
SPLITTING NP-COMPLETE SETS∗

CHRISTIAN GLAßER† , A. PAVAN‡ , ALAN L. SELMAN§ , AND LIYU ZHANG¶

Abstract. We show that a set is m-autoreducible if and only if it is m-mitotic. This solves a long
standing open question in a surprising way. As a consequence of this unconditional result and recent
work by Glaßer et al., complete sets for all of the following complexity classes are m-mitotic: NP,
coNP, ⊕P, PSPACE, and NEXP, as well as all levels of PH, MODPH, and the Boolean hierarchy
over NP. In the cases of NP, PSPACE, NEXP, and PH, this at once answers several well-studied
open questions. These results tell us that complete sets share a redundancy that was not known
before. In particular, every NP-complete set A splits into two NP-complete sets A1 and A2.

We disprove the equivalence between autoreducibility and mitoticity for all polynomial-time-
bounded reducibilities between 3-tt-reducibility and Turing-reducibility: There exists a sparse set
in EXP that is polynomial-time 3-tt-autoreducible, but not weakly polynomial-time T-mitotic. In
particular, polynomial-time T-autoreducibility does not imply polynomial-time weak T-mitoticity,
which solves an open question by Buhrman and Torenvliet.

Key words. computational and structural complexity, NP-complete sets, autoreducibility, mi-
toticity

AMS subject classifications. 68Q17,68Q15

1. Introduction. We show in this paper that NP-complete sets split into two
equivalent parts. Let L be an NP-complete set containing an infinite number of
strings. Then there is a set S ∈ P such that the sets L1 = S ∩ L and L2 = S ∩ L are
both NP-complete, and L = L1 ∪ L2. Since L1 and L2 are both many-one-equivalent
to L, we may say that they contain the same information as L. For this reason, sets
L with this property are called mitotic.1 Briefly, we prove that all NP-complete sets
are mitotic.

Our story begins with the notion of autoreducibility. Trakhtenbrot [19] defined a
set A to be autoreducible if there is an oracle Turing machine M such that A = L(MA)
and M on input x never queries x. For complexity classes like NP and PSPACE refined
measures are needed. In this spirit, Ambos-Spies [1] defined the notion of polynomial-
time autoreducibility and the more restricted form m-autoreducibility. A set A is
polynomial-time autoreducible if it is autoreducible via an oracle Turing machine that
runs in polynomial-time. A is m-autoreducible if A is polynomial-time many-one
reducible to A via a function f such that f(x) �= x for every x. Autoreducible sets
contain redundant information just as do mitotic sets. For example, if a set A is
m-autoreducible, then x and f(x) contain the same information about membership
in A.

A recent paper of Glaßer et al. [11] showed that the complete sets for many in-
teresting classes such as NP, PSPACE, NEXP, and levels of PH are m-autoreducible.

∗A preliminary version of this paper appeared at the conference STACS 2006.
†Lehrstuhl für Informatik IV,Universität Würzburg. Email: glasser@informatik.uni-wuerzburg.de
‡Department of Computer Science, Iowa State University. Research supported in part by NSF

grants CCR-0344817 and CCF-0430807. Email: pavan@cs.iastate.edu
§Department of Computer Science and Engineering, University at Buffalo. Research supported

in part by NSF grant CCR-0307077 and by the Alexander von Humboldt-Stiftung. Email: sel-
man@cse.buffalo.edu

¶Department of Computer Science and Information Systems, University of Texas at Brownsville.
Email: Liyu.Zhang@utb.edu

1Mitosis in biology is the process by which a cell separates its duplicated genome into two identical
halves.

1

The main technical result of the present paper is that m-autoreducible implies m-
mitotic. As a consequence, complete sets for interesting complexity classes such as
NP, PSPACE, NEXP, and levels of PH are m-mitotic. This result resolves several
long-standing open questions raised by Ambos-Spies [1], Buhrman, Hoene, and Toren-
vliet [5], and Buhrman and Torenvliet [6].

The notion of mitoticity was originally introduced by Lachlan [14] for recursively
enumerable sets. Mitoticity was studied comprehensively by Ladner [16, 15]. Ambos-
Spies [1] formulated two related notions in the polynomial time setting, mitoticity
and weak mitoticity. A set A is m-mitotic if there is a set S ∈ P such that A, A ∩ S,
and A ∩ S are polynomial-time many-one equivalent. If the latter holds without the
assumption S ∈ P, then A is weakly m-mitotic.

Ambos-Spies [1] showed that if a set is m-mitotic, then it is m-autoreducible and
he raised the question of whether the converse holds. As stated above, we resolve
this question and show that every m-autoreducible set is m-mitotic. Since its proof is
technically involved, we illustrate parts of the main combinatorial idea with the help
of a simplified graph problem that will be described in Section 3. We remark that
this example is a strong simplification of the general case that we have to solve. Our
main result is all the more surprising, because it is known [1] that polynomial-time
T-autoreducibility does not imply polynomial-time T-mitoticity. We improve this and
disprove the equivalence between autoreducibility and mitoticity for all polynomial-
time-bounded reducibilities between 3-tt-reducibility and Turing-reducibility: There
exists a sparse set in EXP that is polynomial-time 3-tt-autoreducible, but not weakly
polynomial-time T-mitotic. In particular, polynomial-time T-autoreducible does not
imply polynomial-time weakly T-mitotic. This result settles another open question
raised by Buhrman and Torenvliet [6].

Our main result relates local redundancy of information to global redundancy of
information in the following sense. If a set A is m-autoreducible, then x and f(x)
contain the same information about A. This can be viewed as local redundancy.
Whereas if A is m-mitotic, then A can be split into two sets B and C such that A, B,
and C are polynomial-time many-one equivalent. Thus the sets B and C have exactly
the same information as the original set A. This can be viewed as global redundancy
in A. Our main result states that local redundancy is the same as global redundancy.

Our result can also be viewed as a step towards understanding the isomorphism
conjecture [3]. This conjecture states that all NP-complete sets are isomorphic to
each other. In spite of several years of research, we do not have any concrete evidence
either in support or against the isomorphism conjecture2. It is easy to see that
if the isomorphism conjecture holds for classes such as NP, PSPACE, and EXP,
then complete sets for these classes are m-autoreducible as well as m-mitotic. Given
our current inability to make progress about the isomorphism conjecture, the next
best thing we can hope for is to make progress on statements that the isomorphism
conjecture implies. We note that this is not an entirely new approach. For example,
if the isomorphism conjecture is true, then NP-complete sets cannot be sparse. This
motivated researchers to consider the question of whether complete sets for NP can
be sparse. This line of research led to beautiful results: Mahaney [17] showed that
many-one-hard sets for NP are not sparse unless P = NP. Karp and Lipton [13]
proved that if sparse Turing-hard sets for NP exist, then PH collapses to the second
level. Ogiwara and Watanabe [18] showed that bounded-truth-table-hard sets for

2It is currently believed that if one-way functions exist, then the isomorphism conjecture is false.
However, we do not have a proof of this.

2

NP cannot be sparse unless P = NP. Our results show that another consequence of
isomorphism, namely “NP-complete sets are m-mitotic” holds. Note that this is an
unconditional result.

Buhrman et al. [4] and Buhrman and Torenvliet [7, 8] argue that it is critical
to study the notions of autoreducibility and mitoticity. They showed that resolving
questions regarding autoreducibility of complete sets leads to unconditional separation
results. For example, consider the question of whether truth-table complete sets for
PSPACE are non-adaptive autoreducible. An affirmative answer separates NP from
NL, while a negative answer separates the polynomial-time hierarchy from PSPACE.
They argue that this approach does not have the curse of relativization and is worth
pursuing. We refer the reader to the recent survey by Buhrman and Torenvliet [8] for
more details.

