=4q¢ 1, ifzeV
1, otherwise.

3. Relative to the oracle in Theorem 3M8PSV does not have @:’)Tp—complete partial function.

5 Nonsymmetric Pairs and Separation of Reducibilities

Pudbk [Pud01] defined a disjoint paird, B) to be symmetricif (B, A)<}?(A, B). Otherwise,(A, B)
is nonsymmetric In this section we give complexity-theoretic evidence of the existence of nonsymmetric
disjoint NP-pairs. As a consequence, we obtain new ways to demonstrate existence of P-inseparable sets
and we show that 77 and<”" reducibilities differ for NP-pairs.

A set L is P-printableif there isk > 1 such that all elements df up to lengthn can be printed by a
deterministic Turing machine in time® + k& [HY84, HIS85]. Every P-printable set is sparse and belongs to
P. A setA is P-printable-immunéf no infinite subset ofd is P-printable.

A setL is p-selectivef there is a functionf € FP such that for every, y € ¥*, f(z,y) C {z,y}, and
{z,y}NL#0 = f(z,y) € L[Sel79].



Proposition 5.1 1. (A, B) is symmetric if and only ifB, A) is symmetric.
2. (A, B) is P-separable= (A, B) is symmetric.

Proof

1. If (A, B) is symmetric, then(B, A)<!?(A, B), i.e., there isf € FP such thatf(A) € B and
f(B) C A. Clearly the same functiofireduceg A, B) to (B, A).

2. Let(A, B) be a P-separable disjoint NP-pair. kixc A andb € B and let the separator % c P.
Consider the following polynomial-time functioh On inputz, if z € S, f outputsh; otherwise,f
outputsa. Therefore, forevery € A,z € S = f(z) =be BandVx € B,x ¢ S = f(x) =a €
A. Therefore(A, B) <!V (B, A), i.e.,(A, B) is symmetric.

a

We will show the existence of a nonsymmetric NP-pair under certain hypotheses. Due to the following
proposition, that will separates}? and<’* reducibilities.

Proposition 5.2 1. If (A4, B) is a nonsymmetric disjoiffP-pair, then(B, A) 5P (A, B)
2. For any disjointNP-pair (4, B), (B, A) </? (A, B)

Proof (1) follows from the definition of symmetric pairs. For (2), observe that for gisgparatingd and
B, S separate®? and A and for any sef, S <. S. O

We will use the following proposition in a crucial way to show the existence of nonsymmetric NP-pairs.
In other words, we will seek to obtain an NP-péif, B) such that4 or B is p-selective, butA, B) is not
P-separable.

Proposition 5.3 For any NP-pair (A, B), if either A or B is p-selective, theA, B) is symmetric if and
only if (A4, B) is P- separable.

Proof We know from Proposition 5.1 that {fA, B) is P-separable, then it is symmetric. Now assume that
(A, B) is symmetric via some functiofi and assume (without loss of generality) tiais p-selective and
the P-selector function ig. The following algorithm)/ separatesi and B. On inputz, M runsg on the
strings(z, f(x)), and accepts if and only if g outputsz. If z € A, f(z) € B and thereforeg has to output

x. On the other hand, it € B, thenf(x) € A andg will output f(z) and M will reject z. Therefore,
ACL(M)CB. O

Now we give evidence showing the existence of nonsymmetric NP-pairs.
Theorem 5.4 If E # NE N coNE, then there is a set € NP N coNP such that( 4, A) is not symmetric.

Proof If E # NE N coNE, then there is a tally sét € NP N coNP — P. From Selman [Sel79, Theorem
5], we know that the existence of such a tally set implies that there is a p-selectibecsi> N coNP — P.
Clearly, (A, A) is not P-separable. Hence, by Proposition 68,4) is nonsymmetric. O

As a corollary, we obtain that iIE # NE N coNE, then there is a set € NP N coNP such that

(A, A) 227 ((A), A), yet clearly(4, A)<?Z ((A), A).



We will show that the hypotheses in Theorem 5.5 imply the existence of a nonsymmetric NP-pair. Note
that the hypotheses in this theorem are similar to those studied by Fortnow, Pavan and Selman [FPS01] and
Pavan and Selman [PS01]; however, our hypotheses are stronger than the former and weaker than the latter.
We omit the proof in this version.

Theorem 5.5 The following are equivalent:

1. There is aJP-machineN that accept®* such that no polynomial-time machine can output infinitely
many accepting computations bf.

2. There is an infinite sef in UP accepted by at/P-machinelM such thatS has exactly one string of
every length and no polynomial-time machine can compute infinitely many accepting computations of
M.

3. There is an almost-always one-one one-way functisnch that rangef) = 0*.
4. There is a languagé < P that has exactly one string of every length ané P-printable immune.

5. There is alanguagé € UP that has exactly one string of every length ani P-printable immune.
The Appendix contains the proof of the following theorem.

Theorem 5.6 Each of the hypotheses stated in Theorem 5.5 implies the existence of honsymietric
pairs.

If the hypotheses stated in Theorem 5.5 hold, then there exists a disjoint NPAd#) so that
(A, B) €77 (B, A) while (A, B)<'? (B, A).

Grollmann and Selman [GS88] proved that the existence of P-inseparable NP-pairs implies the existence
of P-inseparable pairs where both sets of the pair are NP-complete. The following results are in the same
spirit. We note that natural examples of nonsymmetric <§f-complete) disjoint NP-pairs arise either
from cryptography or from proof systems. However, the following theorems show that the existence of such
pairs will imply that nonsymmetric (ox}?-complete) disjoint NP-pairs exist where both sets of the pair are
<F,-complete for NP. These results are proven in the appendix.

Theorem 5.7 There exists a nonsymmetric disjoP-pair (A, B) if and only if there exists a nonsymmet-
ric disjoint NP-pair (C, D) where bothC' and D are <,,,-complete foiNP.

Theorem 5.8 There exists an disjoin¥P-pair (A, B) that is <}7-complete if and only if there exists a
disjoint NP-pair (C, D) that is <}7’-complete where botfy and D are <,,,-complete foiNP.

6 Many-One Complete NP-Pairs Relative to an Oracle

In this section we construct an oraclethat possesses several interesting properties. Relatie rieany-

one complete NP-pairs exist. Therefore, while we expect that complete NP-pairs do not exist, this is not
provable by relativizable techniques. Since nonexistencg bfcomplete NP-pairs implies Conjecture 2.4,

it is natural to ask whether the converse holds. In this section we construct an oracle relative to which the
converse is false. Relative to this oracle all of the following properties hold:

1. There exisklL!-completeNP-pairs.



2. There exist nonsymmetriP-pairs.
3. Conjecture 2.4 holds, and therefore dif® # NP # coNP andNPMV £ NPSV.
4. There exisP-inseparable NP-pairs that are symmetric.

Here we show that there is a relativized world where both Conjecture 2.4 holds-imseparabléNP-pairs
exist, yet<I’-completeNP-pairs exist. Also note that our oracle is natural in the sense that, apart from the
existence ok}?-complete NP-pairs, all of its properties are expected for the unrelativizet case

Property 1 requires coding information into the oracle. Properties 2 and 3 require diagonalizations.
(Property 4 will be easy to obtain.) Unlike several previous oracle constructions (e.g., [BGS75, Rac82,
HS92]) that balance coding requirements and diagonalizations, we cannot start with a PSPACE-complete
oracle, because that would make it difficult to obtain nonsymmetric NP-pairs.

Theorem 6.1 There exists an oracle relative to which the following holds:
(i) There exist<t?-completeNP-pairs.
(i) There exist nonsymmetri§P-pairs.

(iii) Conjecture 2.4 holds.

Corollary 6.2 The oracleO from Theorem 6.1 has the following additional properties.
(i) UP? # NP? +# coNP? andNPMV? ¢ NPSV?
(i) There exists a<??-completeNPC-pair (A4, B) that satisfies the following:

— For everyNP%-pair (E, F) there exists arf € FP with E<}, A via f and F<}, B via f.
— (A, B) is PO-inseparable but symmetric.

Acknowledgements.The authors thank Avi Wigderson for informing them of the paper by Ben-David and
Gringauze [BDG98].

We believe that statement 4 holds since RkdPud01] shows that the canonical pair of resolution is symmetric, and we expect
that this pair isP-inseparable.
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Appendix

Theorem 3.3 There exists an oracl& such thatDX does not have a_i%p’x-complete disjoint pair and
PX £ UPX.

Since oracle access requires full access, we define the following notions.

Definition 3.4 For any setX, a pair of disjoint set§ A, B) is polynomial time Turing reducible relative
to X (g%"”x ) to a pair of disjoint set§C, D) if for any separatorS that separatesC, D), there exists a
polynomial time deterministic oracle Turing Machiié such that\/ *®X accepts a language that separates
(A, B).

Definition 3.5 For any setX, defineDX = {(4, B)|A € NP¥, B € NP* and AN B = (}. DX has
<X _complete set fobX if 3(C, D) € DX and for all (4, B) € DX, (4, B) <t~ (C, D).

Similarly, DX has <!"-complete set foDX if 3(C, D) € DX and for all (A, B) € DX, (A, B) <}
(C, D).

However, the following proposition shows that if there exists a pair that is Turing-complete relative to
X for DX, then there is a pair that is Turing complete o, where the reduction between the separators
does not access the oracle.

Proposition 3.6 For any setX, DX has a Turing-complete disjoint pair relative  if and only if DX has
a Turing-complete disjoint pair.

