
Redundancy in Complete Sets�

Christian Glaßer1, A. Pavan2��, Alan L. Selman3� � �, and Liyu Zhang3

1 Universität Würzburg, glasser@informatik.uni-wuerzburg.de
2 Iowa State University, pavan@cs.iastate.edu

3 University at Buffalo, {selman,lzhang7}@cse.buffalo.edu

Abstract. We show that a set is m-autoreducible if and only if it is m-
mitotic. This solves a long standing open question in a surprising way.
As a consequence of this unconditional result and recent work by Glaßer
et al. [12], complete sets for all of the following complexity classes are
m-mitotic: NP, coNP, ⊕P, PSPACE, and NEXP, as well as all levels of
PH, MODPH, and the Boolean hierarchy over NP. In the cases of NP,
PSPACE, NEXP, and PH, this at once answers several well-studied open
questions. These results tell us that complete sets share a redundancy
that was not known before. In particular, every NP-complete set A splits
into two NP-complete sets A1 and A2.

We disprove the equivalence between autoreducibility and mitoticity for
all polynomial-time-bounded reducibilities between 3-tt-reducibility and
Turing-reducibility: There exists a sparse set in EXP that is polynomial-
time 3-tt-autoreducible, but not weakly polynomial-time T-mitotic. In
particular, polynomial-time T-autoreducibility does not imply polynomial-
time weak T-mitoticity, which solves an open question by Buhrman and
Torenvliet.

We generalize autoreducibility to define poly-autoreducibility and give
evidence that NP-complete sets are poly-autoreducible.

1 Introduction

It is a well known observation that for many interesting complexity classes, all
known complete sets contain “redundant” information. For example, consider
SAT. Given a boolean formula φ one can produce two different formulas φ1 and
φ2 such that the question of whether φ is satisfiable or not is equivalent to the
question of whether φ1 or φ2 are satisfiable. Thus φ1 and φ2 contain information
about φ. Another example is the Permanent. Given a matrix M , we can reduce
the computation of the permanent of M to computing the permanent of M +R,
M + 2R, . . . , M + nR, where R is a randomly chosen matrix. Thus information
about the permanent of M is contained in a few random looking matrices. We
interpret this as “SAT and Permanent contain redundant information”.

� A full version of this paper is available as ECCC Technical Report TR05-068.
�� Research supported in part by NSF grants CCCF-0430807.

� � � Research supported in part by NSF grant CCR-0307077.

In this paper we study the question of how much redundancy is contained in
complete sets of complexity classes. There are several ways to measure “redun-
dancy”. We focus on the two notions autoreducibility and mitoticity.

Trakhtenbrot [18] defined a set A to be autoreducible if there is an oracle
Turing machine M such that A = L(MA) and M on input x never queries x.
For complexity classes like NP and PSPACE refined measures are needed. In
this spirit, Ambos-Spies [2] defined the notion of polynomial-time autoreducibil-
ity and the more restricted form m-autoreducibility. A set A is polynomial-time
autoreducible if it is autoreducible via a oracle Turing machine that runs in
polynomial-time. A is m-autoreducible if A is polynomial-time many-one re-
ducible to A via a function f such that f(x) �= x for every x. Both notions
demand information contained in A(x) to be present among strings different
from x. In the case of m-autoreducibility, the redundancy in A is even more
apparent—if a set A is m-autoreducible, then x and f(x) have the same infor-
mation about A.

A stronger form of redundancy is described by the notion of mitoticity which
was introduced by Ladner [15] for the recursive setting and by Ambos-Spies [2]
for the polynomial-time setting. A set A is m-mitotic if there is a set S ∈ P such
that A, A ∩ S, and A ∩ S are polynomial-time many-one equivalent. Thus if a
set is m-mitotic, then A can be split into two parts such that both parts have
exactly the same information as the original set has.