1.1. Previous Work. The question of whether complete sets for various classes
are autoreducible has been studied extensively [20, 2, 4]. Beigel and Feigenbaum [2]
showed that Turing complete sets for the classes that form the polynomial hierarchy,
ΣP

i , ΠP
i , and ΔP

i , are Turing autoreducible. Thus, all Turing complete sets for NP are
Turing autoreducible. Buhrman et al. [4] showed that Turing complete sets for EXP
and ΔEXP

i are autoreducible, whereas there exists a Turing complete set for EESPACE
that is not Turing auto-reducible. Regarding NP, Buhrman et al. [4] showed that
truth-table complete sets for NP are probabilistic truth-table autoreducible. Recently,
Glaßer et al. [11] showed that complete sets for classes such as NP, PSPACE, ΣP

i are
m-autoreducible.

Buhrman, Hoene, and Torenvliet [5] showed that EXP complete sets are weakly
many-one mitotic. This result was recently improved independently by Kurtz [8] and
Glaßer et al. [12, 11]. Buhrman and Torenvliet [8] observed that Kurtz’ proof can
be extended to show that 2-tt complete sets for EXP are 2-tt mitotic. This cannot
be extended to 3-tt reductions: There exist 3-tt complete sets for EXP that are not
btt-autoreducible and hence not btt-mitotic [4]. Glaßer et al. also showed that NEXP
complete sets are weakly m-mitotic and PSPACE-complete sets are weakly Turing-
mitotic.

2. Preliminaries. We use standard notation and assume familiarity with stan-
dard resource-bounded reductions. We consider words in lexicographic order. All used
reductions are polynomial-time computable. PF denotes the class of polynomial-time
computable functions.

Definition 2.1 ([1]). A set A is polynomially T-autoreducible (T-autoreducible,
for short) if there exists a polynomial-time-bounded oracle Turing machine M such
that A = L(MA) and for all x, M on input x never queries x. A set A is polynomially
m-autoreducible (m-autoreducible, for short) if A≤p

mA via a reduction function f such
that for all x, f(x) �= x.

Definition 2.2 ([1]). A recursive set A is polynomial-time T-mitotic (T-mitotic,
for short) if there exists a set B ∈ P such that A ≡p

T A ∩ B ≡p
T A ∩ B. A is

polynomial-time m-mitotic (m-mitotic, for short) if there exists a set B ∈ P such
that A ≡p

m A ∩ B ≡p
m A ∩ B.

Definition 2.3 ([1]). A recursive set A is polynomial-time weakly T-mitotic
(weakly T-mitotic, for short) if there exist disjoint sets A0 and A1 such that A0 ∪
A1 = A, and A ≡p

T A0 ≡p
T A1. A is polynomial-time weakly m-mitotic (weakly m-

mitotic, for short) if there exist disjoint sets A0 and A1 such that A0 ∪ A1 = A, and
A ≡p

m A0 ≡p
m A1.

3

3. m-Autoreducibility equals m-Mitoticity. It is easy to see that if a non-
trivial language L is m-mitotic, then it is m-autoreducible. If L is m-mitotic, then
there is a set S ∈ P such that L ∩ S ≤p

m L ∩ S via some f and L ∩ S ≤p
m L ∩ S

via some g. On input x, the m-autoreduction for L works as follows: If x ∈ S and
f(x) /∈ S, then output f(x). If x /∈ S and g(x) ∈ S, then output g(x). Otherwise,
output a fixed element from L − {x}.

So m-mitoticity implies m-autoreducibility. The main result of this paper shows
that surprisingly the converse holds true as well, i.e., m-mitoticity and m-autoreducibility
are equivalent notions.

Theorem 3.1. Let L be any set such that |L| ≥ 2. L is m-autoreducible if and
only if L is m-mitotic.

Before proceeding to the proof we first discuss parts of the main ideas and the
intuition behind the proof. To give an example of the difficulties in the proof, we
strongly simplify the general case so that we end at a much easier problem for finite
graphs. Later, we have to solve this problem for infinite graphs.

Assume that L is m-autoreducible via reduction function f . Given x, the repeated
application of f yields a sequence of words x, f(x), f(f(x)), . . ., which we call the
trajectory of x. These trajectories either are infinite or end in a cycle of length at
least 2. Note that as f is an autoreduction, x �= f(x).

At first glance it seems that m-mitoticity can be easily established by the following
idea: In every trajectory, label the words at even positions with + and all other words
with −, i.e., f(x), f(f(f(x))), . . . obtain + and x, f(f(x)), . . . obtain −. Define S to
be the set of strings whose label is +. With this ‘definition’ of S it seems that f
reduces L ∩ S to L ∩ S and L ∩ S to L ∩ S.

However, this labeling strategy has at least two problems. First, it is not clear that
S ∈ P; because given a string y, we have to compute the parity of the position of y in
a trajectory. As trajectories can be of exponential length, this might take exponential
time. The second and more fundamental problem is the following: The labeling
generated above is inconsistent and not well defined. For example, let f(x) = y. To
label y which trajectory should we use? The trajectory of x or the trajectory of y?
If we use trajectory of x, y gets a label of +, whereas if we use the trajectory of y,
then it gets a label of −. Thus S is not well defined and so this idea does not work.
It fails because the labeling strategy is a global strategy. To label a string we have to
consider all the trajectories in which x occurs. Every single x gives rise to a labeling
of possibly infinitely many words, and these labelings may overlap in an inconsistent
way.

We resolve this by using a local labeling strategy. More precisely, we compute a
label for a given x just by looking at the neighboring values x, f(x), and f(f(x)). The
strategy is well-defined and therefore defines a consistent labeling. We also should
guarantee that this local strategy strictly alternates labels, i.e., x gets + if and only if
f(x) gets −. Such an alternation of labels would help us to establish the m-mitoticity
of L.

Thus our goal will be to find a local labeling strategy that has a nice alternation
behavior. However, we settle for something less. Instead of requiring that the labels
strictly alternate, we only require that given x, at least one of f(x), f(f(x)), · · · , fm(x)
gets a label that is different from the label of x, where m is polynomially bounded in
the length of x. Speaking in terms of graphs, we will solve the following problem.

Infinite Graph Labeling Problem: Let G be an infinite, loop-free, directed
graph whose set of nodes is N such that all nodes have outdegree 1. Moreover, let

4

s be a polynomial-time computable function that on input of a node u computes its
successor, i.e., s(u) is the uniquely determined node such that (u, s(u)) is an edge.
Find a strategy that labels each node of G with either + or − such that:

(i) The label of a given node can be computed in polynomial time.
(ii) There is a polynomial p such that for a given node u we can compute in

polynomial time a node v ∈ {s(u), s(s(u)), . . . , sp(n)(u)} that has a different
label than u. In particular, at least one of the nodes s(u), s(s(u)), . . . , sp(n)(u)
has a different label than u.

If we can solve this problem, then this shows that m-autoreducibility implies
m-mitoticity. This is seen as follows: Let L be m-autoreducible via autoreduc-
tion s and let G be the graph whose set of nodes is N and whose set of edges is
{(u, s(u))

∣∣u ∈ N}. Observe that G and s have the properties mentioned in the infi-
nite graph labeling problem. By solving this problem we obtain a labeling strategy
S = {u ∈ N

∣∣ u has label +} that satisfies (i) and (ii). By (i), S ∈ P. By (ii), there
exists a polynomial-time computable function g that for a given node u computes the
node v described in (ii). In particular,

u ∈ S ⇔ g(u) /∈ S. (3.1)

Moreover, from g(u) ∈ {s(u), s(s(u)), . . . , sp(n)(u)} and from the fact that s is an
autoreduction for L it follows that

u ∈ L ⇔ g(u) ∈ L. (3.2)

The equivalences (3.1) and (3.2) yield the m-mitoticity of L (formally proved in Propo-
sition 3.2).

To keep this proof sketch simpler, we now restrict to finite graphs, make several
assumptions, and ignore several technical but important details. If we assume (for
simplicity) that on strings x /∈ 1∗ the autoreduction is length preserving such that
f(x) > x, then we arrive at the following labeling problem for finite graphs.