Proof Theif direction is trivial. We only show thenly if direction. Supposé€C, D) is Turing complete
relative toX for DX. We claim that(C' @ X, D @ X) ? is a Turing-complete pair of disjoint sets for¥ .
Consider any A, B) € DX. Let S’ be any set that separat@s @ X, D @ X). DefineS = {z|0z € S'},
then S separate$C, D) andS’ = S @ X. Since(C, D) is Turing-complete relative t& for DX, there
must exist a polynomial time deterministic oracle Turing Machideusing oracleX andS that separates
(A, B). Hence we can obtain a polynomial time deterministic oracle Turing macdHihasing oracleS’
that separatesd, B): M’ on any input does exactly the sameldsexcept whenevek/ queries some string
x to oracleS, M’ querie9)x to oracleS’ and whenevelM queries some stringto oracleX, M’ querieslx
instead. It is easy to see thiat’ gets the same answer &for each query, hence accepts the same language
asM does, and//” witnesses thatA, B) <’2. (C® X, D@ X). So(C @ X, D & X) is a Turing-complete
disjoint pair forDX. |

It is easy to see that Theorem 3.3 can be obtained by modifying the proof of the following theorem.
Theorem 3.7 There exists an oracl& such thatDX does not have ggp’x—complete disjoint pair.

Proof Since Proposition 2.8 and Proposition 3.6 relativizes to all oracles, it suffices to show there is no
<'¥-complete pair of disjoint sets X under uniform Turing reduction. So we will construct an orakle
such that for everyC, D) € DX there exists a disjoint pait4, B) € DX, (4, B) €%, (C, D).

Suppose My}, and{N;}; are respectively enumerations of deterministic and non-deterministic poly-
nomial time oracle Turing machines. Let andp; be the corresponding polynomial time bounds &dg

def

A® B = {0z|z € A} U {lyly € B}

13



andN;. For anyr, s, d, letX?, = 0710°1%% andi?, = r + s 4 d + 2, the length of strings i¢,. For each
i, j, define o
A;j; ={0"3z|z| =n A 010’10z € X}

and
Bij = {0"|3z|z| = n A 010711z € X}.

We construct the oracl¥ in stages. Initially we seX = (). In Stagem = (i, j, k), we will put strings
from X% into X such that eithel.(N;) N L(N;) # 0 or (4;;, B;;) is not uniformly Turing reducible to
(L(N;), L(Nj)) via My, wheren = n,, is some number chosen at Stage We will show later that the
construction above ensures that for amndj, (L(N;), L(N;)) is not Turing-complete fobX.

Let X,,, be the oracle before Stage X, = (). For the current stage = (i, j, k), letm—1 = (i, ', k')
andm + 1 = (i, j”, k). We choose some number= n,, such that: is minimal and all the following
hold (For Stage 0, we just sey = 1.):

& N> Ny q

[l S -1l

o lln-‘,-l > max(pi’ (nm—l)vpj’(nm—l))

. Z?Jr]L > max(py (ri (nm-1)), Py (Tw (Nm-1)))

o 27 > ri(n)pi(ri(n))pj(ri(n))

ObV|oust l”Jr1 andl”m 1 are, respectively, the length of strings we add into the oracle at Steayed
— 1.

Suppose for soms C X7+, L(N;) N L(N;) # () using oracleX,, U S. Then lets € LN n
L(N].X’”US). DefineX,,,11 = X,, US, n,, = |s| and go to the next stage + 1. From now on we will skip
any later Stagé, wherel = (i, j, k").

Otherwise, we have that

foranyS € ¥, L(N;) N L(N;) = 0 using oracleX,, U S. 3)

We will consider the computation @ff;, on0™ in this case and try to add a strmgXl‘Trl to the oracle

so that either

L(N m+1)UQ

0" € A;j and 0"™ & L(M, )

or
LN, 1)UQ)

0"™ € Byj and 0"™ € L(M,
after Stagen.

Note that this would imply A;;, B;;) does not reduce taL(N; Xm1y L(Nij“)) via Mj,.

The difficulty rises mainly from the fact that if we want to preserve the computatidi;obn 0™ in a
straightforward way (by reserving all stringsﬁlﬁj+1 that are queried) to do the diagonalization, we will end
up with having to reserve all strings E@“, which leaves no room for the diagonalization. Fortunately, we
can do better by the following lemma.
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Lemma 3.8 Let M and N be nondeterministic polynomial-time oracle Turing machines with polynomial
time bound®,; andpy respectively. LeY” be an oracle and € ¥*, |¢| = n.
Then, for any seT’ with ||T']| > par(|¢])pn(|¢), at least one of the following holds.

e 35 C T with ||S|| < par(lg]) + p(lgl) such thatL(MYYS) N L(NYYS) £

e 35" C T, ISl < pumllql) * pn(lg]), such that either for ang C T, SN S = 6, MYY5(q) rejects
orforanyS C T, SN S’ =0, NYY5(q) rejects.

This lemma is essential to our proof. Intuitively this lemma says that we can enforce at least/éne of
and N; to always reject some quetyby reserving only polynomially many strings. Since we have only
polynomially many queries, we then will just need to reserve polynomially many strir‘@%ﬁh in total to
preserve eithelN;’s rejection orV;’s rejection on0™, and thus have room for diagonalization.

Now we will construct a sef), the set of strings to be added to the oraclé/ff to make the oracle a
separator of L(N;), L(N;)), and reserve strings foY,,,.; at the same time to preserve eitiéfs rejection
or NN;'s rejection on0™.

Initially we set@Q = (). We run M on 0™ using oracIeL(NiXT”) U @, which is a separator of
(L(NZX’",L(NJ:X’")), until it makes some query. Then apply Lemma 3.8 with/ = N;, N = Nj,
Y=X,T= E?j“ Considering condition 3, we know that there is aSet Zj}j“ such that either

(4) VS(S CEEIASNS =0), g & LN

or
(B) VS(SC Y ASNS =), & L(N;)*m5.

We then reserve all strings it (||S’|| < pi(ri(n))p;j(ri(n))) for Xp,11. If (A) is true, we continue
running M;, with the oracle unchanged. (Hence answer “no” to qugry Otherwise we continue running
M. on0™ with @ = Q U {q.}. (Hence answer “yes” to query, and addy, to the oracle.) We continue
running M, until it makes the next query and then we do the same thing as above again. We keep doing this
until the end of the computation @f/;, on0™. The number of strings iEZJrl we reserved foX,,, 1 during
the above process is at mogti(n)p;(r(n))p;(rr(n)) < 2" since the running time af/;, is bounded by
r1(n). So there exist both a strir10’ 102 and a string)*10711y in Z?j“ that are not reserved for,,, ;.

If M, using oracleL(N;*") U Q accepts)”, we defineX,, 1 = X,, U {0°10711y}. Otherwise define
Xmi1 = Xm U{010710z},

By Lemma 3.11, the oracl&® = UX,, constructed above fulfills that there is no Turing-complete pair
in DX,

Proof (of Lemma 3.8). Let us define the following languages:

o Ly = {(P,Qy,Q,): Forsome ses C T, P is an accepting path df/*"“* on inputq andQ, (resp.,
Q) is the set of the positive queries (resp., hegative)made for strings inT'.

e Ly = {(P,Qy,Q,): For some sef C T, P is an accepting path af¥“* on inputg andQ,, (resp.,
@y) is the set of the positive (resp., negative) queries made for strings inT'.

We say that P, Q,,, Q) € Ly conflictswith (P', Q;, Q7,) € Ly if Q,NQ;, # 0 orQ; NQ, # 0. In other
words, there is a conflict if at least one query is answered differently and P’.
Now we consider the following cases.
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Case | 3 (P, Qy,Qn) € Ly and(F', @y, Q;,) € Ly that do not conflict.

Let S = Q, U Q). We claim that in this case,(M¥"%) N L(NY"%) # (. Note that since there
is no conflict, on inpuy, any positive query asked by/ on P to oracleS will still be answered
“yes”, and any negative query on pathwill still be answered “no”. In other words)/ will still
accepty on the pathP with oracleS. Similarly, NV will acceptq on pathP’ with oracleS. Therefore,
g € L(MYYS) N LINYYS). And [|S]| = [1Qyl| U |Qull < par(lal) + px(lal).

Case Il Every triple(P,Q,,Q,) € Ly conflicts with every tripl P’, Q;,, Q7,) € Ly. Note that in this
case we cannot have both a trigle, (), @,,) in Ly, and a triple(P’, 0, Q.,) in Ly simply because
these two triples do not conflict with each other.

We use the following algorithm to create the Seas claimed in the statement of this lemma.

s'=0
while ( Ly #0 and Ly # ()
(1) Choose some  (P*,Qj,Q}) € Lu
) s'=s'UQ;uUQ;
3) For every  t = (P,Qy,Qu) € Ly
(4) remove t if QN (Q;UQL) #0
(5) For every  t'=(P,Q},Q}) € Ly
(6) remove t'if Q,N(Q;UQL) #D
end while

We claim that aftef iterations of thewhile loop, for every triple(P’, @, Q;,) € Ly, [|Qy]l > k. If
this claim is true, the while loop iterates at mest(|q|) times, since for any triple id.y, ||Q.,] is
bounded by the running time @f ong, i.e.,px(|g|). On the other hand, during each iteratiéf,is
increased by at most (|g|) strings, since for any triple in,, ||Q,UQ5|| is bounded by the running
time of M ong, i.e.,par(|q|). Therefore||S’|| < pa(lq]) * pa(|g|) when this algorithm terminates.

Claim 3.9 After k-th iteration of thewhile loop of the above algorithm, for evety= (P', Q;, Q;,)
that remains inLy, || Q.|| > k.

Proof For everyk, let us denote the tripleP”, ’;, QF) € Ly, thatis chosen during theth iteration
by t.. For everyt’ = (P',Q;,Q;,) that remains inLy during this iterationg, conflicts with#’
(otherwise, we will be in Case I). Therefore, there is a queryjf N Q) U (Q’; NQ.,). If this query
isin Q% N Q' , ¢ will be removed fromL y after iterationk. Otherwise, i.e., it)’yC naQ., #0,letq
be the first query made bl that is inQ’; N Q),. In this caset’ will not be removed fromL y; we
say thatt’ survivesk-th iterationdue to query;’. Note thatt’ can survive only due to a query that is
negative inP’. We will use this fact to prove tha’ || > k afterk iterations.

