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Abstract

We show the following results regarding complete sets.

• NP-complete sets and PSPACE-complete sets are polynomial-time many-one autore-
ducible.

• Complete sets of any level of PH, MODPH, or the Boolean hierarchy over NP are
polynomial-time many-one autoreducible.

• EXP-complete sets are polynomial-time many-one mitotic.

• If there is a tally language in NP ∩ coNP−P, then, for every ε > 0, NP-complete sets are
not 2n(1+ε)-immune.

These results solve several of the open questions raised by Buhrman and Torenvliet in their
1994 survey paper on the structure of complete sets.

1 Introduction

We solve several open questions identified by Buhrman and Torenvliet in their 1994 survey paper
on the structure of complete sets [BT94]. It is important to study the computational structure of
complete sets, because they, by reductions of all the sets in the class to the complete sets, represent
all of the structure that a class might have. Here we focus attention primarily on autoreducibility,
mitoticity, and immunity.

Trakhtenbrot [Tra70] introduced the notion of autoreducibility in a recursion theoretic setting.
A set A is autoreducible if there is an oracle Turing machine M such that A = L(MA) and M
on input x never queries x. Ladner [Lad73a] showed that there exist Turing complete recursively
enumerable sets that are not autoreducible. Ambos-Spies [AS84] introduced the polynomial-time
variant of autoreducibility, where we require the oracle Turing machine to run in polynomial time.
Yao [Yao90] introduced the notion of coherence, which coincides with probabilistic polynomial-time
autoreducibility.
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The question of whether complete sets for various classes are polynomial-time autoreducible
has been studied extensively [Yao90, BF92, BFvMT00], and is currently an area of active research
[BT05]. Beigel and Feigenbaum [BF92] showed that polynomial-time Turing complete sets for the
classes that form the polynomial-time hierarchy, ΣP

i ,ΠP
i , and ∆P

i , are polynomial-time Turing au-
toreducible. Thus, all polynomial-time Turing complete sets for NP are polynomial-time Turing
autoreducible. Buhrman et al. [BFvMT00] showed that polynomial-time Turing complete sets for
EXP and ∆EXP

i are polynomial-time autoreducible, whereas there exists a polynomial-time Turing
complete set for EESPACE that is not polynomial-time Turing autoreducible. They showed that
answering questions about polynomial-time autoreducibility of intermediate classes results in inter-
esting separation results. Regarding NP, Buhrman et al. [BFvMT00] showed that all polynomial-
time truth-table complete sets for NP are probabilistic polynomial-time truth-table autoreducible.
Thus, all NP-complete sets are probabilistic polynomial-time truth-table autoreducible.

Buhrman and Torenvliet [BT94] asked whether all NP-complete sets are polynomial-time many-
one autoreducible and whether all PSPACE-complete sets are polynomial-time many-one autore-
ducible. We resolve these questions positively: all nontrivial NP-complete sets and PSPACE-
complete sets are (unconditionally) polynomial-time many-one autoreducible. Also we show that
for each class in MODPH [HLS+93] (the hierarchy constructed by applying to P a constant number
of operators chosen from {∃·,∀·} ∪ {MODk·, coMODk· | k ≥ 2}), all of its nontrivial polynomial-
time many-one complete sets are polynomial-time many-one autoreducible. ¿From this we obtain
that no polynomial-time many-one complete sets for NP, PSPACE, or for the classes of MODPH
are 2n-generic.

Now we briefly discuss mitoticity. Informally, a set is weakly mitotic if it can be partitioned
into two equivalent parts each of which is equivalent to the original set. Thus, both parts contain
the same information as the original set. If additionally the partition is easy to compute (i.e.,
decidable in the recursive setting and in P in the polynomial-time setting), then the set is mitotic.
Lachlan [Lac67] introduced and studied mitoticity of recursively enumerable sets. This notion
was studied comprehensively by Ladner [Lad73a, Lad73b] who showed that with respect to r.e.
sets, autoreducibility and mitoticity coincide. Ambos-Spies [AS84] formulated two notions in the
polynomial time setting, polynomial-time mitoticity and weak polynomial-time mitoticity. Also, he
showed that every polynomial-time mitotic set is polynomial-time autoreducible. Buhrman, Hoene,
and Torenvliet [BHT98] showed that every polynomial-time many-one complete set for EXP is
weakly polynomial-time many-one mitotic. We improve this by showing that every polynomial-
time many-one complete set for EXP is indeed polynomial-time many-one mitotic. Buhrman and
Torenvliet [BT05] mention that this result was obtained by Kurtz independently. We remark that
a forthcoming paper [GPSZ06] shows that a set is polynomial-time many-one autoreducible if and
only if it is polynomial-time many-one mitotic.