Simplified Problem: Let Gn be a directed graph with 2n vertices such that
every string of length n is a vertex of Gn. Assume that 1n is a sink, that nodes
u �= 1n have outdegree 1, and that u < v for edges (u, v). For u �= 1n let s(u) denote
u’s unique successor, i.e., s(u) = v if (u, v) is an edge. Find a strategy that labels
each node with either + or − such that:

(i) Given a node u, its label can be computed in polynomial time in n.
(ii) There exists a polynomial p such that for every node u, at least one of the

nodes s(u), s(s(u)), . . . , sp(n)(u) has a different label than u.
Cole and Vishkin [9] solve the r-ruling set problem which corresponds to the

following restriction of the above simplified problem for finite graphs: First, the graph
must be connected and it must have indegree 1. This means that the graph has to
be a simple ring. Second, the predecessor of a node must be computable efficiently
(i.e., in polynomial time in n). In contrast, the general problem we have to solve here
comprises graphs that are infinite, that are not necessarily connected, and that have
an unbounded indegree.

We now exhibit a labeling strategy for the simplified problem. To define this
labeling, we use the following distance function: d(x, y) df=
log |y − x|� (our formal
proof uses a variant of this function).

0 // Strategy for labeling node x
1 let y = s(x) and z = s(y).
2 if d(x, y) > d(y, z) then output −

5

3 if d(x, y) < d(y, z) then output +
4 r := d(x, y)
5 if
x/2r+1� is even then output + else output −

Clearly, this labeling strategy satisfies condition (i). We give a sketch of the proof
that it also satisfies condition (ii). Define m = 5n and let u1, u2, . . . , um be a path in
the graph. It suffices to show that not all the nodes u1, u2, . . . , um obtain the same
label. Assume that this does not hold, say all these nodes get label +. So no output
is made in line 2 and therefore, the distances d(ui, ui+1) do not decrease. Note that
the distance function maps to natural numbers. If the distance increases more than n
times, then d(um−1, um) > n. Therefore, um − um−1 > 2n+1, which is impossible for
words of length n. Hence we have seen that the distances do not decrease and that
they increase at most n times. So along the path u1, u2, . . . , um there exist at least
m− n = 4n positions where the distance stays the same. By a pigeon hole argument
there exist four consecutive such positions, i.e., nodes v = ui, w = ui+1, x = ui+2,
y = ui+3, z = ui+4 such that d(v, w) = d(w, x) = d(x, y) = d(y, z). So for the inputs
v, w, and x, we reach line 4 where the algorithm will assign r = d(v, w). Observe
that for all words w1 and w2, the value d(w1, w2) allows an approximation of w2 −w1

up to a factor of 2. More precisely, w − v, x − w, and y − x belong to the interval
[2r, 2r+1). It is an easy observation that this implies that not all of the following
values can have the same parity:
v/2r+1�,
w/2r+1�, and
x/2r+1�. According to
line 5, not all words v, w, and x obtain the same label. This is a contradiction which
shows that not all the nodes u1, u2, . . . , um obtain the same label. This proves (ii)
and solves the simplified problem.

A generalization of this strategy allows us to solve the infinite graph labeling
problem which in turn establishes m-mitoticity for the m-autoreducible set L.

Now we give a formal proof of Theorem 3.1.
The dyadic representation of natural numbers provides a one-one correspondence

between words over Σ = {0, 1} and natural numbers. This correspondence translates
operations and relations over natural numbers to operation and relations over words.
We denote the absolute value of an integer by abs(x). This avoids a conflict between
the notation of the length of a word w and the notation of the absolute value of the
integer represented by w. Moreover, log(x) denotes x’s logarithm to base 2. We use
the following proposition.

Proposition 3.2. Let L be any set such that |L| ≥ 2. L is m-mitotic if and only
if there exist a total g ∈ PF and a set S ∈ P such that for all x,

1. x ∈ L ⇔ g(x) ∈ L, and
2. x ∈ S ⇔ g(x) /∈ S.

Proof. Choose distinct words w1, w2 ∈ L. If L is m-mitotic, then there exists
S ∈ P such that L ∩ S≤p

mL ∩ S via some g1 ∈ PF and L ∩ S≤p
mL ∩ S via some

g2 ∈ PF. We may assume that w1 ∈ S and w2 ∈ S; otherwise the set S∪{w1}−{w2}
can be used instead of S. A simple proof shows that the following function g satisfies
the statements 1 and 2 from the proposition.

g(x) df=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1(x) : if x ∈ S and g1(x) ∈ S

w2 : if x ∈ S and g1(x) ∈ S

g2(x) : if x ∈ S and g2(x) ∈ S

w1 : if x ∈ S and g2(x) ∈ S

Now assume there exist a total g ∈ PF and an S ∈ P that satisfy the statements
6

1 and 2. It follows that L∩S≤p
mL∩ S and L∩ S≤p

mL∩ S, both via g. The following
function reduces L to L ∩ S.

g′(x) df=

⎧⎨
⎩

x : if x ∈ S

g(x) : if x ∈ S

The following function reduces L ∩ S to L.

g′′(x) df=

⎧⎨
⎩

x : if x ∈ S

w1 : if x ∈ S

This shows L≡p
mL ∩ S≡p

mL ∩ S and hence L is m-mitotic.
Proof. (Theorem 3.1) If L is m-mitotic, then there exist S ∈ P and f1, f2 ∈ PF

such that L∩S≤p
mL∩S via f1 and L∩S≤p

mL∩S via f2. By assumption, there exist
different words v, w ∈ L. The following function is an m-autoreduction for L.

f ′(x) df=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(x) : if x ∈ S and f1(x) /∈ S

f2(x) : if x /∈ S and f2(x) ∈ S

min({v, w} − {x}) : otherwise

For the other direction, let us assume that L is m-autoreducible and let f ∈ PF
be an m-autoreduction for L. Choose k ≥ 1 such that f is computable in time nk +k.
Using Proposition 3.2, we show L’s m-mitoticity as follows: We construct a total
g ∈ PF and an S ∈ P such that (x ∈ L ⇔ g(x) ∈ L) and (x ∈ S ⇔ g(x) /∈ S).

Let t be a tower function defined by: t(0) = 0 and t(i + 1) = t(i)k + k for i ≥ 0.
Define the inverse tower function as t−1(n) = min{i ∣∣ t(i) ≥ n}. Note that t−1 ∈ PF.
We partition the set of all words according to the parity of the inverse tower function
of their lengths.

S0
df= {x ∣∣ t−1(|x|) ≡ 0(mod 2)}

S1
df= {x ∣∣ t−1(|x|) ≡ 1(mod 2)}

Note that S0, S1 ∈ P.
The following distance function for natural numbers x and y plays a crucial role

in our proof.

d(x, y) df= sgn(y − x) ·
log(abs(y − x))�.
This function is computable in polynomial time. We define a set S (which will be
used as separator for L) by the following algorithm which works on input x.

0 // Algorithm for set S
1 y := f(x), z := f(f(x))
2 if |y| > |x| then (if x ∈ S0 then accept else reject)
3 if |z| > |y| then (if y ∈ S1 then accept else reject)
4 if x = z then (if x > f(x) then accept else reject)
5 // here x, y, and z are pairwise different
6 if d(x, y) > d(y, z) then reject
7 if d(x, y) < d(y, z) then accept
8 r := d(x, y)
9 if
y/2abs(r)+1� is even then accept else reject

7

Observe that S ∈ P. We will show L≡p
mL ∩ S≡p

mL ∩ S which implies that L is
m-mitotic.

Claim 3.3. Let y be any word and let m = |y|. If ∀i ∈ [0, 6m + 3], |f i(y)| ≥
|f i+1(y)|, then there exists j ∈ [0, 6m + 3] such that

f j(y) ∈ S ⇔ f j+1(y) /∈ S.

Proof. Assume the claim does not hold. Moreover, assume that for all j ∈
[0, 6m + 4], f j(y) ∈ S. For the other case (i.e., for all j ∈ [0, 6m + 4], f j(y) /∈ S) one
can argue analogously. Consider the algorithm for S.