Ambos-Spies [2] showed that if a set is m-mitotic, then it is m-autoreducible
and he raised the question of whether the converse holds. In this paper we re-
solve this question and show that every m-autoreducible set is m-mitotic. This is
our main result. Since its proof is very involved, we present our main idea with
help of a simplified graph problem which will be described in Section 3. This
simplification drops many of the important details from our formal proof, but
still captures the spirt of the core problem. Our main result is all the more sur-
prising, because it is known [2] that polynomial-time T-autoreducibility does not
imply polynomial-time T-mitoticity. We improve this and disprove the equiva-
lence between autoreducibility and mitoticity for all polynomial-time-bounded
reducibilities between 3-tt-reducibility and Turing-reducibility: There exists a
sparse set in EXP that is polynomial-time 3-tt-autoreducible, but not weakly
polynomial-time T-mitotic. In particular, polynomial-time T-autoreducible does
not imply polynomial-time weakly T-mitotic. This result settles another open
question raised by Buhrman and Torenvliet [9].

Our main result relates local redundancy to global redundancy in the fol-
lowing sense. If a set A is m-autoreducible, then x and f(x) contain the same
information about A. This can be viewed as local redundancy. Whereas if A is
m-mitotic, then A can be split into two sets B and C such that A, B, and C
are polynomial-time many-one equivalent. Thus the sets B and C have exactly
the same information as the original set A. This can be viewed as global redun-
dancy in A. Our main result states that local redundancy is the same as global
redundancy.

As a consequence of this result and recent work of Glaßer et al. [13, 12], we can
show that all complete sets for many interesting classes such as NP, PSPACE,
NEXP, and levels of PH are m-mitotic. Thus they all contain redundant in-
formation in a strong sense. This resolves several long standing open questions
raised by Ambos-Spies [2], Buhrman, Hoene, and Torenvliet [8], and Buhrman
and Torenvliet [9].

Our result can also be viewed as a step towards understanding the isomor-
phism conjecture [5]. This conjecture states that all NP-complete sets are iso-
morphic to each other. In spite of several years of research, we do not have any
concrete evidence either in support or against the isomorphism conjecture4. It
is easy to see that if the isomorphism conjecture holds for classes such as NP,
PSPACE, and EXP, then complete sets for these classes are m-autoreducible as
well as m-mitotic. Given our current inability to make progress about the iso-
morphism conjecture, the next best thing we can hope for is to make progress on
statements that the isomorphism conjecture implies. We note that this is not an
entirely new approach. For example, if the isomorphism conjecture is true, then
NP-complete sets cannot be sparse. This motivated researchers to consider the
question of whether complete sets for NP can be sparse. This line of research led
to the beautiful results of Mahaney [16] and Ogiwara and Watanabe [17] who
showed that complete sets for NP cannot be sparse unless P = NP. Our results
show that another consequence of isomorphism, namely “NP-complete sets are
m-mitotic” holds. Note that this is an unconditional result.

Buhrman et al. [7] and Buhrman and Torenvliet [10, 11] argue that it is
critical to study the notions of autoreducibility and mitoticity. They showed
that resolving questions regarding autoreducibility of complete sets leads to un-
conditional separation results. For example, consider the question of whether
truth-table complete sets for PSPACE are non-adaptive autoreducible. An af-
firmative answer separates NP from NL, while a negative answer separates the
polynomial-time hierarchy from PSPACE. They argue that this approach does
not have the curse of relativization and is worth pursuing. We refer the reader
to the recent survey by Buhrman and Torenvliet [11] for more details.

In Section 4, we extend the notion of autoreducibility and define poly-autored-
ucibility. A motivation for this is to understand the isomorphism conjecture and
the notion of paddability. Recall that the isomorphism conjecture is true if and
only if all NP-complete sets are paddable. Paddability implies the following: If
L is paddable, then given x and a polynomial p, we can produce p(|x|) distinct
strings such that if x is in L, then all these strings are in L and if x is not
in L, then none of these strings are in L. Autoreducibility implies that given
x we can produce a single string y different from x such that L(x) = L(y).
A natural question that arises is whether we can produce more strings whose
membership in L is the same as the membership of x in L. This leads us to the
notion of f -autoreducibility: A set L is f -autoreducible, if there is a polynomial-
time algorithm that on input x outputs f(|x|) distinct strings (different from x)

4 It is currently believed that if one-way functions exist, then the isomorphism con-
jecture is false. However, we do not have a proof of this.

whose membership in L is the same as the membership of x in L. It is obvious
that paddability implies poly-autoreducibility. The question of whether “NP
complete sets are poly-autoreducible” is weaker than the question of whether
“NP-complete sets are paddable.”