We show now that any triple that is left iny afterk iterations survives each iteration due to a different
query. Since these queries are all negative, this will complete the proof of the claim. Assurtie that
survives iteratiork by queryq’ € Q’yf N Q.. If ¢ had survived an earlier iteratidn< & by the same
queryq’, theng’ is also inQ}, N Q;,. Therefore Q! N Q% # 0. Sot), = (P*,Qk, QF) should have
been removed (by lines (3) and (4)) after iteratipand cannot be chosen at the beginning of iteration
k, as claimed. Hence! cannot be the query by whighhad survived iteratioh O
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Therefore, now we have a s6t of the required size such that eithef; or Ly is empty. Assume
that L, is empty, and for some sét C ¥, SN S’ = ¢, MYV accepts;. Therefore, the triple

TSt

(P, Qy,Qn), whereP is the accepting path atr 99 (q) and@, (resp.,Q,) is the set of the positive
(resp., negative) queries of lengthl%,, must have been ifi,; and has been removed during some
iteration. That implies that during that iteratiaR, N .S” # 0 (by line (4)), and sinc&), C S, this
contradicts the assumption th&it S’ = 0.

A similar argument holds fof. . Hence eithei; = () and M (YY9) rejectsq for any S NS’ = () or
Ly = 0 andN(YU9) rejectsy for any S N S’ = (). This ends the proof of Lemma 3.8.

a

m+1
Lemma 3.10 After every Stager = (i, j, k), L(NXm+1)n L(N; Xmt1y £ (or L(M, L(N )UQ) does not
separate( A;;, B;;), whereX,, .1 is as defined in the proof of Theorem 3.7.

Proof If at Stagem condition 3 is negated by some sgtC EZ’", then we defined\,,;; = X,, U S
henceL(NXm+1) N L(NXm“) # (). Otherwise, we will start to construct the €gt From the construction
process of) we know that every string we add € is enforced to be rejected ILN]X by reserving strings
for X,,11. S0 L(N;"™*) U @ will still be a separator of L(N; m“),L(N]iXm“)). All queries on the
computation path of\/;, on 0™ using oracleL(N X’"“) U @ will have the same answers as using oracle
L(NXm) U Q. The reason is as follows. For any queryf we reserve strings iE’f‘.Jrl for X,,, 11 such that
L(Nsz“) always rejectg; in the above procesg, will not be put intoQ hence query; will get answer
0” from oracIeL(NX’"“) U Q, which is the same as the answer from ordglé/;*™ ) U Q. If we reserve
strlngs mZ?.“ for X,,,+1 such thatl( jX’”“) always rejectg, ¢ will be put into@ and hence get the same
answer “yes” using oraclé(N, Xm“) U Q as using oraclé(N;*™) U Q. Therefore the computation af,
on input0™ using oraclel (N, X"’“) U Q will always have the same result as using ordgl&/.*") U Q. So

by the way we define,, 1, M}, using oracIeL(NXm“) U @ does not separatd. (1V, X'”“) L(N}”“)),
regardless of whethév/;, acceptd)”. O

Lemma 3.11 The oracleX = UX,, constructed in the proof of Theorem 3.7 has the desired property.

Proof Let (C, D) be a pair inD~. Suppos&” = L(N;*) andD = L(N;*) for somei and;j. Then by
Lemma 3.10 we know that one of the following happens during the constructi&n of

e At some Stagé = (i, j, k), there exists a string € L(NXZ“) N L(le“) andn; = |s|. Since we
choose the numbet,,, at each Stage: such thau‘l;;frl > max(py (nm—-1), pj'(m—-1)), the strings
added into the oracle at a later Stage> [ will not disturb the acceptance efby N; andN;. So for
anym > [ we still haves € L(N;*") N L(N;*™). ThusC = L(N;X)n D = L(N;*) # 0. (C, D) is
not in DX,

X141

e For anyk, L(M,f(Ni )UQ) does not separatel;;, B;;), wherel = (i, j, k). Actually, we can see

from the proof of Lemma 3.10 that either

l+1
0" € Aj; and 0™ & L(M, (N )UQ)
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or

0" € Byj and 0™ € L(M;"

7

NXZH)UQ)

after Stagd. Recall that we choose the numbey, at each Stagen such thatn,, > n,,_1 and
l?jm“ > max(pi (1 (Nm—1)), pj (T (nm—1))) following holds. Therefore, we know that the strings
added in a later stage > [ will not change the following:

1. The membership a@f* in A;; andB;;. Only the strings of length; + 1 are only added into the
oracle at Stage

2. The computations set up in the last part of the proof of Theorem 3.7. The maximal length of
strings that can be queried in those computationsds (p;/ (ry (nm—1)), pj (Tk (Pm—-1))) <
1t
J

For any later Stage: > [, we also have either

LN, ™ 1uQ

0™ e Aij and 0™ g L(Mk: )
or .
m+1
0" € By and 0™ € LM Y9,

So (A;j, Bi;), which is in DX, is not uniformly Turing-reducible to the pajt’, D). Hence in this
case(C, D) could not be a complete pair f@r~ .

This completes the proof of the theorem. |

Theorem 5.6 Each of the hypotheses stated in Theorem 5.5 implies the existence of nonsymiAetric
pairs.

Proof Let us define the following function.
1 ifi=0
dt ) = i— .
(3) { 22"V otherwise
Let M be the UP-machine acceptifigas in the first hypothesis in Theorem 5.5. kgtbe the accepting
computation of\/ on0™. We can assume that,| = m wherem is some fixed polynomial in. We define
the following sets.

Ly = {(0",w):w < ay,n=dt(i)for somei > 0}
Ry = {(0™,w):w > an,n = dt(i) for somei > 0}

Note that(L,;, Rys) is a disjoint NP-pair. We claim thdt,, is p-selective. The description of a selecfor
for Ly, follows: Assume that0*, w;) and(0', w») are input tof. If & = [, thenf outputs the lexicograph-
ically smaller one ofw; andw,. Otherwise, assume that< [. In that case] > 22"~ 9laxl | Recall that
the accepting computation af on 0” is a;,. The functionf can find out the actual accepting computation
of M on 0* by checking all possible strings of lengfdy,|. Therefore, inO(1) time, f outputs(0¥, w1 ) if

wy < ag, and outputg0’, wo) otherwise. Similarly, we can show th&Y, is p-selective.
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We claim that(Lys, Rys) is @ nonsymmetric NP-pair. Assume on the contrary that this pair is sym-
metric. Therefore, by Proposition 5(3.,,, Ry) is P-separable, i.e., there § € P that is a separator
for (L, Rar). Using a standard binary search technique, a polynomial-time machine can compute the ac-
cepting computation ol on any0™ wheren = dt(i) for some: > 0. Since the length of the accepting
computation of\/ on0™ is m, this binary search algorithm can takes timén), i.e., time polynomial im.
This contradicts Hypothesis H, since we assumed that no polynomial-time machine can compute infinitely
many accepting computations df. Therefore(L,s, Rys) is @ nonsymmetric NP-pair. O

Theorem 5.7 There exists a nonsymmetric disjoP-pair (A, B) if and only if there exists a nonsymmet-
ric disjoint NP-pair (C, D), where bothC' and D are <%,-complete foiNP.

Proof Theif direction is trivial. We prove thenly if direction.

Let {NM,};>1 be an enumeration of polynomial-time bounded nondeterministic Turing machines with
associated polynomial time bounds;};>1. It is well known that the following sek’ is NP-complete
[BGS75].

K ={(i,z,0™)| some computation oV M; acceptst in at mostn steps}.

For every setd € NP there exists > 1 such thatA = L(NM;) and there exists an honest many-one
reductionf from A to K defined byf(z) = (i, z,07(1*)). Let (A, B) be a nonsymmetric disjoint NP-pair
and letf be an honest reduction frorto K.

Our first goal is to show thatf(B), K) is nonsymmetric. Sinc¢ is a reduction fromA to K and
ANB =1, f(A) C K andf(B) C K, and sof(B) and K are disjoint sets. Observe thAtB) is in
NP because on any inpyt we can guess @ € B and verify thatf(z) = y. Therefore,(K, f(B)) is an
NP-pair with one of them being?},-complete for NP.

In order to prove that this pairs is nonsymmetric, assume otherwise:(#igh(B)) <t (f(B), K)

and thereforedg € PF such thaty(K) C f(B) andg(f(B)) € K. Consider the following polynomial-
time computable functioh. On inputz, h computesy = g(f(z)). If y = (i,2’,07(='D) for somex’, h
outputsz’; otherwise, it returns a fixed string e A. We claim thath(A) C B andh(B) C A, thereby
making (4, B) symmetric. For any: € A, we know thatf(z) € K and hence(f(x)) € f(B) since
g(K) C f(B). Soh(z) = (i,2’,0:(¥'D) for somez’ € B, and soh(z) = 2/ € B. For anyz € B,
y = g(f(z)) € K, sinceg(f(B)) C K. If y = (i,2’,07(D) for somez’, thenz’ must be in4; else
h will return a € A, and so, in either case, € B will imply that h(x) € A. Thereforeh(A) C B and
h(B) C A. Thus(4, B) <I? (B, A), contradicting the fact thdt4, B) is nonsymmetric. Hencgs,, f(B))
is a nonsymmetric NP-pair.

To complete the proof of the theorem, apply the construction once again, this time with an honest
reductionf’ from f(B) to K. Namely, f/(f(B)) C K and f/(K) C K. Then,K and f/(K) are disjoint
NP-complete sets and the argument already given show§fthidf), K') is nonsymmetric. O

Theorem 5.8 There exists an disjoin¥P-pair (A, B) that is <}}- complete if and only if there exists a
disjoint NP-pair (C, D) that is <}7’-complete where botfy and D are <,,,-complete foiNP.