Fact 1: For j ∈ [0, 6m + 2], the algorithm on input f j(y) stops either in line 7 or
in line 9.

This fact is proved as follows. Assume there exists j ∈ [0, 6m + 2] such that the
algorithm on input f j(y) stops in lines 2 or 3. In this case, |f j(y)| < |f j+1(y)| or
|f j+1(y)| < |f j+2(y)| which contradicts our assumption.

Assume there exists j ∈ [0, 6m + 2] such that the algorithm on input f j(y) stops
in line 4. By assumption of the claim, |f j(y)| ≥ |f j+1(y)| ≥ |f j+2(y)|. Moreover,
f j(y) = f j+2(y), since we stop in line 4. So |f j(y)| = |f j+1(y)|. Therefore, on both
inputs, f j(y) and f j+1(y), the algorithm stops in line 4. Note that f j(y) �= f j+1(y),
since f is an m-autoreduction. Hence by line 4, f j(y) ∈ S ⇔ f j+1(y) /∈ S, which
contradicts our assumption.

Assume there exists j ∈ [0, 6m + 2] such that the algorithm on input f j(y) stops
in line 6. So f j(y) /∈ S which contradicts the assumption. This proves Fact 1.

J
df= {j ∈ [0, 6m + 2]

∣∣ on input f j(y) the algorithm for S stops in line 7}
K

df= {j ∈ [0, 6m + 2]
∣∣ on input f j(y) the algorithm for S stops in line 9}

By Fact 1, J ∪ K = {0, . . . , 6m + 2}. From the algorithm we see the following.

∀j ∈ J, d(f j(y), f j+1(y)) < d(f j+1(y), f j+2(y)) (3.3)
∀j ∈ K, d(f j(y), f j+1(y)) = d(f j+1(y), f j+2(y)) (3.4)

Case 1: ‖J‖ > 2m. Together with (3.3) and (3.4) this shows

d(f6m+3(y), f6m+4(y)) − d(f0(y), f1(y)) > 2m. (3.5)

It follows that

d(f6m+3(y), f6m+4(y)) > m (3.6)

or

d(f0(y), f1(y)) < −m. (3.7)

Assume that (3.6) holds. By the assumption of the claim, f6m+3(y) and f6m+4(y)
are words of length ≤ m. So the length of abs(f6m+4(y) − f6m+3(y)) is ≤ m. From
the dyadic representation of numbers it follows that log(abs(f6m+4(y)−f6m+3(y))) <
m + 1 and therefore, d(f6m+3(y), f6m+4(y)) ≤ m. This is a contradiction, since we
assumed that (3.6) holds.

8

Assume now that (3.7) holds. Again, f0(y) and f1(y) are words of length ≤ m. So
1 ≤ abs(f0(y)−f1(y)) ≤ 2m+1−2. It follows that 0 ≤ log(abs(f1(y)−f0(y))) < m+1
and therefore, d(f0(y), f1(y)) ≥ −m. This is a contradiction, since we assumed that
(3.7) holds.

Case 2: ‖J‖ ≤ 2m. Note that [0, 6m + 2] contains 6m + 3 elements while J
contains at most 2m elements. So there exists j ∈ [0, 6m] such that j, j +1, j+2 ∈ K.
A look at the algorithm tells us the following.

d(f j(y), f j+1(y)) = d(f j+1(y), f j+2(y)) = d(f j+2(y), f j+3(y)) = d(f j+3(y), f j+4(y))
(3.8)

Define r as the number shown in (3.8), and let z1
df= f j(y), z2

df= f j+1(y), z3
df= f j+2(y),

and z4
df= f j+3(y). Recall that z1, z2, z3 ∈ S and that on input of these words, the

algorithm stops in line 9. Therefore, the following must hold.

a1
df=
z2/2abs(r)+1� is even (3.9)

a2
df=
z3/2abs(r)+1� is even (3.10)

a3
df=
z4/2abs(r)+1� is even (3.11)

Case 2a: r = 0. Here z2 �= z4, since otherwise on input z2 the algorithm stops
in line 4 which contradicts Fact 1. Also, z2 �= z3 and z3 �= z4, since f is an m-
autoreduction. From (3.8) and from the definition of the distance function d we
obtain, either z2 = z3 − 1 = z4 − 2, or z4 = z3 − 1 = z2 − 2. So z4 − z2 equals 2 or −2,
and hence a3 − a1 equals 1 or −1. This contradicts the observations (3.9) and (3.11).

Case 2b: r > 0. Here we have z1 < z2 < z3 < z4 and therefore, a1 ≤ a2 ≤ a3.
Assume a1 = a3. Since d(z2, z3) = r, it holds that log(abs(z3−z2)) ≥ r and hence,

z3−z2 ≥ 2r. The same argument shows z4−z3 ≥ 2r. So z4 ≥ z2+2r+1 = z2+2abs(r)+1

and hence, a3 ≥ a1 + 1. The latter contradicts the assumption a1 = a3.
So assume a1 < a3 which implies a3−a1 ≥ 2, since both values are even. Since a2

is even as well, we obtain a2−a1 ≥ 2 or a3−a2 ≥ 2. If a2−a1 ≥ 2, then z3−z2 > 2r+1

and so d(z2, z3) > r. If a3 − a2 ≥ 2, then z4 − z3 > 2r+1 and so d(z3, z4) > r. Both
conclusions contradict (3.8).

Case 2c: r < 0. Here we have z1 > z2 > z3 > z4 and therefore, a1 ≥ a2 ≥ a3.
Assume a1 = a3. Since d(z2, z3) = r, it holds that log(abs(z3 − z2)) ≥ abs(r)

and hence, z2 − z3 ≥ 2abs(r). The same argument shows z3 − z4 ≥ 2abs(r). So
z2 ≥ z4 + 2abs(r)+1 and hence, a1 ≥ a3 + 1. The latter contradicts the assumption
a1 = a3.

So assume a1 > a3 which implies a1 − a3 ≥ 2, since both values are even. Since
a2 is even as well, we obtain a1− a2 ≥ 2 or a2 − a3 ≥ 2. If a1 − a2 ≥ 2, then z2− z3 >
2abs(r)+1 and so d(z2, z3) < −abs(r) = r. If a2 − a3 ≥ 2, then z3 − z4 > 2abs(r)+1

and so d(z3, z4) < −abs(r) = r. Both conclusions contradict (3.8). (End of proof of
Claim 3.3)

Claim 3.4. There exists a total r ∈ PF such that L≤p
mL via r and for every x,

1. |f(r(x))| ≤ |r(x)| or
2. x ∈ S ⇔ r(x) /∈ S.

Proof. For every x, let

r(x) df= f i(x)

where i is the smallest number such that |f i+1(x)| ≤ |f i(x)| or (x ∈ S ⇔ f i(x) /∈ S).
We will prove that such i exists. Consider the following algorithm which works on
input x.