We provide evidence for poly-autoreducibility of NP-complete sets. We show
that if one-way permutations exist, then NP-complete sets are log-autoreducible.
Moreover, if one-way permutations and quick pseudo-random generators exist,
then NP-complete sets are poly-autoreducible. We also show that if NP-complete
sets are poly-autoreducible, then they have infinite subsets that can be decided
in linear-exponential time. A complete version of this paper can be found at
ECCC [14].

1.1 Previous Work

The question of whether complete sets for various classes are autoreducible has
been studied extensively [19, 4, 7]. Beigel and Feigenbaum [4] showed that Tur-
ing complete sets for the classes that form the polynomial hierarchy, ΣP

i , ΠP
i ,

and ∆P
i , are Turing autoreducible. Thus, all Turing complete sets for NP are

Turing autoreducible. Buhrman et al. [7] showed that Turing complete sets for
EXP and ∆EXP

i are autoreducible, whereas there exists a Turing complete set for
EESPACE that is not Turing auto-reducible. Regarding NP, Buhrman et al. [7]
showed that truth-table complete sets for NP are probabilistic truth-table au-
toreducible. Recently, Glaßer et al. [13, 12] showed that complete sets for classes
such as NP, PSPACE, ΣP

i are m-autoreducible.
Buhrman, Hoene, and Torenvliet [8] showed that EXP complete sets are

weakly many-one mitotic. This result was recently improved independently by
Kurtz [11] and Glaßer et al. [13, 12]. Buhrman and Torenvliet [11] observed that
Kurtz’ proof can be extended to show that 2-tt complete sets for EXP are 2-tt
mitotic. This cannot be extended to 3-tt reductions: There exist 3-tt complete
sets for EXP that are not btt-autoreducible and hence not btt-mitotic [6]. Glaßer
et al. also showed that NEXP complete sets are weakly m-mitotic and PSPACE-
complete sets are weak Turing-mitotic.

2 Preliminaries

We use standard notation and assume familiarity with standard resource-bounded
reductions. We consider words in lexicographic order. All used reductions are
polynomial-time computable.

Definition 1 ([2]). A set A is polynomially T-autoreducible (T-autoreducible,
for short) if there exists a polynomial-time-bounded oracle Turing machine M
such that A = L(MA) and for all x, M on input x never queries x. A set
A is polynomially m-autoreducible (m-autoreducible, for short) if A≤p

mA via a
reduction function f such that for all x, f(x) �= x.

Definition 2 ([2]). A recursive set A is polynomial-time T-mitotic (T-mitotic,
for short) if there exists a set B ∈ P such that A ≡p

T A ∩ B ≡p
T A ∩ B. A is

polynomial-time m-mitotic (m-mitotic, for short) if there exists a set B ∈ P
such that A ≡p

m A ∩ B ≡p
m A ∩ B.

Definition 3 ([2]). A recursive set A is polynomial-time weakly T-mitotic
(weakly T-mitotic, for short) if there exist disjoint sets A0 and A1 such that
A0 ∪ A1 = A, and A ≡p

T A0 ≡p
T A1. A is polynomial-time weakly m-mitotic

(weakly m-mitotic, for short) if there exist disjoint sets A0 and A1 such that
A0 ∪ A1 = A, and A ≡p

m A0 ≡p
m A1.

Definition 4. Let f be a function from N to N. A set L is f -autoreducible, if
there is a polynomial-time algorithm A that on input x outputs y1, y2, · · · , ym

such that f(|x|) = m, if x ∈ L, then {y1, y2, · · · , ym} ⊆ L, and if x /∈ L, then
{y1, y2, · · · , ym} ∩ L = ∅. A set is poly-autoreducible, if it is nk-autoreducible
for every k ≥ 1.