Proof The proof idea is similar to the proof of Theorem 5.7. Consider the one-to-one furfctipfx) =
(i, 2,07 (D) that many-one reduces to the canonical NP-complete skt

Obviously (A, B) <P (K, f(B)) sincef(A) C K andB C f;(B) andK N f;(B) = ) as shown
in the proof of Theorem 5.7. Similar to that theorem, we apply the one-to-one fungtityiat many-one
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reducesf(B) to K to obtain another disjoint NP-paiyf’(K), K) where(K, f(B)) <& (f'(K), K). So
(A, B) <P (K, f(B)) < (f'(K), K). Thereforg( f/(K), K) is also a<}l’-complete NP-pair withf’(K)
and K both being<?,-complete sets for NP. 0

Theorem 6.1 There exists an oracl@ relative to which the following holds:
(i) There exis}?-completeNP-pairs.
(i) There exist nonsymmetri§P-pairs.

(iii) Conjecture 2.4 holds.

Proof We fix the following enumerationg:NM, }; is an effective enumeration of nondeterministic, polyno-
mial time-bounded oracle Turing machingdy; }; is an effective enumeration of deterministic, polynomial
time-bounded oracle Turing machingg; }; is an effective enumeration of deterministic, polynomial time-
bounded oracle Turing transducers. Moreové¥/;, M, andT; have running time; = n’ independent of
the choice of the oracle. Lgt? denote the function th&? computes.

We use the following model of nondeterministic polynomial-time oracle Turing machines. On some in-
put the machine starts the first phase of its computation, during which it is allowed to make nondeterministic
branches. In this phase the machine is not allowed to ask any queries. At the end of the first phase the ma-
chine has computed a list of querigs. . ., g,, a list of guessed answegs, . . . , g,, and a character, which
is either+ or —. Now the machine asks in parallel all queries and gets the vector of answers, a,,. The
machine accepts if the computed characteriand (a4, ...,a,) = (91,.-.,9n); Otherwise the machine
rejects. An easy observation shows that for all oradles languagd. is in NP if and only if there exists
a nondeterministic polynomial-time oracle Turing machMesuch thatV works in the described way and
L=L(NX)3

A nondeterministic polynomial-time oracle Turing machiNeand an input: determine a computation
path P. P contains all nondeterministic guesses, all queries and all guessed answers. A computation path
P that has the character (resp.,—) is called a positive (resp., negative) path. The set of queries that are
guessed to be answered positively (resp., negatively) is denot&dbyresp.,P°); the set of all queries
is denoted byP?!! £ pyes y P, The length ofP (i.e., the number of computation steps) is denotegiitjy
Note that this description of paths makes it possible to talk about paths of computations without specifying
the oracle, i.e., we can say that a computatdfx) has a positive patt such thatP¥*s and P"° satisfy
certain conditions. However, when talking about accepting and rejecting paths we always have to specify
the oracle. (A positive path can be accepting for certain oracles, and it can be rejecting for other oracles.)

In this proof we need to consider injective, partial functibhis— N* x N*that have a finite domain.
Usually, such functions are denoted by We do not distinguish between the function and the set of all
(n,1,7) with u(n) = (i,7). Both are denoted by. For X, Y C ¥* we write YD,, X if and only if
X CxsmandYs™ = X. We writeY C,,, X ifand only if XD,,Y.

Definition 6.2 Let i, and i/ be injective, partial function®* — N* x N* that have a finite domain. If
p # 0, then ., £ max(dom(p)). We writep, < g/ if either . = (), or u C 1/ and jumay < n for all
n € dom(p' — p). We writep < ¢/ if u < p/ andp # 1.

3Note that for this equivalence we need both, the character o &ed they; to be guessed correctly. If the machine accepted
just when the answers were guessed correctly, then we would miss the machine thatfaforeptsry oracle.
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In our construction we use the following withess languages, which depend on an®racle

N

(2) £ {w|w=0"10"zforn,t > 1,z € * and(Jy € S 0wy € 2]}
Z) £ {w ‘ w = 0"10"1z forn,t > 1,z € ¥* and(Jy € E‘w‘H)[lwy € 7]}
(Z) £ {0"|k=1(mod4),(3y € SF 1[0y € Z]}
(Z)
(Z2)

O Q &

L {0¥ |k = 1(mod 4), (Jy € XF 1)1y € Z]}
L {0% |k =3(mod 4), (Iy € M)[y € 2]}

&

These languages areWPZ. We construct the oracl@ such thatd(O) N B(O) = C(0) N D(0O) = () and
the following holds.

(i) (A(O),B(0))is <iP-complete. That is,

(V(F,G)eD?)(3f FP)[f(F)CA(O) A f(Q)CB(O) A fF(FUG)CA(O)UB(O)].  (4)
(i) (C(0), D(0)) is nonsymmetric. That is,
(Vf € FPO)[f(C(0)) £ D(0) V f(D(0)) € C(O)]. (5)
(i) E(0) £*"°(A(0), B(O)). Thatis,
(35,A(0) € 5 € B(0))[E(0) ¢ P7]. (6)

In (4) and (6) we really meafi € FP andE(O) ¢ P°; we explain why this is equivalent tp ¢ FP° and
E(0) ¢ P59, We have to see that the expressions (4), (5), and (6) imply the statements (i), (i), and (iii) of
the theorem. For (4) and (5) this follows from Theorem 2.10 and the faciftleaF'P implies f € FPC.
Note that in (4) we actually do not need the inclusjifd’ U G) C A(O) U B(O). We state it here because
the proof yields this condition, which in turn shows that the oracle even applies to a notion stronger than
<P In (iii) we actually should havé& (0) ¢ P5© since the reducing machine has access to the ofacle
However, since (i) holds and sin¢®, 0) € DO, there exists arif € FP with f(O) € A(O) C S and
f(O) € B(O) C S. Henceg € O < f(q) € S. So we can transform queries@into queries taS, i.e.,
it suffices to show?(0) ¢ PS.

We define the following listZ” of requirements. At the beginning of the constructi@ncontains all
pairs(i,n) with i € {0, 1,2} andn € N*. These pairs have the following interpretations.

e (0,(i,5)) means: ensuré(NM$) N L(NMS) # 0 or (L(NMY), L(NMS))<} (A(O), B(O))
e (1,7) means: ensur®” € C(O) AT (0") ¢ D(O)] or [0" € D(O) ATLP(0") ¢ C(0)]
e (2,i) means: ensure thati(0), B(0)) has a separatdt with 0" € E(O) < 0" ¢ L(M?)

Once a requirement is satisfied we delete it from the list. The latter two types of conditions are reachable by
the construction of one counter example. In contrast, if we cannot r[e(d\ZM?)ﬂL(NMJQ) # () for a con-
dition of the first type, then we have to ensiifg NM©), L(NM?))g%’(A(O), B(0)). But this condition
cannot be reached by a finite segment of an oracle; instead it influences the whole remaining construction of
the oracle. We have to encode answers to queries “dbetong toL(NM?) or toL(NMjO)” into the ora-
cleO. For this reason we introduce the notion(pf £)-valid oracles. Heré is a natural number andis an
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injective, partial functioN* — N*x N+that has a finite domain. Each, k)-valid oracle is a subset &f<F.
Roughly speakingy can be thought of as a finite set of pajs;j), for which L(NM$) N L(NM?) =0

is forced, and therefore, we must constracso that(L(NMZ-O),L(NMJ-O))gﬁf(A(O),B(O)) holds. For

the latter condition we have to encode certain information @t@and the numbek says up to which level
this encoding have been done. §a k)-valid oracles should be considered as finite prefixes of oracles
that contain these encodings. For the moment we postpone the formal definitipnigfvalid oracles
(Definition 6.4); instead we mention its essential properties, which will be proved later.

(@) The oracld is (0, 0)-valid.
(b) If X is a finite oracle that i$yu, k)-valid, then for all’ < p, X is (i, k)-valid.

(c) If O is an oracle such th@@<F is (, k)-valid for infinitely manyk, then A(O) N B(O) = C(0) N
D(0) = 0, and for all(i, j) € range(u) it holds that(L(NM?), L(NMS))<IP(A(0), B(0)) via

somef € FP. Even more it holds thaf(L(NM) U L(NMS)) C A(O) U B(O).

The properties (a), (b), and (c) will be proved later in Proposition 6.5. Moreover, the following holds for all
i,7 > 1and all(p, k)-valid X.

P1: There exists ah> k and a(/, 1)-valid Y2, X, u < u’ such that
e either forallZ2,Y, L(NM?) N L(NM?) # 0,
e or(i,j) € range(y).
P2: There exists ah> k and a(u,)-valid YO, X such that for allzD,Y’, if C(Z) N D(Z) = 0, then
(C(Z),D(Z)) does not<?»® -reduce to(D(Z), C(Z)) viaTZ.
P3: There exists ah> k and a(u, !)-valid Y2, X such that for allZD,Y, if A(Z) N B(Z) = 0, then
there exists a separatrof (A(Z), B(Z)) such thatt(Z) # L(M?).

We will prove the properties P1, P2, and P3 in the Propositions 6.11, 6.12, and 6.14. In the following, we
construct an ascending sequence of finite ora&leS, X1y, X2Cyg, - - - such that eaclX, is (u., kr)-

valid, ko < k1 < ko < --- andpg = p1 < po < ---. By definition,O = (J,., X,. By items (b) and

(c), A(O) N B(O) = C(0) N D(O) = ( follows immediately. We claim that for each> 0 andi > 1,
Xrti2k, Xr anduy, = pirti-

1. r:=0,k. :=0, u :=0,andX, := (. Then by ()X, is (i, k,)-valid.
2. Remove the next requirementrom 7 and do the following:
e If e = (0, (i, 7)), then we apply property P1 t§,. Definek, 1 = [, u,+1 = ¢/ andX, 1 =Y.
Thenk, < kyi1, por < pir+1 @aNAdX, 41D X, IS (ftr+1, kr+1)-valid such that
— either for allZ2y, ., X, 11, LINMZ) N L(NM %) # 0,
~ or (i, j) € range(sr41).