9

0 // Algorithm for function r
1 z := x
2 while (|f(z)| > |z| and (x ∈ S ⇔ z ∈ S))
3 // here |z| < |x|k + k
4 z := f(z)
5 end
6 output z

Observe that this algorithm computes the function r.
We prove the invariant in line 3, which will guarantee that the loop in the algo-

rithm halts within polynomial steps in |x|. Assume that at some point this invariant
does not hold. We consider the first time when this happens. In this case, we must
have reached line 3 before, since otherwise |x| ≥ |x|k + k which is not possible. Let z′

denote the value of variable z when line 3 was reached last time. So z = f(z′). Note
that the following inequalities hold, since otherwise the algorithm stops earlier.

|x| < |f(x)| (3.12)
|z′| < |f(z′)| (3.13)
|z| < |f(z)| (3.14)
|x| < |z′| (3.15)

Moreover,

|z′| < |x|k + k, (3.16)

since otherwise already z′ violates the invariant, which contradicts the fact that with
z we chose the earliest violation of the invariant. From (3.15) and (3.16) we obtain

t−1(|x|) ≤ t−1(|z′|) ≤ t−1(|x|k + k) = t−1(|x|) + 1. (3.17)

From (3.12) it follows that on input x, the algorithm for S stops in line 2. We see the
same for z′ and z using (3.13) and (3.14). This implies the following.

x ∈ S ⇔ x ∈ S0 (3.18)
z′ ∈ S ⇔ z′ ∈ S0 (3.19)
z ∈ S ⇔ z ∈ S0 (3.20)

Note that

x ∈ S ⇔ z′ ∈ S ⇔ z ∈ S, (3.21)

since otherwise the algorithm for r stops earlier. Together with (3.18), (3.19), and
(3.20) this shows

x ∈ S0 ⇔ z′ ∈ S0 ⇔ z ∈ S0 (3.22)

and therefore,

t−1(|x|) ≡ t−1(|z′|) ≡ t−1(|z|) (mod 2). (3.23)

Now (3.17) implies t−1(|x|) = t−1(|z′|) and we obtain

t−1(|z′|) = t−1(|x|) < t−1(|x|k + k) ≤ t−1(|z|). (3.24)
10

From (3.23) and (3.24) it follows that t−1(|z|) − t−1(|z′|) ≥ 2. Therefore, |f(z′)| >
|z′|k + k. This contradicts f ’s computation time and proves the invariant in line 3.

From the invariant we immediately obtain that every single step of the algorithm
can be carried out in time polynomial in |x|. Each execution of line 4 increases the
length of z. By our invariant, the algorithm must terminate within |x|k + k iterations
of the loop. This shows that r is total and polynomial-time computable. Since r is
defined by repeated applications of f , and since f is an autoreduction of L, we obtain
L≤p

mL via r. The statements 1 and 2 of the claim follow immediately from line 2 of
the algorithm. (End of proof of Claim 3.4)

We continue the proof of Theorem 3.1. Choose a function r according to Claim 3.4.
Define a function g by the following algorithm which works on input x. Below we will
show that g satisfies the conditions in Proposition 3.2.

0 // Algorithm for function g
1 y := r(x), m := |y|
2 if |y| < |f(y)| then return y
3 // here |y| ≥ |f(y)|
4 z := y
5 for i := 0 to 6m + 3
6 // here z = fi(y), |z| ≤ m, and for all 0 ≤ j ≤ i, |fj(y)| ≥ |fj+1(y)|
7 if |f(z)| < |f(f(z))| then
8 if (f(z) ∈ S ⇔ x ∈ S) then return z else return f(z)
9 endif
10 z := f(z)
11 next i
12 // here for all 0 ≤ j ≤ 6m+ 3, |fj(y)| ≥ |fj+1(y)|
13 z := y
14 for i := 0 to 6m + 3
15 // here z = fi(y) and |z| ≤ m
16 if z ∈ S ⇔ f(z) /∈ S then
17 if (z ∈ S ⇔ x ∈ S) then return f(z) else return z
18 endif
19 z := f(z)
20 next i
21 // this line is never reached

Claim 3.5. The statements claimed in the comments of the algorithm for g hold
true.

Proof. Clearly, the condition in line 3 holds. Observe that whenever we reach
line 6, then z = f i(y) and |z| ≥ |f(z)|. Therefore, the condition in line 6 holds. It
follows that if we reach line 12, then we must have passed line 6 for i = 6m + 3. This
shows the condition in line 12. Whenever we reach line 15 it holds that z = f i(y).
From the condition in line 12 it follows that |z| ≤ m in line 15.

Finally we argue that we do not reach line 21. Assume that we reach line 12.
By the condition in line 12, we satisfy the assumption of Claim 3.3. Therefore, there
exists j ∈ [0, 6m + 3] such that f j(y) ∈ S ⇔ f j+1(y) /∈ S. So for i = j, the condition
in line 16 is true and therefore, the algorithm stops before reaching line 21. (End of
proof of Claim 3.5)

Claim 3.6. g is a total function in PF and L≤p
mL via g.

Proof. We immediately see that g is total, since line 21 is never reached.
We argue that g ∈ PF. Recall that f and r are total functions in PF, and recall

11

that S ∈ P. So steps 1–4 are computable in polynomial time in |x|. Note that m
is polynomially bounded in |x|. By the remark in line 6, the loop 5–11 needs only
polynomial time in |x|. The remark in line 15 implies the same for the loop 14–20.
This shows g ∈ PF.

We show L≤p
mL via g. Observe that in any case the algorithm returns f j(y) for

a suitable j ≥ 0. By Claim 3.4, x ∈ L ⇔ y = r(x) ∈ L. Since f is an autoreduction
of L, we obtain x ∈ L ⇔ g(x) = f j(y) ∈ L. (End of proof of Claim 3.6)

Claim 3.7. For every x, x ∈ S ⇔ g(x) /∈ S.
Proof. Consider the computation of the algorithm for g on input x.
Case 1: The output is made in line 2. So we have |f(r(x))| > |r(x)|. From

Claim 3.4 it follows x ∈ S ⇔ g(x) = r(x) /∈ S.
Case 2: The output is made in line 8. By lines 6 and 7,

|f i(y)| ≥ |f i+1(y)| and |f i+1(y)| < |f i+2(y)|.
(Here i refers to the value of the variable i in the algorithm for g at the time when
the algorithm stops in line 8.) Therefore, if we look at the algorithm for S (page 7),
then we see that on input f i(y) the algorithm stops in step 3, while on input f i+1(y)
the algorithm stops in step 2. It follows that

f i(y) ∈ S ⇔ f i+1(y) ∈ S1 and
f i+1(y) ∈ S ⇔ f i+1(y) ∈ S0.

So z = f i(y) ∈ S ⇔ f(z) /∈ S and therefore, by line 8 of the algorithm for g,

x ∈ S ⇔ g(x) /∈ S.

Case 3: The output is made in line 17. From line 16 it follows that x ∈ S ⇔ g(x) /∈
S. (End of proof of Claim 3.7)

The Claims 3.6 and 3.7 allow the application of Proposition 3.2. Hence L is
m-mitotic. (End of proof of Theorem 3.1)

Call a set L nontrivial if ‖L‖ ≥ 2 and ‖L‖ ≥ 2.
Corollary 3.8. Every nontrivial set that is many-one complete for one of the

following complexity classes is m-mitotic.
• NP, coNP, ⊕P, PSPACE, EXP, NEXP
• any level of PH, MODPH, or the Boolean hierarchy over NP

Proof. Glaßer et al. [11] showed that all many-one complete sets of the above
classes are m-autoreducible. By Theorem 3.1, these sets are m-mitotic.

Corollary 3.9. A nontrivial set L is NP-complete if and only if L is the union
of two disjoint P-separable NP-complete sets. So unions of disjoint P-separable NP-
complete sets form exactly the class of NP-complete sets. What class is obtained
when we drop P-separability? Does this class contain a set that is not NP-complete?
In other words, is the union of disjoint NP-complete sets always NP-complete? We
leave this as an open question.

Ambos-Spies [1] defined a set A to be ω-m-mitotic if for every n ≥ 2 there exists
a partition (Q1, . . . , Qn) of Σ∗ such that each Qi is polynomial-time decidable and
the following sets are polynomial-time many-one equivalent: A, A ∩ Q1, . . . , A ∩ Qn.

Corollary 3.10. Every nontrivial infinite set that is many-one complete for a
class mentioned in Corollary 3.8 is ω-m-mitotic.