Autoreducible sets can be thought of as sets having local redundant information. For example,
if A is polynomial-time many-one autoreducible by the reduction f , then x and f(x) both contain
the same information concerning whether x belongs to A. However, a mitotic set contains global
redundant information. To repeat, if L is mitotic it can be partitioned into two equivalent parts
and both parts contain the same information as L.

In Section 5, we study the question of whether NP-complete sets have easy subsets. The most
natural notion of having an easy subset would mean having an infinite subset in P. An infinite
set is P-immune if no infinite subset belongs to P. Berman [Ber77] showed that EXP-complete
sets are not P-immune, and Tran [Tra95] showed that NEXP-complete sets are not P-immune.
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However, we do not have such unconditional results for NP-complete sets, since these would imply
P 6= NP. Glaßer et al. [GPSS06] showed that if polynomial-time one-way permutations exist, then
NP-complete sets are not 2nε

-immune. Here we provide another partial result in this direction. In
Section 5 we show that if there exists a tally language in NP∩ coNP−P, then every NP-complete
set includes an infinite subset that is recognizable in time 2n(1+ε).

Section 6 concludes this paper with a result on the robustness of polynomial-time Turing com-
plete sets for NP. Schöning [Sch86] raised the following question: If a small amount of information
is removed from a complete set, does the set remain hard? Tang, Fu, and Liu [TFL93] proved the
existence of a sparse set S such that for every polynomial-time many-one complete set A for EXP,
A−S is not polynomial-time many-one hard for EXP. Buhrman and Torenvliet [BT04] proved that
if A is a polynomial-time Turing complete sets for EXP and S is a log-dense sets in P, then A− S
remains polynomial-time Turing complete sets for EXP. We prove that if a set A is polynomial-time
Turing complete for NP and S is a log-dense set in P, then A−S remains polynomial-time Turing
complete for NP. This result is easier to prove than Buhrman and Torenvliet’s similar result.

2 Preliminaries

We use standard notation and assume familiarity with standard resource-bounded reductions. We
consider words in lexicographic order. All reductions in the paper are polynomial-time computable.
In particular, we write “autoreducible” to mean “polynomial-time autoreducible” and we write “mi-
totic” to mean “polynomial-time mitotic.” Moreover, m-reduction (resp., tt-reduction, T-reduction)
is an abbreviation for polynomial-time many-one reduction (resp., polynomial-time truth-table re-
duction, polynomial-time Turing reduction). From this we derive the abbreviations m-complete,
tt-complete, and T-complete. For a class C, we write C-complete to mean polynomial-time many-one
complete for C.

Definition 2.1 ([AS84]). A set A is polynomial-time Turing autoreducible (T-autoreducible, for
short) if there exists a polynomial-time-bounded oracle Turing machine M such that A = L(MA)
and for all x, M on input x never queries x. A set A is polynomial-time many-one autoreducible
(m-autoreducible, for short) if A≤p

mA via a reduction function f such that for all x, f(x) 6= x.

In the following definition we consider reductions ≤p
r where r ∈ {m,T}.

Definition 2.2 ([AS84]). A set A is polynomial-time r-mitotic (r-mitotic for short) if there exists
a set B ∈ P such that

A ≡p
r A ∩B ≡p

r A ∩B.

A set A is polynomial-time weakly r-mitotic (weakly r-mitotic for short) if there exist disjoint sets
A0 and A1 such that A0 ∪A1 = A, and

A ≡p
r A0 ≡p

r A1.

In general, r-autoreducible sets are sets that are autoreducible with respect to ≤p
r-reductions.

The same convention is used for mitotic sets.
A language is DTIME(T (n))-complex if L does not belong to DTIME(T (n)) almost everywhere;

that is, every Turing machine M that accepts L runs in time greater than T (|x|), for all but finitely
many words x. A language L is immune to a complexity class C, or C-immune, if L is infinite
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and no infinite subset of L belongs to C. A language L is bi-immune to a complexity class C,
or C-bi-immune, if both L and L are C-immune. Balcázar and Schöning [BS85] proved that for
every time-constructible function T , L is DTIME(T (n))-complex if and only if L is bi-immune to
DTIME(T (n)).