Comment:If the former holds, then, sind®@2y, , , X+1, it holds thatL(NM?) N L(NM]Q) # (), and therefore,
(L(NMS), L(NM?)) ¢ D°. Otherwise(i, j) € range(ur+1). By (b), foralli > 1, X, iS (ftr41, krgs)-valid.
Therefore, by (C)(L(NMY), L(NMS))<*?(A(O), B(O)) via somef € FP.
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o If e = (1,4), thenu,,1 £ 11, and apply property P2 t&,. We definek,,; = [ and X, =
Y. Thenk, 1 > k. and X, 12y, X, is (ftr41, kr41)-valid so that for allZzD;, ., X, 1, with
C(Z)ND(Z) =0, (C(Z),D(Z)) does not<??-°-reduce to(D(Z), C(Z)) viaT?.
CommentSinceO2x, ., Xr+1 andC(0) N D(0) = { this ensures thdiC(O), D(0)) does not<??“-reduce to
(D(0),C(0)) viaT?.

o If e = (2,i), thenu, .1 £ 11, and apply property P3 t&,. We definek,,; = [ and X, =
Y. Thenk,y1 > k, and X, 12, X iS (pr41, krq1)-valid such that for allzD;, X, 1,
A(Z)N B(Z) = 0, there exists a separatsrof (A(Z), B(Z)) such thatZ(Z) # L(M}).
CommentSinceO 2y, , X-11 andA(O) N B(O) = () this ensures that there exists a separéitof (A(O), B(O))
such thatf(0) # L(My).

3. r:=r+41,goto step 2.

We see that this construction ensures (i), (ii), and (iii). This proves the theorem except to show that we can
define an appropriate notation of @& k)-valid oracle that has the properties (a), (b), (c), and P1, P2, P3.

We want to construct our oracle such tliat(O), B(0)) is a <}’-completeNP®-pair. So we have to
make sure that paifd.(M;), L(M;)) that are enforced to be disjoint (which means ttiaj) € range(u))
can be many-one reduced(td(O), B(O)). Therefore, we put certain code-words idéaf and only if the
computationV/ (x) (resp.,M{ (x)) accepts withirt steps.

Definition 6.3 (u-code-word) Lety : NT— N* x N*be an injective, partial function with a finite domain.
A word w is called p-code-wordif w = 00"10'1zy or w = 10"10'1xy such thatjy| = [00"10'1z| and
w(n) = (i,7). If w = 00"10' 12y, then we say thab is a u-code-word for(i, ¢, z); if w = 10"10'1zy, then
we say it is gu-code-word for(j, ¢, ).

Condition (i) of Theorem 6.1 opposes the conditions (ii) and (iii), because for (i) we have to encode
information aboutNP® computations int@, and (ii) and (iii) say that we cannot encode too much infor-
mation (e.g., enough information fafP® = NP?). For this reason we have to look at certain finite oracles
that contain the needed information for (i) and that allow all diagonalization needed to reach (ii) and (iii).
We call such oracle&u, k)-valid.

Definition 6.4 ((u, k)-valid oracle) Letk > 0 and lety : Nt — N* x N* be an injective, partial function
with a finite domain. We define a finite oracleto be (1, k)-valid by induction over the size of the domain
of u.

o If || = 0, thenX is (u, k)-valid <& X C ¥<*F and A(X) N B(X) = C(X) N D(X) = 0.

o If |||l > 0, theny = 1/ U {(tmax, %0, jo)} for a suitabley’ < p. X is (u, k)-valid &,
1. k> pmax and X is (¢, k)-valid.
2. Forall (n,i,j) € p, t > 1andz € £* with 2 - |00"10'1z| < k,
(@) (Jy, |y| = |00m10t1z|)[00" 10 1zy € X] < NMX(x) accepts withint steps, and
(b) (Jy, |yl = |10"10°12[)[10"10'1zy € X] < NM (x) accepts withirt steps.
3. Foralll> pimax and all (¢, 1)-valid Y, Y Stmax = X Skmax [(NMY )0 L(NM} ) NSS! = 0.
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Due to the last condition(u, k)-valid oracles can be extended (p, k’)-valid oracles withx’ > k
(Lemma 6.9). There we really need the intersection WitH; otherwise it would be possible that for a
small oracleY C ©=! both machines accept the same wardhat is much longer thah but there is no
way to extendy” in a valid way to the levelw| such that both machines still accep(the reason is that the
reservations (Definition 6.6) become to large).

Proposition 6.5 (basic properties of validity) 1. The oraclé) is (), 0)-valid. (property (a))

2. For every(u, k)-valid X and every’ < u, X is (¢/, k)-valid. (property (b))

3. If X is (u, k)-valid andk is even, then for every C XF+1 if C(S) N D(S) = 0, thenX U S is
(p, k + 1)-valid.

4. For every(u, k)-valid X and every(i, j) € range(u), L(NM;*) N L(NM ) N £5F = ¢
5. If X is (u, k)-valid, then for every, pmax <! < k, it holds thatX=! is (s, 1)-valid.
6. LetO be an oracle such that for infinitely may O<F is (1, k)-valid. Then the following hold:
(property (c))
e A(O)NB(O)=C(0)ND(0O) = 0.
e For all (i,j) € range(u) it holds that L(NMY) N L(NMS) = 0 and there exists some
f € FP such that(L(NM?), L(NMS))<IP(A(0), B(0)) via f. Even more, it holds that

FIL(NMP) U L(NMS)) € A(O) U B(O).

Proof The statements 6.5.1 and 6.5.2 follow immediately from Definition 6.4.

We prove statement 6.5.3 by induction fa||. First of all we note thatd(S) = B(S) = 0 sinceS
contains only words of odd length. ||f:|| = 0, then, by Definition 6.4X U S is (u, k+ 1)-valid. So assume
||l > 0 and choose:', ig, jo as in Definition 6.4. We assume as induction hypothesis thtig (., k)-
valid, thenX U S'is (¢/, k + 1)-valid. We have to verify the statements 6.4.1-6.4.3Xo0 S andk + 1.
Clearly,k + 1 > k > pmax. SinceX is (u, k)-valid it is also(y/, k)-valid. By induction hypothesis we
obtain thatX U S'is (i//, k + 1)-valid, i.e., 6.4.1 holds. Sindeis even, the conditioR - [00"10'1z| < k+1
is equivalent t@ - |00"10*1z| < k. Moreover, sinceé < k the computations mentioned in 6.4.2 cannot ask
queries longer thakh. This means that in 6.4.2 we can change the oracle fkom .S to X. The resulting
condition holds sinc& is (p, k)-valid. Therefore, 6.4.2 holds fo¥ U S andk + 1. Finally, 6.4.3 holds for
X U S andk + 1, since this condition does not dependioand(X U S) N X=F = X<k This proves 6.5.3.

Assume thatL(NM;*) N L(NM;) N =k 5 () for some(i,j) € range(u). Choosen such that
(n,i,5) € p. Letpy' £{(n',7,j") € p|n' < n} and observe that’ U {(n,i,j)} < p. By 6.5.2,X is
(W U{(n,i,4)}, k)-valid and alsd’, k)-valid. Together with 6.4.3 this implies that NM ;X )N L(NM )N
Y.<k — (), which contradicts our assumption. This shows 6.5.4.

Statement 6.5.5 follows from Definition 6.5 by induction gm||. This induction is similar to that used
in the proof of 6.5.3.

Let O be as in statement 6.5.6 and (&tj) € range(x). Choosen such that(n, i, j) € p. Assume that
A(O)NB(0) # P andletw € A(O)NB(O). Then, fork = 2-(Jw|+1), wis already inA(O=F)N B(O=F).
This contradicts the assumption that there exigts:a k such thaD="is (11, k’)-valid. Therefore A(O)N
B(0) = ). Analogously we see that(0) N D(0) = § and L(NM$) N L(NM]»O) = () (Here we use
Proposition 6.5.4.). By our assumption and Definition 6.4, for infinitely miathe following holds: For all
t > 1andz € * with 2 - [00"10% 12| < k,

o (Jy, |y| = [00"101z|)[00" 10t 1zy € O=F] < NMO="(z) accepts withirt steps, and
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e (Jy, |y| = [10710'12))[10"10 12y € OS] < NMjOSk(:c) accepts withirt steps.

During the firstt steps a machine can only ask queries of lergth< k. Therefore, above we can replace
NME=" (x) and NMY=" () by NM2(x) and NM 9 (z), respectively. Since all this holds for infinitely
manyk, the following holds for alk > 1 andx € >*.

e (3y, y| = |00710"12])[00"10* 1zy € O] & NM? () accepts withirt steps, and
e (y, ly| = [10"101z|)[10" 1012y € O] & NM]-O(x) accepts withirt steps.

This shows tha{ L(NM), L(NM$))<I?(A(O), B(0)) via somef € FP.* Even more, if both ma-
chines do not accept within ¢ steps, ther0”10'1z is neither in A(O) nor is in B(O). This means
FIL(NME) U L(NMS)) € A(O) U B(O). O

Remember that our construction consists of a coding part to obtain condition (i) of Theorem 6.1 and of
separating parts to obtain conditions (ii) and (iii). In order to diagonalize, we will fix certain words that are
needed for the coding part and we will change our oracle on nonfixed positions to obtain the separation.
For this we introduce the notion of a reservation for an oracle. A reservation consists of tWo aedsV
whereY contains words that are reserved for the oracle whileontains words that are reserved for the
complement of the oracle. This notion has two important properties:

e Whenever an oracl& agrees with a reservation that is not too large, we can find an extensi®n of
that agrees with the reservation (Lemma 6.8).