Proof. Fix a class mentioned in Corollary 3.8 and let A be a nontrivial, infinite,
many-one complete set. We need to prove that for every n ≥ 2, there exists a partition

12

(Q1, . . . , Qn) of Σ∗ such that each Qi belongs to P and the sets A, A ∩ Q1, . . . , A ∩
Qn are all polynomial-time many-one equivalent. We prove this by induction on
n. The base n = 2 is an immediate consequence of Corollary 3.8. Now assume
n ≥ 3. By induction hypothesis, there exists a partition (Q1, . . . , Qn−1) of Σ∗ such
that each Qi belongs to P and the sets A, A ∩ Q1, . . . , A ∩ Qn−1 are all polynomial-
time many-one equivalent. Since A is infinite and (Q1, . . . , Qn−1) is a partition of
Σ∗, there exists some j such that A ∩ Qj is infinite as well. Moreover, A ∩ Qj is
nontrivial and polynomial-time many-one complete. By Corollary 3.8, A ∩ Qj is m-
mitotic. So there exists S ∈ P such that A ∩ Qj , A ∩ Qj ∩ S, and A ∩ Qj ∩ S
are polynomial-time many-one equivalent. Define Q′

j = Qj ∩ S and Q′′
j = Qj ∩

S. The following polynomial-time decidable partition of Σ∗ completes the proof:
(Q1, . . . , Qj−1, Q

′
j , Q

′′
j , Qj+1, . . . , Qn−1).

Next, we note that the proof the main theorem also yields the following result.
Theorem 3.11. Every 1-tt-autoreducible set is 1-tt-mitotic.
The proof of Theorem 3.1 provides a strategy that solves the infinite graph labeling

problem defined at the beginning of this section. In particular, for every graph that
satisfies certain prerequisites there exists a polynomial-time algorithm that labels
given nodes with either + or − such that each node has a polynomial-bounded path
that leads to a node with a different label. This is made precise as follows.

Corollary 3.12. Let G = (N, E) be an infinite, loop-free, directed graph with
outdegree 1 such that there exists an f ∈ PF that computes the successor of a given
node u, i.e., (u, f(u)) ∈ E. Then there exist a polynomial p, S ∈ P, and g ∈ PF such
that for all x,

(∃i ∈ [1, p(|x|)], g(x) = f i(x)) and (x ∈ S ⇔ g(x) /∈ S).

Proof. Note that f is an m-autoreduction for L
df=Σ∗. Choose k ≥ 1 such that f

is computable in time nk + k. Now consider the implication from left to right in the
proof of Theorem 3.1. There the assumption |L| ≥ 2 is only needed at the end of the
proof when Proposition 3.2 is applied. So for L = Σ∗ the proof goes through until
Proposition 3.2 is applied. In particular, we obtain a total g ∈ PF and an S ∈ P such
that for all x,

x ∈ S ⇔ g(x) /∈ S. (3.25)

Consider the function r which is defined in the proof of Claim 3.4. From the
claim it follows that r is a total, polynomial-time computable function such that
r(x) = f i(x) for some i ≥ 0. Moreover, in the proof of the claim we show that the
algorithm for r on input x terminates within |x|k + k iterations of the loop. From the
algorithm it follows that for all x,

∃i ∈ [0, |x|k + k], r(x) = f i(x). (3.26)

Let q be a polynomial bounding the computation time for r. Now consider the
algorithm for g in the proof of Theorem 3.1. By Claim 3.5, the statements in the
comments of this algorithm hold true. In particular, at any time it holds that z = f i(y)
for some i ∈ [0, 6m + 4] where y = r(x) and m = |y| ≤ q(|x|). If the algorithm for
g stops, then it returns either z or f(z). So g(x) = f i(y) for some i ∈ [0, 6m + 5] ⊆
[0, 6q(|x|) + 5]. Together with (3.26) this shows

∃i ∈ [0, p(|x|)], g(x) = f i(x),
13

where p(n) df=6q(n) + 5 + nk + k. By (3.25), g(x) �= x which implies

∃i ∈ [1, p(|x|)], g(x) = f i(x). (3.27)

The corollary follows from (3.25) and (3.27).

4. 3-tt-Autoreducibility does not imply Weak T-Mitoticity. In this sec-
tion we prove a theorem that shows in a strong way that T-autoreducible does not
imply weakly T-mitotic. Hence, our main theorem cannot be generalized.

Lemma 4.1. Let l, m ≥ 0 and let k ≥ (l + 2)2
m

. If Q1, . . . , Qk are sets of cardi-
nality ≤ l and if n1, . . . , nk are pairwise different numbers, then there exist pairwise
different indices i1, . . . , im such that for all s, t ∈ [1, m],

s �= t ⇒ nis /∈ Qit .

Proof. The proof is by induction on n = l + m such that the induction base
covers all cases where l = 0 or m = 0. For these cases the lemma holds trivially. In
particular, this covers the case n = 1.

Assume there exists n ≥ 1 such that the lemma holds for all l and m such that
l = 0 or m = 0 or l + m ≤ n. Now we prove it for l and m such that l ≥ 1, m ≥ 1,
and l + m = n + 1.

Case 1: There exist at least k −√
k − l − 1 indices j > 1 such that n1 ∈ Qj . Let

k′ = �k − √
k − l − 1� and choose pairwise different indices j1, . . . , jk′ such that for

all i, ji �= 1 and n1 ∈ Qji . Let l′ = l − 1 and let Ri = Qji − {n1} and ri = nji for
1 ≤ i ≤ k′. Observe l′ ≥ 0 and m ≥ 1. We estimate k′ as follows.

k′ ≥ k −
√

k − l − 1
≥ (l + 2)2

m −
√

(l + 2)2m − l − 1 (since (a ≥ b ⇒ a −√
a ≥ b −√

b) for a, b ≥ 1)
≥ (l′ + 2)2

m

(follows from (4.2) in the estimation below)(4.1)

For (4.1) the following estimation is needed.

l + 1 ≥ l + 1
(l + 2)2

m−1−1 · (l + 2 − 1) ≥ (l + 1)2
m−1−1 · (l + 1)

(l + 2)2
m−1 − 1 ≥ (l + 1)2

m−1
(since (l + 2)2

m−1−1 ≥ 1)

(l + 2)2
m−1 · [(l + 2)2

m−1 − 1
] ≥ (l + 2)2

m−1 · [(l + 1)2
m−1]

(l + 2)2
m − (l + 2)2

m−1 ≥ (l + 1 + 1) · (l + 1)2
m−1−1 · [(l + 1)2

m−1]

(l + 2)2
m −

√
(l + 2)2m ≥ (l + 1)2

m

+ (l + 1)2
m−1

(l + 2)2
m −

√
(l + 2)2m − l − 1 ≥ (l′ + 2)2

m

(since (l + 1)2
m−1 ≥ l + 1)(4.2)

Note that l′ + m = n. Also, R1, . . . , Rk′ are sets of cardinality ≤ l′ and r1, . . . , rk′

are pairwise different numbers. By induction hypothesis there exist pairwise different
indices i1, . . . , im such that for all s, t ∈ [1, m], (s �= t ⇒ ris /∈ Rit). For all s ∈ [1, m],
ris �= n1. Therefore, for all s, t ∈ [1, m],

(s �= t ⇒ ris /∈ Rit ∪ {n1})
and hence

(s �= t ⇒ njis
/∈ Qjit

).
14

So the lemma is satisfied by the indices ji1 , ji2 , . . . , jim .
Case 2: There exist less than k −√

k − l − 1 indices j > 1 such that n1 ∈ Qj . So
there exist more than

√
k + l indices j > 1 such that n1 /∈ Qj . Since ‖Q1‖ ≤ l, there

exist more than
√

k indices j > 1 such that n1 /∈ Qj and nj /∈ Q1. Hence there exist
at least k′ df=�√k� such indices. So we can choose pairwise different indices j1, . . . , jk′

such that for all i,

ji �= 1 ∧ n1 /∈ Qji ∧ nji /∈ Q1. (4.3)

Let m′ = m − 1 and let Ri = Qji and ri = nji for 1 ≤ i ≤ k′. Note that l ≥ 1 and
m′ ≥ 0. Observe that

k′ ≥
√

k ≥
√

(l + 2)2m = (l + 2)2
m′

and l + m′ = n. Also, R1, . . . , Rk′ are sets of cardinality ≤ l and r1, . . . , rk′ are
pairwise different numbers. So by induction hypothesis there exist pairwise different
indices i1, . . . , im′ such that for all s, t ∈ [1, m′],

s �= t ⇒ ris /∈ Rit

and hence

s �= t ⇒ njis
/∈ Qjit

.