3 Autoreducibility

Since EXP-complete sets are complete with respect to length-increasing reductions [Ber77], they
are m-autoreducible. Ganesan and Homer [GH92] showed that NEXP-complete sets are complete
under 1-1 reductions. This implies that all NEXP-complete sets are also m-autoreducible. To see
this, consider a 1-1 reduction from 0L ∪ 1L to L, where L is the given NEXP-complete set. These
techniques cannot be applied to NP-complete sets, as we do not know any unconditional result on
the degree structure of NP-complete sets. Some partial results are known for NP-complete sets.
Beigel and Feigenbaum [BF92] showed that T-complete sets for NP are T-autoreducible. Buhrman
et al. [BFvMT00] showed that all tt-complete sets for NP are probabilistic tt-autoreducible. It has
not been known whether NP-complete sets are m-autoreducible. Buhrman and Torenvliet raised
this question in their survey papers [BT94, BT98]. Below, we resolve this question.

Note that singletons and complements of singletons cannot be m-autoreducible. Therefore, in
connection with m-autoreducibility, a set L is called nontrivial if |L| > 1 and |L| > 1.

Theorem 3.1. All nontrivial NP-complete sets are m-autoreducible.

Proof. Let L be NP-complete and let M be a nondeterministic machine that accepts L. For
a suitable polynomial p we can assume that on input x, all computation paths of M have length
p(|x|). Since L is nontrivial, there exist different words y1, y2 ∈ L and y1, y2 ∈ L. We use the left
set technique of Ogiwara and Watanabe [OW91]. Let

Left(L) df= {〈x, u〉
∣∣ |u| = p(|x|) and ∃v, |v| = |u|, such that
u ≤ v and M(x) accepts along path v}.

Since Left(L) is in NP, there is a function f ∈ PF that reduces Left(L) to L. The algorithm
below defines function g which is an m-autoreduction for L. Let x be an input. Define n

df= |x| and
m

df= p(|x|).

1 if f(〈x, 0m〉) 6= x then output f(〈x, 0m〉)
2 if f(〈x, 1m〉) = x then
3 if M(x) accepts along 1m then
4 output a string from {y1, y2} − {x}
5 else
6 output a string from {y1, y2} − {x}
7 endif
8 endif
9 // here f(〈x, 0m〉) = x 6= f(〈x, 1m〉)
10 determine z of length m such that f(〈x, z〉) = x 6= f(〈x, z + 1〉)
11 if M(x) accepts along z then output a string from {y1, y2} − {x}
12 else output f(〈x, z + 1〉)
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Note that step 10 is an easy binary search: Start with z1 := 0m and z2 := 1m. Let z′ be the
middle element between z1 and z2. If f(z′) = x then z1 := z′ else z2 := z′. Again, choose the
middle element between z1 and z2, and so on. This shows g ∈ PF. Clearly, g(x) 6= x, so it remains
to show L≤p

mL via g.
If the algorithm stops in step 1, then

x ∈ L⇔ 〈x, 0m〉 ∈ Left(L)⇔ g(x) = f(〈x, 0m〉) ∈ L.

If the algorithm stops in step 4 or step 6, then f(〈x, 0m〉) = f(〈x, 1m〉). Hence

x ∈ L⇔ 〈x, 1m〉 ∈ Left(L)⇔M(x) accepts along 1m ⇔ g(x) ∈ L.

Assume we reach step 9. There it holds that f(〈x, 0m〉) = x 6= f(〈x, 1m〉). If the algorithm stops in
step 11, then x ∈ L and g(x) ∈ L. Assume we stop in step 12. So M(x) does not accept along z.

x ∈ L⇔ f(〈x, 0m〉) = f(〈x, z〉) ∈ L⇔ g(x) = f(〈x, z + 1〉) ∈ L.

�

One may wonder whether the analogous result holds for other polynomial-time reductions, i.e.,
for which polynomial-time reducibility r every nontrivial r-complete set for NP is ≤r-autoreducible.
An important issue in considering the question is what relation between x and the queries produced
by f on input 〈x, y〉 should be tested in the places where we test whether f(〈x, y〉) = x in the above
algorithm. It is not difficult to see that, in the case when f is a polynomial-time disjunctive-truth-
table reduction, we can use the test of whether x is among the query strings produced by f on
input 〈x, y〉. Thus, we have the following two corollaries.