A language is DTIME(T (n))-complex if L does not belong to DTIME(T (n))
almost everywhere; that is, every Turing machine M that accepts L runs in time
greater than T (|x|), for all but finitely many words x. A language L is immune
to a complexity class C, or C-immune, if L is infinite and no infinite subset of
L belongs to C. A language L is bi-immune to a complexity class C, or C-bi-
immune, if both L and L are C-immune. Balcázar and Schöning [3] proved that
for every time-constructible function T , L is DTIME(T (n))-complex if and only
if L is bi-immune to DTIME(T (n)).

3 m-Autoreducibility equals m-Mitoticity

It is easy to see that if a nontrivial language L is m-mitotic, then it is m-
autoreducible. If L is m-mitotic, then there is a set S ∈ P such that L∩S ≤p

m L∩S
via some f and L ∩ S ≤p

m L ∩ S via some g. On input x, the m-autoreduction
for L works as follows: If x ∈ S and f(x) /∈ S, then output f(x). If x /∈ S and
g(x) ∈ S, then output g(x). Otherwise, output a fixed element from L − {x}.

So m-mitoticity implies m-autoreducibility. The main result of this paper
shows that surprisingly the converse holds true as well, i.e., m-mitoticity and
m-autoreducibility are equivalent notions.

Theorem 1. Let L be any set such that |L| ≥ 2. L is m-autoreducible if and
only if L is m-mitotic.

We mention the main ideas and the intuition behind the proof and describe
the combinatorial core of the problem.

Assume that L is m-autoreducible via reduction function f . Given x, the
repeated application of f yields a sequence of words x, f(x), f(f(x)), . . ., which
we call the trajectory of x. These trajectories either are infinite or end in a cycle
of length at least 2. Note that as f is an autoreduction, x �= f(x).

At first glance it seems that m-mitoticity can be easily established by the
following idea: In every trajectory, label the words at even positions with + and
all other words with −. Define S to be the set of strings whose label is +. With
this ‘definition’ of S it seems that f reduces L∩ S to L∩ S and L∩ S to L∩ S.

However, this labeling strategy has at least two problems. First, it is not
clear that S ∈ P; because given a string y, we have to compute the parity of the
position of y in a trajectory. As trajectories can be of exponential length, this
might take exponential time. The second and more fundamental problem is the
following: The labeling generated above is inconsistent and not well defined. For
example, let f(x) = y. To label y which trajectory should we use? The trajectory
of x or the trajectory of y? If we use trajectory of x, y gets a label of +, whereas
if we use the trajectory of y, then it gets a label of −. Thus S is not well defined
and so this idea does not work. It fails because the labeling strategy is a global
strategy. To label a string we have to consider all the trajectories in which x
occurs. Every single x gives rise to a labeling of possibly infinitely many words,
and these labelings may overlap in an inconsistent way.

We resolve this by using a local labeling strategy. More precisely, we compute a
label for a given x just by looking at the neighboring values x, f(x), and f(f(x)).
It is immediately clear that such a strategy is well-defined and therefore defines
a consistent labeling. We also should guarantee that this local strategy strictly
alternates labels, i.e., x gets + if and only if f(x) gets −. Such an alternation of
labels would help us to establish the m-mitoticity of L.

Thus our goal will be to find a local labeling strategy that has a nice al-
ternation behavior. However, we settle for something less. Instead of requiring
that the labels strictly alternate, we only require that given x, at least one of
f(x), f(f(x)), · · · , fm(x) gets a label that is different from the label of x, where
m is polynomially bounded in the length of x. This suffices to show m-mitoticity.

The most difficult part in our proof is to show that there exists a local labeling
strategy that has this weaker alternation property.

We now formulate the core underlying problem. To keep this proof sketch
simpler, we make several assumptions and ignore several technical but important
details. If we assume (for simplicity) that on strings x /∈ 1∗ the autoreduction
is length preserving such that f(x) > x, then we arrive at the following graph
labeling problem.