From (4.3) it follows that the lemma is satisfied by the indices 1, ji1 , ji2 , . . . , jim′ .
Theorem 4.2. There exists L ∈ SPARSE ∩ EXP such that
• L is 3-tt-autoreducible, but
• L is not weakly T-mitotic.

Proof. Define a tower function by t(0) = 4 and

t(n + 1) = 2222
2t(n)

.

For any word s, let W (s) = {s00, s01, s10, s11}. We will define L such that it satisfies
the following:

(i) If w ∈ L, then there exists n such that |w| = t(n).
(ii) For all n and all s ∈ Σt(n)−2, the set W (s) ∩ L either is empty or contains

exactly two elements.
It is easy to see that such an L is 3-tt-autoreducible: On input w, determine n such
that |w| = t(n). If such n does not exist, then reject. Otherwise, let s be w’s prefix
of length |w| − 2. Accept if and only if the set L ∩ (W (s) − {w}) contains an odd
number of elements. This is a 3-tt-autoreduction.

We turn to the construction of L. Let M1, M2, . . . be an enumeration of deter-
ministic, polynomial-time-bounded Turing machines such that the running time of
Mi is ni + i. Let 〈·, ·〉 be a pairing function such that 〈x, y〉 > x + y. We construct L
stagewise such that in stage n we determine which of the words of length t(n) belong
to L. In other words, at stage n we define a set Wn ⊆ Σt(n), and finally we define L
to be the union of all Wn.

We start by defining W0 = ∅. Suppose we are at stage n > 0. Let m = t(n) and
determine i and j such that n = 〈i, j〉. If such i and j do not exist, then let Wn = ∅
and go to stage n + 1. Otherwise, i and j exist. In particular, i + j < log log m.
Let O

df=W0 ∪ · · · ∪ Wn−1 be the part of L that has been constructed so far. Let
15

O1, O2, . . . , Ol be the list of all subsets of O (lexicographically ordered according to
their characteristic sequences). Since O ⊆ Σ≤t(n−1) we obtain ‖O‖ ≤ 2t(n−1)+1.
Therefore,

l ≤ 22t(n−1)+1 ≤ 222t(n−1)

= log log t(n) = log log m. (4.4)

We give some intuition for the claim below. If L is weakly T-mitotic, then in
particular, there exists a partition L = L1 ∪ L2 such that L2≤p

TL1 via some machine
Mi. Hence O ∩L1 must appear (say as Ok) in our list of subsets of O. The following
claim makes sure that we can find a list of words s1, . . . , sl of length m− 2 such that
for all k ∈ [1, l] it holds that if the partition of L is such that O ∩ L1 = Ok, then Mi

on input of a string from {sk00, sk01, sk10, sk11} does not query the oracle for words
from W (sr) if r �= k. Hence, if Mi queries a word of length m that does not belong
to {sk00, sk01, sk10, sk11}, then it always gets a no answer. So the following is the
only information about the partition of L that can be exploited by Mi:

• the partition of O = Σ<t(n) ∩ L
• the partition of W (sk) ∩ L

In particular, Mi cannot exploit information about the partition of W (sr) ∩ L for
r �= k. This independence of Mi makes our diagonalization possible.

Claim 4.3. There exist pairwise different words s1, . . . , sl ∈ Σm−2 such that for
all k, r ∈ [1, l], k �= r, and all y ∈ W (sk), neither MO−Ok

i (y) nor MOk

j (y) query the
oracle for words in W (sr).

Proof. For s ∈ Σm−2, let

Qs
df={s′ ∈ Σm−2

∣∣∃k ∈ [1, l], ∃y ∈ W (s), ∃q ∈ W (s′) such that q is
queried by MO−Ok

i (y) or MOk
j (y)}.

Observe that for every s ∈ Σm−2,

‖Qs‖ ≤ 4l[(mi + i) + (mj + j)]
≤ 4(log log m)[mlog log m + log log m]
≤ 8(log log m)mlog log m

≤ m2 log log m

≤ 2log2 m − 2. (4.5)

We identify numbers in [1, 2m−2] with strings in Σm−2. Considered in this way,
each Qs is a subset of [1, 2m−2]. By (4.5), Q1, Q2, . . . , Q2m−2 are sets of cardinality
≤ 2log2 m − 2. Clearly, 1, 2, . . . , 2m−2 are pairwise different numbers. By (4.4),

2m−2 ≥ (2log2 m)log m ≥ (2log2 m)2
l

.

Therefore, we can apply Lemma 4.1. We obtain indices s1, . . . , sl such that for all
k, r ∈ [1, l],

r �= k ⇒ sr /∈ Qsk
. (4.6)

Assume there exist k, r ∈ [1, l], k �= r, and y ∈ W (sk) such that some q ∈ W (sr)
is queried by MO−Ok

i (y) or MOk

j (y). Hence sr ∈ Qsk
. This contradicts (4.6) and

finishes the proof of Claim 4.3.
16

Let s1, . . . , sl ∈ Σm−2 be the words assured by Claim 4.3. We define Wn such
that for every k ∈ [1, l] we define a set Vk ⊆ W (sk), and finally we define Wn to be
the union of all Vk. The cardinality of each Vk is either 0 or 2.

Fix some k ∈ [1, l] and let Qk
df= O − Ok.

Case 1: MQk

i (sk00) accepts or MOk

j (sk00) accepts. Define Vk
df= ∅.

Case 2: MQk

i (sk00) and MOk
j (sk00) reject.

Case 2a: For all y ∈ {sk01, sk10, sk11}, M
Qk∪{sk00}
i (y) rejects. Define Vk as a

subset of W (sk) such that |Vk| = 2, sk00 ∈ Vk, and

sk01 ∈ Vk ⇔ M
Ok∪{sk00}
j (sk01) rejects.

Case 2b: For all y ∈ {sk01, sk10, sk11}, M
Ok∪{sk00}
j (y) rejects. Define Vk as a

subset of W (sk) such that |Vk| = 2, sk00 ∈ Vk, and

sk01 ∈ Vk ⇔ M
Qk∪{sk00}
i (sk01) rejects.

Case 2c: ∃y ∈ {sk01, sk10, sk11} and ∃z ∈ {sk01, sk10, sk11} such that both,
M

Qk∪{sk00}
i (y) and M

Ok∪{sk00}
j (z) accept. Choose v ∈ W (sk) − {sk00, y, z} and

define Vk
df={sk00, v}.

This finishes the construction of Vk. We define Wn
df=

⋃
k∈[1,l] Vk. Finally, L is

defined as the union of all Wn.
Note that by the construction, Wn ⊆ Σt(n) which shows (i). Observe that the

construction also ensures (ii). We argue for L ∈ EXP: Since l ≤ log log m, there
are not more than 2m log log m possibilities to choose the strings s1, . . . , sl. For each
such possibility we have to simulate O(l2) computations Mi(y) and Mj(y). This
can be done in exponential time in m. For the definition of each Vk we have to
simulate a constant number of computations Mi(y) and Mj(y). This shows that L is
printable in exponential time. Hence L ∈ EXP. From the construction it follows that
L ∩ Σm ≤ 2l ≤ 2 log log m. In particular, L ∈ SPARSE. It remains to show that L is
not weakly T-mitotic.

Assume L is weakly T-mitotic. So L can be partitioned into L = L1 ∪ L2 (a
disjoint union) such that

(iii) L1≤p
TL2 via machine Mi and

(iv) L2≤p
TL1 via machine Mj .