Corollary 3.1. For every k ≥ 1, each nontrivial ≤p
k-dtt -complete set for NP is ≤p

k-dtt -autoreducible.

Corollary 3.2. All nontrivial ≤p
dtt -complete sets for NP are ≤p

dtt -autoreducible.

Also, in the case when f is a polynomial-time 1-truth-table reduction, we can use the test of
whether the query string of f on input 〈x, y〉 is x. This observation yields the following corollary.

Corollary 3.3. All nontrivial sets that are ≤p
1-tt-complete for NP are ≤p

1-tt-autoreducible.

Extending these results to more generalized reducibilities seems quite difficult. It is unknown
whether the analog holds for ≤p

2-tt-reductions, even for ≤p
2-ctt-reductions. To illustrate why it

is difficult, consider the ≤p
2-ctt-reducibility. Suppose we use, as in the case for the disjunctive

reducibility, the test of whether one of the two query strings of f is x. Suppose, by binary search,
we arrive at a point y such that both y and y + 1 are rejecting paths, one query string of f(〈x, y)
is x, and neither of the two queries of f(〈x, y + 1〉) are x. Let u be the other query of f(〈x, y〉)
and let v and w be the queries of f(〈x, y + 1〉). The information gain by discovering this y is that:
if x ∈ L then (u ∈ L ⇐⇒ v, w ∈ L) and that if x 6∈ L then either v or w is a nonmember of L.
This information is not enough for us to reduce the membership of x in L to membership questions
about u, v, and w.

The idea in the proof of Theorem 3.1 can be generalized to prove similar results for other classes.
To illustrate how the generalization can be done, consider PSPACE. Cai and Furst [CF91] based
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on Barrington [Bar89] show that for each language L in PSPACE there exist a polynomial p and a
polynomial-time computable function f from Σ∗ × Σ∗ to S5 such that for all x

x ∈ L ⇐⇒ f(x, 0p(|x|)) ◦ · · · ◦ f(x, 1p(|x|)) = I5,

where ◦ is the product of permutations calculated from left to right and I5 is the identity permuta-
tion. Let L be an arbitrary nontrivial PSPACE-complete set. Choose p and f that give the above
characterization for L. Consider the set A of triples 〈x, y, γ〉 such that |y| = p(|x|), γ ∈ S5, and

γ ◦ f(x, y) ◦ · · · ◦ f(x, 1p(|x|)) = I5.

This set A is in PSPACE and has the following properties similar to left sets: (i) For each legiti-
mate triple 〈x, y, γ〉 such that |y| 6= 1p(|x|), the membership of 〈x, y, γ〉 in A can be related to the
membership of 〈x, y + 1, γ′〉 in A for some γ′ ∈ S5. (ii) The membership of 〈x, 1p(|x|), γ〉 in A can
be determined in polynomial time. (iii) If the membership of 〈x, 1p(|x|), γ〉 in A is reduced to the
membership of a string y 6= x in L, then y can be the output of the autoreduction; if this y happens
to be x and γ 6= I5 then it must be the case that x 6∈ L. Using these three properties, we can design
a binary search algorithm quite similar to that in the proof of Theorem 3.1 to find y, γ, γ′ such that
〈x, y, γ〉 ∈ A ⇐⇒ 〈x, y + 1, γ′〉 ∈ A, x ∈ L ⇐⇒ 〈x, y, γ〉 ∈ A, and 〈x, y + 1, γ′〉 ∈ A ⇐⇒ w ∈ L,
where w 6= x. Then this w can be the output of the autoreduction.

We formalize this idea using the concept of polynomial-time bit-reductions [HLS+93]. Below we
show that every class that is polynomial-time bit-reducible to a regular language has the property
that all of its nontrivial r-complete sets are r-autoreducible, where r is any one of ≤p

m, ≤p
1-tt, ≤

p
dtt ,

and ≤p
k-dtt for k ≥ 2. As a corollary to this, we show that many known classes, e.g., every class

in the MODPH hierarchy [HLS+93], has the property that all of its nontrivial r-complete sets are
r-autoreducible, where r is any one of the above reduction types.