Core Problem: Let Gn be a directed graph with 2n vertices such that every
string of length n is a vertex of Gn. Assume that 1n is a sink, that nodes u �= 1n

have outdegree 1, and that u < v for edges (u, v). For u �= 1n let s(u) denote u’s
unique successor, i.e., s(u) = v if (u, v) is an edge. Find a strategy that labels
each node with either + or − such that:

(i) Given a node u, its label can be computed in polynomial time in n.
(ii) There exists a polynomial p such that for every node u, at least one of the

nodes s(u), s(s(u)), . . . , sp(n)(u) gets a label that is different from the label
of u.

We exhibit a labeling strategy with these properties. To define this labeling,
we use the following distance function: d(x, y) df=
log |y − x|� (our formal proof

uses a variant of this function). The core problem is solved by the following local
strategy.

0 // Strategy for labeling node x
1 let y = s(x) and z = s(y).
2 if d(x, y) > d(y, z) then output −
3 if d(x, y) < d(y, z) then output +
4 r := d(x, y)
5 output + iff
x/2r+1� is even

Clearly, this labeling strategy satisfies condition (i). We give a sketch of the
proof that it also satisfies condition (ii). Define m = 5n and let u1, u2, . . . , um

be a path in the graph. It suffices to show that not all the nodes u1, u2, . . . , um

obtain the same label. Assume that this does not hold, say all these nodes get
label +. So no output is made in line 2 and therefore, the distances d(ui, ui+1)
do not decrease. Note that the distance function maps to natural numbers. If we
have more than n increases, then the distance between um−1 and um is bigger
than n. Therefore, um − um−1 > 2n+1, which is impossible for words of length
n. So along the path u1, u2, . . . , um there exist at least m − n = 4n positions
where the distance stays the same. By a pigeon hole argument there exist four
consecutive such positions, i.e., nodes v = ui, w = ui+1, x = ui+2, y = ui+3,
z = ui+4 such that d(v, w) = d(w, x) = d(x, y) = d(y, z). So for the inputs v, w,
and x, we reach line 4 where the algorithm will assign r = d(v, w). Observe that
for all words w1 and w2, the value d(w1, w2) allows an approximation of w2−w1

up to a factor of 2. More precisely, w− v, x−w, and y−x belong to the interval
[2r, 2r+1). It is an easy observation that this implies that not all of the following
values can have the same parity:
v/2r+1�,
w/2r+1�, and
x/2r+1�. According
to line 5, not all words v, w, and x obtain the same label. This is a contradiction
which shows that not all the nodes u1, u2, . . . , um obtain the same label. This
proves (ii) and solves the core of the labeling problem.

The labeling strategy allows the definition of a set S ∈ P such that whenever
we follow the trajectory of x for more than 5|x| steps, then we find at least one
alternation between S and S. This establishes m-mitoticity for L.

Call a set L nontrivial if ‖L‖ ≥ 2 and ‖L‖ ≥ 2. We have the following
corollaries of the main theorem.

Corollary 1. Every nontrivial set that is many-one complete for one of the
following complexity classes is m-mitotic.

– NP, coNP, ⊕P, PSPACE, EXP, NEXP
– any level of PH, MODPH, or the Boolean hierarchy over NP

Proof. Glaßer et al. [12] showed that all many-one complete sets of the above
classes are m-autoreducible. By Theorem 1, these sets are m-mitotic. ��
Corollary 2. A nontrivial set L is NP-complete if and only if L is the union
of two disjoint P-separable NP-complete sets.

So unions of disjoint P-separable NP-complete sets form exactly the class of
NP-complete sets. What class is obtained when we drop P-separability? Does
this class contain a set that is not NP-complete? In other words, is the union
of disjoint NP-complete sets always NP-complete? We leave this as an open
question.

Ambos-Spies [2] defined a set A to be ω-m-mitotic if for every n ≥ 2 there
exists a partition (Q1, . . . , Qn) of Σ∗ such that each Qi is polynomial-time de-
cidable and the following sets are polynomial-time many-one equivalent: A, A ∩
Q1, . . . , A ∩ Qn.