Let n = 〈i, j〉, m = t(n), and O = W0 ∪ · · · ∪ Wn−1, i.e., O = L ∩ Σ<t(n). Let
O1, O2, . . . , Ol be the list of all subsets of O (again lexicographically ordered according
to their characteristic sequences). Let s1, . . . , sl and V1, . . . , Vl be as in the definition
of Wn. Choose k ∈ [1, l] such that L1 ∩ Σ<t(n) = Ok. Let Qk = O − Ok. So
L2 ∩ Σ<t(n) = Qk. Clearly, Vk must be defined according to one of the cases above.

Assume Vk was defined according to Case 1: So Vk = ∅ and in particular,
sk00 /∈ L1. Without loss of generality assume that MQk

i (sk00) accepts. ML2
i (sk00)

has running time mi + i < mm + m < t(n + 1). Hence ML2
i (sk00) behaves like

ML2∩Σ≤t(n)

i (sk00). Since sk was chosen according to Claim 4.3, for all r ∈ [1, l]−{k},
MQk

i (sk00) does not query the oracle for words in W (sr). Note that W (sk) ∩ L =
Vk = ∅. Therefore, ML2

i (sk00) behaves like ML2∩Σ<t(n)

i (sk00) which is the same as
MQk

i (sk00). The latter accepts, but sk00 /∈ L1. This contradicts (iii).
Assume Vk was defined according to Case 2: So Vk = {sk00, u} where u ∈

{sk01, sk10, sk11}. Assume Vk ⊆ L1. Then as above, Mi(sk00) with oracle L2 be-
haves the same way as Mi(sk00) with oracle Qk. The latter rejects, because we are in

17

Case 2. So sk00 /∈ L1 which contradicts our assumption. Analogously the assumption
Vk ⊆ L2 implies a contradiction. Therefore,

either (sk00 ∈ L1 ∧ u ∈ L2) or (u ∈ L1 ∧ sk00 ∈ L2). (4.7)

Assume Vk was defined according to Case 2a: So for all y ∈ {sk01, sk10, sk11},
M

Qk∪{sk00}
i (y) rejects. In particular, M

Qk∪{sk00}
i (u) rejects. Assume u ∈ L1 and

sk00 ∈ L2. So ML2
i (u) rejects, since it behaves the same way as M

Qk∪{sk00}
i (u). By

(iii) this contradicts u ∈ L1. Therefore, by (4.7) we must have sk00 ∈ L1 and u ∈ L2.
In Case 2a, Vk is defined such that

sk01 ∈ Vk ⇔ M
Ok∪{sk00}
j (sk01) rejects.

Note that M
Ok∪{sk00}
j (sk01) and ML1

j (sk01) behave the same way. Hence,

sk01 ∈ Vk ⇔ ML1
j (sk01) rejects.

If sk01 ∈ Vk, then u = sk01 and hence ML1
j (u) rejects. This contradicts (iv). Other-

wise, if sk01 /∈ Vk, then ML1
j (sk01) accepts and hence u = sk01 /∈ Vk. This contradicts

the assumption u ∈ Vk.
Assume Vk was defined according to Case 2b: Here we obtain contradictions

analogously to Case 2a.
Assume Vk was defined according to Case 2c: Choose y and z such that both,

M
Qk∪{sk00}
i (y) and M

Ok∪{sk00}
j (z) accept. So u ∈ {sk01, sk10, sk11}−{y, z}. Assume

sk00 ∈ L2. Hence ML2
i (y) and M

Qk∪{sk00}
i (y) behave the same way showing that

ML2
i (y) accepts. So y ∈ L1 which contradicts the definition of Vk. Assume sk00 ∈ L1.

Hence ML1
j (z) and M

Ok∪{sk00}
j (z) behave the same way showing that ML1

j (z) accepts.
So z ∈ L2 which contradicts the definition of Vk.

This finishes Case 2. From the fact that all possible cases led to contradictions,
we obtain that the initial assumption was false. Hence, L is not weakly T-mitotic.

Thus there exist 3-tt-autoreducible sets that are not even weakly T-mitotic.3 By
Theorem 3.11, every 1-tt-autoreducible set is 1-tt-mitotic.

5. Remarks. One might wonder whether Theorem 3.1 still holds if one re-
places polynomial-time many-one reductions by logarithmic-space many-one reduc-
tions. However, in this logspace setting, the proof of Theorem 3.1 does not go through,
since the logspace analog of Claim 3.6 fails. More precisely, we cannot argue that the
function g is computable in logspace. Roughly speaking, g is defined as a polynomial
superposition of f . This means that in order to compute g, we have to iterate f
a polynomial number of times. If f is polynomial-time computable and not length
increasing (recall that the length-increasing case is already treated by the function
r), then g is computable in polynomial time. In contrast, for a logspace computable
f , we cannot iterate f for more than a constant number of times. So in this case, g
is not logspace computable. The logspace analog of Theorem 3.1 is indeed false in a
relativized world [10].

REFERENCES

3In a forthcoming paper we improve this result to 2-tt-autoreducible sets.

18

[1] K. Ambos-Spies, P-mitotic sets, in Logic and Machines, Lecture Notes in Computer Science
177, E. Börger, G. Hasenjäger, and D. Roding, eds., Springer-Verlag, 1984, pp. 1–23.

[2] R. Beigel and J. Feigenbaum, On being incoherent without being very hard, Computational
Complexity, 2 (1992), pp. 1–17.

[3] L. Berman and J. Hartmanis, On isomorphism and density of NP and other complete sets,
SIAM Journal on Computing, 6 (1977), pp. 305–322.

[4] H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet, Separating complexity
classes using autoreducibility, SIAM Journal on Computing, 29 (2000), pp. 1497–1520.

[5] H. Buhrman, A. Hoene, and L. Torenvliet, Splittings, robustness, and structure of complete
sets, SIAM Journal on Computing, 27 (1998), pp. 637–653.

[6] H. Buhrman and L. Torenvliet, On the structure of complete sets, in Proceedings 9th Struc-
ture in Complexity Theory, 1994, pp. 118–133.

[7] , Separating complexity classes using structural properties, in Proceedings of the 19th
IEEE Conference on Computational Complexity, 2004, pp. 130–138.

[8] , A Post’s program for complexity theory, Bulletin of the EATCS, 85 (2005), pp. 41–51.
[9] R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel list

ranking, Information and Control, 70 (1986), pp. 32–53.
[10] C. Glaßer, Logspace mitoticity, Tech. Report 400, Inst. für Informatik, Univ. Würzburg, 2007.
[11] C. Glaßer, M. Ogihara, A. Pavan, A. L. Selman, and L. Zhang, Autoreducibility, mitotic-

ity, and immunity, in Proceedings 30th International Symposium on Mathematical Foun-
dations of Computer Science, vol. 3618 of Lecture Notes in Computer Science, Springer-
Verlag, 2005, pp. 387–398.

[12] , Autoreducibility, mitoticity, and immunity, Tech. Report TR05-11, ECCC, 2005.
[13] R. Karp and R. Lipton, Turing machines that take advice, L’enseignement mathématique,

28 (1982), pp. 191–209.
[14] A. H. Lachlan, The priority method I, Zeitschrift für Mathematische Logik und Grundlagen

der Mathematik, 13 (1967), pp. 1–10.
[15] R. E. Ladner, A completely mitotic nonrecursive r.e. degree, Trans. American Mathematical

Society, 184 (1973), pp. 479–507.
[16] , Mitotic recursively enumerable sets, Journal of Symbolic Logic, 38 (1973), pp. 199–211.
[17] S. Mahaney, Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis,

Journal of Computer and Systems Sciences, 25 (1982), pp. 130–143.
[18] M. Ogiwara and O. Watanabe, On polynomial-time bounded truth-table reducibility of NP

sets to sparse sets, SIAM Journal of Computing, 20 (1991), pp. 471–483.
[19] B. Trakhtenbrot, On autoreducibility, Dokl. Akad. Nauk SSSR, 192 (1970). Translation in

Soviet Math. Dokl. 11(3): 814– 817, 1970.
[20] A. Yao, Coherent functions and program checkers, in Proceedings of the 22n Annual Sympo-

sium on Theory of Computing, 1990, pp. 89–94.

19