¢ If we want to fix a certain word to be in the oracle, then this is possible by a reservation of small
size. For this reason we can fix certain words to be in the oracle and still be able to diagonalize.
(Lemma 6.10)

Definition 6.6 ((u, k)-reservation) (Y, N) is a(u, k)-reservation forX if X is (i, k)-valid, Y N N = 0,
Y=k C X, N C X, all words inY>* are y-code-words, and ifv € Y>* is a u-code-word for(i, t, ), then
NM ,(z) has a positive patt® with |P| < ¢, PY* C Y and P™ C N.

Proposition 6.7 (basic properties of reservations)The following holds for everfy, k)-valid X .
1. (0,0)is a(u, k)-reservation forX.
2. If (Y, N) is a(u, k)-reservation forX, then alsaY, N U N’) for everyN’ C Y U X.
3. ForeveryN C X, (), N) is a(u, k)-reservation forx.

4. If (Y, N)is a(pu, k)-reservation forX, then(Y, N) is a (u, k+1)-reservation for eacliu, k+-1)-valid
72X withY=Fkt1 C Zz=k+1 C N:k—s-l.

Proof This follows immediately from Definition 6.6. O

Whenever d 1, k)-reservation of some oracl€ is not too large, theX has &, m)-valid extensiornZ
that agrees with the reservation.

“We can usef(z) £ T 1z, sinceNM; and NM; have computation times’ andn?, respectively.

25



Lemma 6.8 Let (Y, N) be a(u, k)-reservation forX and letm £ max({|w| |w € YUN}U{E}). If

|N|| < 2¥/2, then there exists &u, m)-valid ZD>,X withY C Z,N C Z, and Z>* contains only
u-code-words.

Proof Assume that|N| < 2¥/2. We show the lemma by induction on<m — k. If n = 0, then
Y = N = () and we are done.

Now assume: > 0. First of all we want to see that it suffices to finda k& + 1)-valid Z’'D; X such
thaty =k+1 C z/=FF1 C N and 2= contains onlyu-code-words. In this case, Proposition 6.7.4
implies that(Y, N) is a(u, k + 1)-reservation forz’. Then we can apply the induction hypothesig¥oNV)
considered as §u, k + 1)-reservation forz’. We obtain &y, m)-valid Z2, 12’ such thaty’ C Z C N
andZ>**1 contains onlyu-code-words. Together this yield&, X andZ>* contains only:-code-words.

It remains to find the mentioned .

If &+ 1is odd, theny=F*1 = (), sinceY=**! contains onlyu-code-words and such words have an
even length. By Proposition 6.5.%; is (u, k -+ 1)-valid. Therefore, withz’ £ X we found the desired’.

If k4 1is even, then, starting with the empty set, we construct & set-*+! by doing the following
for each(n, i, j) € p, eacht > 1 and eachr € ¥* with 2 - |00"10%1z| = k + 1:

e If NM:X(x) accepts withirt steps, then choose somies 1007101l with 0071012y ¢ N and add

00"10'1zy to S.
o If NM¥ () accepts withirt steps, then choose somes £10"10° 4l with 1071012y ¢ N and add
10"10f1zy t0 S.
Observe that the choices of worgsare possible sincgN| < 2+/2 < 2(k+1)/2 — | 5[00"10%12])  For

Z'% X USUY=F1 we haveZ'D, X andY =F+1 C z/=F+ ¢ N sinceS € N N Xk, Moreover,

7'=**1 contains only:-code-words sincé andy="*1 do so. It remains to show that is (y, k+ 1)-valid.
Clam1: A(Z')nB(Z') =C(Z')nD(Z') = 0.

SinceX is (u, k)-valid we haveA(X) N B(X) = C(X) N D(X) = (). When we look at the definitions of
A(X), B(X), C(X) andD(X) we see that in order to show Claim 1, it suffices to show

A(Z) 0 B(Z) 08521 Z o2y A D(Z) 0 SR = g,

We immediately obtair”(Z') N D(Z") n ¥+ = §), since by definitionC(Z’) and D(Z') contain only
words of odd lengths. Assume thatZ’) N B(z') N ©*+1/2=1 - (, and choose some € A(Z') N
B(Z') n x(k+1)/2=1 g there exish,t > 1, z € ©* andyp,y; € L1+ such thatw = 0710*1z and
Owyo, lwy; € Z'. Since all words inS and all words inY” are u-code-words, there exigt; > 1 such
that (n,i,7) € p. Note thatOwy, lwy; € S UY=F We claim thatNM ¥ (x) accepts withirt steps,
regardless of whethénuy, belongs taS or to Y =**1, This can be seen as follows:

e If Owyy € S, then from the construction & it follows that NM ;X () accepts withirt steps.

e If Owyy € Y=F+1 thenNM,(z) has a positive pat® with |P| < t, PY* C Y andP"™ C N. Since
t < k it follows that PYs U P C ¥=F and thereforeP¥®s C X andP™ C X=F — X It follows
that NM ;X () accepts withirt steps.

Analogously we obtain thaNMf(x) accepts withint steps. Sincgz| < k it holds thatL(NM:X) N
L(NM]X) N X<k £ (and(i,j) € range(r). This contradicts Proposition 6.5.4 and finishes the proof of
Claim 1.
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Claim 2: Z"is (¢/, k + 1)-valid for everyy' < p.

We prove the claim by induction ah/||. If ||| = 0, thenZ’is (¢/, k + 1)-valid by Claim 1.

Assume now| /|| > 0, and choose suitab}e’, iy, jo such thaf’ = p” U {(pthax» 20, Jo) } @ndu’” < p.
From the induction hypothesis of this claim it follows thatis (u”, k + 1)-valid. Together withy! .. <
k < k + 1 this shows 6.4.1 fog’ and(y/, k + 1).

Observe that ifn,i,j) € ¢/, t > 1 andz € ¥* with 2 - [00"10'1z| < k + 1, then the equivalences in
6.4.2 hold forZ’ and (1, k + 1).

e For2-|00"101z| < k they hold sinceX is (¢/, k)-valid andZ' D, X .

e For2-|00"10'1z| = k + 1, the implications “=" in statement 6.4.2 hold sincg C Z'. For the other
direction, letw = 0"10'1z and assume that there exists same %*I*1 such thathwy € Z'. If
Owy € S, then we have put this word 8, becauseVM ¥ (x) accepts withirt steps. Since < k,
also NM 7' (x) accepts withirt steps. If0owy € Y=Ft1 then, sincgY, N) is a (u, k)-reservation
for X, NM,(x) has a positive pat® with |P| < ¢, PY* C Y andP"™ C N. Sincet < k, we
have PY* C X and P™ C %=F — X. Hence,NM (x) accepts withint steps, and therefore,
NMiZ' (x) accepts withint steps. This shows the implicatios=” in 6.4.2.2a. Analogously we see
the implication =" in 6.4.2.2b.

Finally, statement 6.4.3 holds fdf’ and (¢/,k + 1) since X is (¢/, k)-valid, u!,,. < k and therefore
Z/SHmax — X S<Hmax_ This proves Claim 2.

In particular, Claim 2 implies that’ is (u, k + 1)-valid. This completes the proof of the lemma. O

One of the main consequences of this lemma is that)-valid oracles can be extended(je, £’)-valid
oracles for largek’. We needed to include the third condition in Definition 6.4 in order to obtain this
property. Otherwise it would have been possible that a certain way of extending the finite Xractme
oracleX’ has no extension to an infinite orackeso thatZ(NM¢) N L(NMJ»O) = (. If this were the case,
then by statement 6.4.2, for all extensions to an infinite or&cld (O) and B(O) would not be disjoint.

Lemma 6.9 If X is (u, k)-valid, then for everyn > k there exists &, m)-valid Z2, X .

Proof It suffices to show the assertion for = k£ + 1. LetY = () and N = 0*+!. By Proposition 6.7.3,
(Y,N) is a(u, k)-reservation forX. Since||N| = 1 < 2¥/2 we can apply Lemma 6.8 and we obtain a
(, k + 1)-valid ZD, X. O

For afiniteX C %, let{(X) LY, o ¢ |wl-

Lemma 6.10 Let X be (u, k)-valid and letZ2>, X be (1, m)-valid such thatm > k and Z>* contains
only u-code-words. For everyw € Z there exists &u, k)-reservation(Y, N) for X such thatw € Y,
YUN C 2l (Y UN)<2-|jwjandY € Z C N.

Proof ForeveryY C Z let

D(Y')£{q|Y>" contains gu-code-word for(i, £, z) andq € P?},},

whereP; ; . is the lexicographically smallest path among all path&/df # () that are accepting and that
are of length< t. Note thatD(Y") is well-defined: On the one hand we know that all elementgof
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are u-code-words. On the other hand,Yif* C Z contains gu-code-word for(i, ¢, z), then (sinceZ is
(1, m)-valid) the pathp; ; . really exists.

When looking at the definition dP(Y") we see that ifw is a u-code-word for(s, t, z), then|P; ; .| <
t < |w|/2. Therefore, the sum of lengths ¢& that are induced by is at most|w|/2. This shows the
following.

Claim 1: ForallY CZ: ¢(D(Y))</(Y)/2 and words ifD(Y") are not longer than the longest word¥n
We compute thép, k)-reservation(Y, N') with help of the procedure below.