Corollary 3. Every nontrivial infinite set that is many-one complete for a class
mentioned in Corollary 1 is ω-m-mitotic.

We note that the proof of the main theorem actually yields the following
theorem.

Theorem 2. Every 1-tt-autoreducible set is 1-tt-mitotic.

The following theorem shows in a strong way that T-autoreducible does not
imply weakly T-mitotic. Hence, our main theorem cannot be generalized.

Theorem 3. There exists L ∈ SPARSE ∩ EXP such that

– L is 3-tt-autoreducible, but
– L is not weakly T-mitotic.

Thus there exist 3-tt-autoreducible sets that are not even T-mitotic, whereas
every 1-tt-autoreducible set is 1-tt mitotic. We do not know what happens when
we consider 2-tt reductions. Is every 2-tt-autoreducible set 2-tt-mitotic or does
there exist a 2-tt-autoreducible set that is not 2-tt-mitotic? We leave this as an
open question.

4 Poly-Autoreducibility

In this section we consider the question of whether NP-complete sets are f -
autoreducible, for some growing function f .

Lemma 1. Let L be an NP-complete language. For every polynomial q(.) there
is a polynomial-time algorithm A such that A on input x, |x| = n,

– either decides the membership of x in L
– or outputs strings y1, · · · , ym such that

• x ∈ L ⇒ {y1, y2, · · · , ym} ⊆ L,
• x /∈ L ⇒ {y1, y2, · · · , ym} ∩ L = ∅,
• m = q(n), and x �= y1, �= y2 �= · · · �= ym.

This above lemma comes close to showing that NP-complete sets are poly-
autoreducible, except for a small caveat. Let L be any NP-complete language.
If the algorithm from Lemma 1 neither accepts x or rejects x, then it produces
polynomially many equivalent strings. However, to show L is poly-autoreducible,
we must produce polynomially-many equivalent strings even when the algorithm
accepts or rejects.

This boils down to the following problem: Let L be an NP-complete language.
Given 0n as input, in polynomial time output polynomially many distinct strings
such that all of them are in L. Similarly, output polynomially many distinct
strings such that none of them are in L.

Below, we show that if one-way permutations exist, then we can achieve this
task. We start with a result by Agrawal [1].

Definition 5. Let f be a many-one reduction from A to B. We say f is g(n)-
sparse, if for every n, no more than g(n) strings of length n are mapped to a
single string via f .

Lemma 2. ([1]) If one-way permutations exist, then NP-complete sets are com-
plete with respect reductions that are 2n/2nγ

sparse. Here γ is a fixed constant
less than 1.

Lemma 3. Let L be NP-complete. If one-way permutations exist, then there
exists a polynomial-time algorithm that on input 0n outputs log n distinct strings
in L and log n strings out of L.

If we consider probabilistic algorithms, then we obtain a stronger conse-
quence.

Lemma 4. Let L be NP-complete. Assume one-way permutations exist. For ev-
ery polynomial q, there exists a polynomial-time probabilistic algorithm B that
on input 0n outputs q(n) distinct strings from L and q(n) distinct strings from
L with high probability.

If we assume quick pseudo-random generators exist, then we can derandomize
the above procedure.

Lemma 5. Let L be any NP-complete language. If one-way permutations and
quick pseudo-random generators exist, then for every polynomial q(n), there is a
polynomial-time algorithm that on input 0n outputs q(n) many distinct strings
from L and q(n) many distinct strings out of L.

Combining Lemmas 1 and 3, we obtain the following result.

Theorem 4. If one-way permutations exist, then every NP-complete language
is log n-autoreducible.

Combining Lemmas 1 and 5, we obtain the following result.

Theorem 5. If one-way permutations and quick pseudo-random generators ex-
ist, NP-complete sets are poly-autoreducible.

Finally, we consider another hypothesis from which poly-autoreducibility of
NP-complete sets follows.

Theorem 6. If there exists a UP machine M that accepts 0∗ such that no P-
machine can compute infinitely many accepting computations of M(0n), then
NP-complete sets are poly-autoreducible.

Next we consider the possibility of an unconditional proof that NP-complete
sets are poly-autoreducible. We relate this with the notion of immunity. We show
that if NP-complete sets are poly-autoreducible, then they are not E-immune.
It is known that NP-complete sets are not generic [12]. This proof is based on
the fact that NP-complete sets are autoreducible. Genericity is stronger notion
than immunity, i.e., if a language L is not immune, then it can not be generic.
Our result says that improving the autoreducibility result for NP-complete sets
gives a stronger consequence—namely they are not immune.

Theorem 7. If every NP-complete set is poly-autoreducible, then no NP-complete
set is E-immune.

References

1. M. Agrawal. Pseudo-random generators and structure of complete degrees. In 17th
Annual IEEE Conference on Computational Complexity, pages 139–145, 2002.

2. K. Ambos-Spies. P-mitotic sets. In E. Börger, G. Hasenjäger, and D. Roding,
editors, Logic and Machines, Lecture Notes in Computer Science 177, pages 1–23.
Springer-Verlag, 1984.

3. J. Balcázar and U. Schöning. Bi-immune sets for complexity classes. Mathematical
Systems Theory, 18(1):1–10, June 1985.

4. R. Beigel and J. Feigenbaum. On being incoherent without being very hard. Com-
putational Complexity, 2:1–17, 1992.

5. L. Berman and J. Hartmanis. On isomorphism and density of NP and other
complete sets. SIAM Journal on Computing, 6:305–322, 1977.

6. H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Separating com-
plexity classes using autoreducibility. SIAM Journal on Computing, 29(5):1497–
1520, 2000.

7. H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Using autore-
ducibility to separate complexity classes. SIAM Journal on Computing, 29(5):1497–
1520, 2000.

8. H. Buhrman, A. Hoene, and L. Torenvliet. Splittings, robustness, and structure of
complete sets. SIAM Journal on Computing, 27:637–653, 1998.

9. H. Buhrman and L. Torenvliet. On the structure of complete sets. In Proceedings
9th Structure in Complexity Theory, pages 118–133, 1994.

10. H. Buhrman and L. Torenvliet. Separating complexity classes using structural
properties. In Proceedings of the 19th IEEE Conference on Computational Com-
plexity, pages 130–138, 2004.

11. H. Buhrman and L. Torenvliet. A Post’s program for complexity theory. Bulleting
of the EATCS, 85:41–51, 2005.

12. C. Glaßer, M. Ogihara, A. Pavan, A. L. Selman, and L. Zhang. Autoreducibil-
ity, mitoticity, and immunity. In Proceedings 30th International Symposium on
Mathematical Foundations of Computer Science, volume 3618 of Lecture Notes in
Computer Science, pages 387–398. Springer-Verlag, 2005.

13. C. Glaßer, M. Ogihara, A. Pavan, A. L. Selman, and L. Zhang. Autoreducibility,
mitoticity, and immunity. Technical Report TR05-11, ECCC, 2005.

14. C. Glaßer, A. Pavan, A. L. Selman, and L. Zhang. Redundancy in complete sets.
Technical Report 05-068, Electronic Colloquium on Computational Complexity
(ECCC), 2005.

15. R. Ladner. Mitotic recursively enumerable sets. Journal of Symbolic Logic,
38(2):199–211, 1973.

16. S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman and
Hartmanis. Journal of Computer and Systems Sciences, 25(2):130–143, 1982.

17. M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibil-
ity of NP sets to sparse sets. SIAM Journal of Computing, 20(3):471–483, 1991.

18. B. Trakhtenbrot. On autoreducibility. Dokl. Akad. Nauk SSSR, 192, 1970. Trans-
lation in Soviet Math. Dokl. 11: 814– 817, 1970.

19. A. Yao. Coherent functions and program checkers. In Proceedings of the 22n
Annual Symposium on Theory of Computing, pages 89–94, 1990.