1 Yo := {w}

2 No !:(b

3 c:=0

4 do

5 c:=c+1

6 Y. :=D(Ye 1) NZ

7 Ne :=D(Yc1)NZ

8 repeat until Yo=N.=10
9 YI:YQUY1U"'UYC

10 N:ZN()UNlU"‘UNC

Note that since all, are subsets of/, the expression®(Y._;) in the lines 6 and 7 are defined. It is
immediately clearthab € Y C Z C N and therefor& NN = . From Claim 1 we obtaiy UN C ©=Il
and/(Y; UN;) = £(D(Yi—1)) < £(Y;—1)/2for1 < i < c. Therefore/(Y UN) < 2-4(Yy) =2 |w|. It
remains to show the following.

Claim 2: (Y, N) is a(u, k)-reservation forX .

Clearly, Y=k C X C N. Moreover, all words iny>* are u-code-words since alY; are subsets of
Z. So letv € Y>* be au-code-word for(i, ¢, z). More preciselyy € Yj for a suitablei’ < c. SinceZ
is (1, m)-valid andv is a u-code-word inZ it follows from Definition 6.4 thatNM Z (z) accepts withirt
steps. Therefore, the pafh ;. exists and we obtai®?! C D(Y;). It follows that P’;° C Y,y C Y

it,x 4t

andP??,. C Nyi1 € N. Therefore NM;(x) has a positive patl® with |[P| < ¢, PY*® C Y andP™ C N.

2,t,T

This proves the claim and finishes the proof of the lemma. O

For any(u, k)-valid oracle either we can find a finite extension that makes the languages accepted by
NM,; and NM ; not disjoint, or we can force these languages to be disjoint for all valid extensions.

Proposition 6.11 (Property P1) Let, j > 1 and letX be (u, k)-valid. There exists ah> k and a(y/,1)-
validY D, X, u < i/ such that

o either for all Z2,Y, L(NMZ) N L(NMZ) n 5=t £ 0
e or (i,7) € range(y).

This proposition tells us that if the first property does not hold, then by Definition 6.4, Bireg.’, 1)-valid,
L(NMZ) N L(NMZ) n$=™ = @ for all (1, m)-valid extensionsZ of Y, wherem > I.

Proof Leti,j > 1 and letX be (u, k)-valid. By Lemma 6.9, we can assume tkas large enough so that
2 k9 < 282 (i, §) € range(p), then we are done. Otherwise we distinguish two cases.
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Case 1: There exists > k and a(y, I')-valid Y2, X such thatL(NM}") N L(NM)') n 2=V 3£ 0.
Choose some € L(NMY') n L(NMY") n ©=" and letP;, P; be accepting paths of the computations
NMY'(z), NMY'(z), respectively. Note thatP?* U PY**) n " = () and let\V £(Pr° U Pro) n 57
By Proposition 6.7(0), N) is a(u, I)-reservation fol’”’. Since||N|| < 2 - |z[iT7 < 2. 1" < 2!'/2 we can
apply Lemma 6.8. We obtain some> I’ > k and somé y,)-valid Y2, Y'2, X such thatv C »=land
Y C N. Therefore, for everyZ2,Y the computationsVM 7 (x) and NM 7 (x) will accept at the paths;
andP;, respectively. Henc&(NM7) N L(NM%) n X<t + () for every Z2,Y .

Case 2: For everlf > k and every(u, I')-valid Y2, X it holds thatL (NM} )N L(NM Y ) n =t = 0.

By Lemma 6.9, there exists (@, 1)-valid Y2, X with I £ % + 1. Let ' £ U {(I,4,5)} and observe that
w =y’ sincel > k > pmax. We will show thatY is (y/, 1)-valid.

Sincel = ul,,, and sinceY is (u,1)-valid, 6.4.1 holds. When looking at 6.4.2 f@ri,j) € n we
realize tha® - [00'10¢1z| < I is not possible. Therefore, we only have to verify 6.4.2 for elements from
This is immediate, sinc¥ is (u,[)-valid. Finally, 6.4.3 follows from our assumption in Case 2. Therefore,
Yis (¢, 1)-valid. O

In order to show thatC(O), D(O)) is not symmetric we have to diagonalize against every possible
reducing function, i.e., against every deterministic polynomial-time oracle transducer. The following propo-
sition makes sure that this diagonalization is compatible with the notion of valid oracles.

Proposition 6.12 (Property P2) Leti > 1 and letX be (u, k)-valid. There exists ah > k and a(u,()-
valid Y2, X such that for allZ2,Y, if C(Z) N D(Z) = 0, then(C(Z), D(Z)) does not<’??-reduce to
(D(2),C(2)) viaT?.

Proof By Lemma 6.9 we can assume that= 0(mod 4) and (k + 1) + 1 < 2*+1)/2 Consider the
computation7;X (0¥*1), let z be the output of this computation, and I§tbe the set of queries that are of
length greater thah. If |z| > k, then additionally we add the wofi’! to N. Note that this yields aiV
suchthatY N N = @ and||N|| < (k4 1)F +1 < 20:+1D/2,

If x € C(X) (note that this means = 0% for somek’ < k), then choose somg € 0x* — N and
let S £{y}. In this case it holds thai**' ¢ C(X US) Az ¢ D(X US). The latter holds, sinc& is
(1, k)-valid and therefore(’(X) N D(X) = (). Otherwise, ifr ¢ C(X), then choose somge 1%F — N
and letS £{y}. Here we obtai)**! ¢ D(X US) Az ¢ C(X US). Together this means that we find some
y € F+1 — N such that withS £{y} it holds that

"t eC(XUS) Az ¢ D(XUS) v 0"l e D(XUS)Az ¢ C(XUS). (7)

S C ¥kl andC(S) N D(S) = 0. From Proposition 6.5.3 it follows that U S is (u, k 4 1)-valid. So
by Proposition 6.7.3(, N>*+1) is a (i, k + 1)-reservation forX U S. Since||N>F+1|| < 2(-+1)/2 we
can apply Lemma 6.8. FOL max({|w||w € N} U {k + 1}) we obtain &, 1)-valid Y D4 1.X U S such
thatY C N>k+1 andY>F*! contains onlyu-code-words. Frons C N it follows thatY € N N X>*,
Therefore,TY (05*1) computesr. Since all queries asked at this computation are of lergthwe obtain
that 77 (0¥+1) computese for every Z2,;Y. SinceY >*+1 does not contain any words of odd length we
haveC(Z) N X<l = C(X US) andD(Z) N 2=l = D(X U S) for eachZD;Y. Since0*! € N, we have
0F+1 2 € ©=!. Therefore, by equation (7), the following holds for eveérp;Y .

0" e C(2) AT (05) ¢ D(Z)] v (0% € D(Z) AT (0% ¢ C(2))] (8)
Hence, for everyZ2,Y with C(Z) N D(Z) = { it holds that(C(Z), D(Z)) does not<t°-reduce to
(D(Z),C(Z))viaT?. O

29



Recall that we want to construct the oracle in a way such(thé®), B(O)) is notng”’O—hard forNP©.
Atthe beginning of this proof we have seen that it suffices to consk(1©f) such that it does nat’?-reduce
to (A(0), B(0)). We preventt(0)<"?(A(O), B(O)) via M; as follows: We consider the computation
M;(0™) where the machine can ask queries to the QA{X), B(X)). In Lemma 6.13 we show that each
query to this pair can be forced either to be in the complement(df) or to be in the complement of
B(X). For this forcing it is enough to reserve polynomially many words for the complemekit df we
forced the query to be in the complement4fX), then we can safely answer that it belongsaX).
Otherwise we can safely answer that it belongsltd). After forcing all queries of the computation, we
add an unreserved word f0(X) if and only if the computation rejects. This will show th&t X ) does not
<"P-reduce to A(X), B(X)) via M; (Proposition 6.14).

Lemma 6.13 Letk = 2(mod 4) and letX be (u, k)-valid. For everyq € ¥*, |¢| < 2¥/273 — 2, there exists
an N C ¥>* such that| N|| < (4 - |q| + 5)? and one of the following properties holds.

1. Forall (u, m)-valid Z2, X, if m>k, ZC N andZ>**! contains only:,-code-words, then ¢ A(Z).

2. Forall (1, m)-valid Z2., X, if m>k, ZC N andZ>*+1 contains only:-code-words, then ¢ B(Z).
Proof We can assume that there exist > 1 andx € ¥* such that; = 0"10'1z. Otherwise, by definition
of A andB, ¢ cannot belong tol(Z) U B(Z) for all oraclesZ, and we are done. Define the following sets.

La £ {(Ya,Na)|(Ya,Na)isa(u, k+ 1)-reservation for soméu, k + 1)-valid Z2; X,
U(YaUNa) <4-(lgl +1), and(3y € Tl [0gy € Ya]}

Lg £ {(Ys,Ng)| (Y, Np)isa(u, k+ 1)-reservation for soméu, k + 1)-valid Z2, X,
(Y UNp) <4-(l¢| +1),and(3y € S17H)[1gy € Yp]}

We say thatY4, N4) € L, conflictswith (Yz, Np) € Lpifandonly if Y4 N Ng # (0 or NaNYp # 0.
Note that if(Y4, N4) and(Yp, Np) conflict, then evei, N Ng N 7% £ or Ngy N Y N E>F £ (.

Claim 1: Every (Y4, N4) € L4 conflicts with every(Yp, Ng) € Lp.

Assume that there exigt’s, N4) € L4 and(Yp,Np) € Lp that do not conflict. Let’ LY, U Yg,
N'LN,UNgandZ' £ XUy, t1uyp=F+L. Sincek+1 = 3(mod 4), this impliesC(Z")ND(Z') = 0.
By Proposition 6.5.37" is (u,k + 1)-valid. Observe thatY’, N’) is a (u, k + 1)-reservation forZ’.
Moreover, from the definition of. 4 and L it follows that | N’|| < 8 - |¢| + 10 < 2¥/2. By Lemma 6.8,
there exist ann > k + 1 and a(u, m)-valid Z2y 17’ such thaty” C Z. Since(Y4,Na) € Ly and
(Y, Np) € Lp, there existyy,y1 € X/9+1 such thalgyy € Y4 C Y’ C Zandlqy, € Yp C Y’ C Z.
Thereforeg € A(Z) N B(Z), which contradicts the fact that is (1, m)-valid. This proves Claim 1.

We use the following algorithm to create the 8éts claimed in the statement of this lemma.

N:=10
while ( L, # () and Lp # @)
choose some (Y,,N}) € Ly
>k >k
N:=NUY,"FUN}
for every (Ya,Np) € Ly
remove (Yy,Ny) if YN (Y75 UNTS) #£0
for every (Yg,Ng) € Lg
remove (Yp,Ng) if YN (Y,"5UN,"5) #0
end while

OO ~NO O WN -
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We claim that aftef iterations of thewhile loop, for every(Yp, Ng) € Lp, | Ng|| > . If this claim is
true, the while loop iterates at maost|q| + 5 times, since for anyYp, Np) € Lp,{(Ng) < 4-|q| +4, and
therefore||Ng|| < 4-|q| + 5. On the other hand, during each iteratidnjs increased by at mogt: |¢| + 5
strings. Thereforg|N|| < (4 - |q| +5)? andN C X>* when this algorithm terminates.

Claim 2: After [ iterations of thewhile loop, for every(Yp, Np) that remains irg, | Ng|| > .

For everyl, let us denote the pair that is chosen during iie iteration in step 3 byY?, Ng). By
Claim 1, every(Yp, Np) that belongs td. s at the beginning of this iteration conflicts with’}, N',), i.e.,
NLNYpNE>F £ QorYiNNgnE>k £ (. If NunYsnX>k #£ (), then(Yp, Np) will be removed froml 5
in step 8. Otherwisey’} N N N X>* is not empty, and therefore, there exists a lexicographically smallest
wordw; in this set. In this cas€Y s, Ng) will not be removed fron 5; we say thatYp, Np) surviveshe
[-th iterationdue to the wordy;. Note that(Yz, Ng) can survive only due to a word that belongsNg.
We will use this fact to prove thatNg|| > [ after! iterations.

We show now that any paiYz, Np) that is left in L p afterl iterations survives each of these iteration
due to a different word. Since these words all belongVig, this will complete the proof of the claim.
Assume that there exist iteratiohand!’ with I < I’ such thaty; = wy. Thenw; € Y} N N nX>* and
wp € Y 0 Npn S~k ThereforeY N Y4 N x> £ . So the pai(Y}, N%) should have been removed
in iteration! (step 6), and cannot be chosen at the beginning of iterdti@s claimed. Hencey; # wy.
This proves Claim 2.

Therefore, we now have a sat of the required size such that eithi) or L will be empty. Assume
that L 4 is empty; we will show that 6.13.1 holds (analogously we show thagifis empty, then 6.13.2).
Assume that for somen > k + 1 there exists du, m)-valid Z2, X such thaty € A(Z), Z C N and
Z>k+1 contains onlyu-code-words. Hence, there exists some %19+ such thatqy € Z.

Let Zz’ £ Z<k+1 From Proposition 6.5.5 it follows that’ is (1, k + 1)-valid (sincek +1 > k > jimax).-
SinceZ>**+1 contains onlyu-code-words, we can apply Lemma 6.10. We obtajp.g + 1)-reservation
(Y’ N")for Z' such thabgy € Y', Y'UN’ C £=l00%l ¢(Y'UN') < 2-|0gy| andY’ C Z C N'. Together
with Z C N, this implies

Y' NN =10. 9)

Note that(Y’, N') must have been il 4 and has been removed during some iteration. This implies that
during that iterationy” N (Y~* U N’,”*) # 0 (by line 6). Moreover, by line 4y,”" U N',”* is a subset

of N when the algorithms stops. This impli#s N N # (), which contradicts equation (9). This shows that
for all (p, m)-valid Z2, X, if m > k, Z C N andZ>**! contains only:-code-words, then ¢ A(Z). O

Proposition 6.14 (Property P3) Let > 1 and letX be(u, k)-valid. There exists ah> k and a(u, 1)-valid
Y D, X suchthatforallZzD;Y, if A(Z) N B(Z) = 0, then there exists a separatsrof (A(Z), B(Z)) such
that £(Z) # L(M?).

Proof Leti > 1 and letX be(u, k)-valid. By Lemma 6.9, we can assume tkat 2(mod 4) and thatk is
large enough such thaé(k 4 3)% < 2+/2,

®Actually, it even holds thafigy € Z — X, but we do not need this explicitly in our argumentation. In order to see this, we
assume thatqy is in X. Theng is in A(X) and({0qy},?) is a(u, k)-reservation forX. Therefore,({0qy},0) is a(u, k + 1)-
reservation for everyu, k + 1)-valid Z2>,X. Hence,({0qgy}, ) is in L4 at the beginning of the algorithm. So it has been
removed during the algorithm. But this is not possible since elemeriis inan only be removed in step 6, and there we remove
only (Ya, Na) with Y4 N X>* £ 0. This shows)gy € Z — X.
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We describe the construction 8f; and.Sg, which are sets of queries we reserve B1Y") and A(Y'),
respectively. LetS4 := A(X) andSp := B(X). We simulate the computatidt?[f“ (0%+1) until we reach
a querygq, that neither belongs t6§4 nor belongs taSp. Note that|q;| < (k + 1)* < 2%/2-3 — 2. From
Lemma 6.13 we obtain somé; C %% such that| N1 || < (4-|q1|+5)? and either 6.13.1 or 6.13.2 holds. If
6.13.1, then addg; to Sz, otherwise add; to S4. Now return the answer ofj; € S4?” to the computation.
We continue the simulation until we reach a quesythat neither belongs t§4 nor belongs ta55. Again
we apply Lemma 6.13, obtain the s, and addy, either toS4 or to Sg. We continue the simulation
until the computation stops. Let be the number of queries that were added'toor Sp. Observe that
SN Sp = 0 atthe end of our simulation.

Let N £ Ny U---UN, U{02*+D)'+2Y Then||N|| < (k+1)*-(4-(k+1)"+5)%2+1 < 2¥/2, Hence there
exists somev € ¥+ — N. If the simulation accepts, then I8 £ X, otherwise let’ £ X U {w}. By
Proposition 6.5.3Y" is (1, k+1)-valid. SinceN C ¥~>* we haveN C Y'. Therefore, by Proposition 6.7.3,
(0, N)is a(u, k + 1)-reservation for”’. By Lemma 6.8, there exist dn> 2(k + 1)° + 2 and a(y, [)-valid
Y Dp41Y’ such thaf” € N andY>**! contains onlyu:-code-words. In particular, it holds that- k and
YOLX.

Claim 1: S, C B(Z) andSp C A(Z) for everyZD;Y .

Assume thatS, N B(Z) # () for someZ2;Y, and choose a € S4 N B(Z). SinceS, contains only
words of length< (k + 1)* we obtainv € S4 N B(Z=2*:+1'+2) = §, N B(Y). Sowv cannot belong to
A(Y) sinceA(Y) N B(Y) = 0. In particular this means € Sy — A(X), i.e.,v = g¢; for a suitablej
with 1 < j < n. By our constructiony; was only added t&4 when 6.13.2 holds. Remember thatis
(u,0)-valid withl > k, Y2OrX,Y C N C WJ andY>**+1 contains onlyu-code-words. Therefore, from
6.13.2 it follows that = ¢; ¢ B(Y'), which contradicts € S, N B(Y'). This showsS, C B(Z). By the
symmetric argument we obtaly C A(Z). This proves the claim.

Consider anyZ2>;Y with A(Z) N B(Z) = 0. Let S£ A(Z) U S4. Assume thaS is not a separator
of (A(Z),B(Z)). SinceA(Z) C S, we must haves N B(Z) # 0. SinceA(Z) N B(Z) = 0, this implies
Sa N B(Z) # 0. This contradicts Claim 1. S6 is a separator ofA(Z), B(Z)). It remains to show
E(Z) # L(MP).

By our constructionp¥*! e E(Y’) if and only if M 4(0¥+1) rejects. SinceZD;,Y” it holds that
0+l ¢ E(Z) if and only if MiSA (0*+1) rejects. Assume that there exists a querthat is answered
differently in the computationdZ;*4 (0%+1) and M (0%+1) (take the first such query). Sin&; C S we
obtaing € S — 54, i.e.,q € A(Z). If ¢isin B(X), theng is in BgZ ) € S, which is not possible. So
q is neither inS4 nor in B(X), butq is asked in the computatiok/;”* (0F+1). It follows thatq = q; for
some j withl < j < n, and during the construction we addgdto SB. So we have; € Sp N A(Z),
which contradicts Claim 1. Therefora/ 4 (0¥+!) accepts if and only if\/5 (0**1) accepts. This shows
0k+1 ¢ E(Z) if and only if M (0*1) rejects, i.e. E(Z) # L(MY). O

This finishes the proof of Theorem 6.1. O

Corollary 6.2 The oracleO from Theorem 6.1 has the following additional properties.
(i) UP? £ NP? +£ coNPY andNPMV? ¢ NPSV?
(i) There exists a<??-completeNPC-pair (A, B) that satisfies the following:

— For everyNP%-pair (E, F) there exists arf € FP with E<}, A via f and F<}, B via f.
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— (A, B) is P%-inseparable but symmetric.

Proof It is known that Conjecture 2.4 implies item (i) [ESY84, GS88, Sel94]. The first statement of (ii)
follows immediately from the proof of Theorem 6.1 (equation (4)). The p&irB) is symmetric because it
is <IP-complete. If(A, B) is PO-separable, then eveNP-pair isP?-separable, and therefore symmetric.

This contradicts item (i) of Theorem 6.1. $d, B) is P-inseparable. |

Note that statement (ii) shows that, B) is complete even in a stronger sense of many-one reductions.

33