Definition 3.1. [HLS+93] A language A is polynomial-time bit-reducible to a language B if there
exists a pair of polynomial-time computable functions, (f, g), f : Σ∗ ×N+ → Σ, g : Σ∗ → N, such
that for all x,

x ∈ A⇔ f(x, 1) · · · f(x, g(x)) ∈ B.

Next we prove a technical lemma that is needed in the proof of Theorem 3.2.

Lemma 3.1. Let B 6∈ {∅,Σ∗} be regular. Let M = (Q, {0, 1}, δ, q0, F ) be a finite automaton
recognizing B, where Q is its set of states, δ is its transition function, q0 is its initial state, and F
is the set of its accepting states. Assume that every state in Q is reachable from q0. Let f and g be
polynomial-time computable functions such that f : Σ∗ ×N+ → Σ and g : Σ∗ → N. Define

A = {〈x, i, q〉 | 1 ≤ i ≤ g(x) ∧ q ∈ Q ∧ δ(q, f(x, i) · · · f(x, g(x))) = qf}.

Then, A is polynomial-time bit-reducible to B.

Proof. Let B, M = (Q, {0, 1}, δ, q0, F ), f , g, and A be as in the hypothesis of the lemma. Let
r1, · · · , rt be an enumeration of the states in Q. Since B 6= ∅, F is a proper subset of Q. Assume,
without loss of generality, that r1 ∈ Q − F . For each j, 1 ≤ j ≤ t, let e(j) be a fixed word such
that δ(q0, e(j)) = rj . For each j, 1 ≤ j ≤ t, let mj = |e(j)| and let e(j, 1), . . . , e(j,mj) be the bits
of e(j). Since r1 6∈ F , we have e(1) 6∈ B.
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We define a bit-reduction (f ′, g′) from A to B as follows: Let u be an input to the reduction. If u
is not of the form 〈x, i, q〉 such that 1 ≤ i ≤ g(x) and q ∈ Q, u is clearly a nonmember of A. We set
g′(u) = m1 and for each k, 1 ≤ k ≤ m1, f ′(u, k) = e(1, k). We have f ′(u, 1) · · · f(u, g′(u)) = e(1).
Since e(1) 6∈ B, the reduction works correctly on u.

If u is of the form 〈x, i, rj〉 such that 1 ≤ i ≤ g(x) and 1 ≤ j ≤ t, then we set g′(u) =
mj + g(x)− i + 1 and for each k, 1 ≤ k ≤ g′(u),

f ′(u, k) =
{

e(j, k) if k ≤ mj ,
f(x, k −mj + i− 1) otherwise.

It holds that f ′(u, 1) · · · f ′(u, g′(u)) = e(j)f(x, i) · · · f(x, g(x)). Since δ(q0, e(j)) = rj , we have

δ(q0, e(j)f(x, i) · · · f(x, g(x))) = δ(rj , f(x, i) · · · f(x, g(x))).

So,
δ(q0, e(j)f(x, i) · · · f(x, g(x))) ∈ F ⇔ δ(rj , f(x, i) · · · f(x, g(x))) =∈ F.

Thus, f ′(u, 1) · · · f(u, g′(u)) ∈ B ⇔ u ∈ A. The reduction thus works correctly on u.
It is easy to see that both f ′ and g′ are polynomial-time computable. Thus, A is polynomial-

time bit-reducible to B. �

Theorem 3.2. Let r be one of the following reducibilities: ≤p
m, ≤p

1-tt, ≤
p
dtt , and ≤p

k-dtt for k ≥ 2.
Let B 6∈ {∅,Σ∗} be a regular language recognized by a finite automaton M = (Q, {0, 1}, δ, q0, F ).
Let C be the polynomial-time bit-reduction closure of B. Then each nontrivial r-complete set for C
is r-autoreducible.1

Proof. We will prove only the case when r =≤p
m. The other cases can be proven similarly. Let

B, M , and C be as in the hypothesis of the theorem and let L be an arbitrary m-complete language
for C. Let (f, g) be a polynomial-time bit-reduction from L to B. Define A as in Lemma 3.1; that
is, A is the set of all 〈x, i, q〉 such that 1 ≤ i ≤ g(x), q ∈ Q, and δ(q, f(x, i) · · · f(x, g(x))) ∈ F .
By Lemma 3.1, A ∈ C, so A is m-reducible to L. Let h be an m-reduction from A to L. We will
design an m-autoreduction, s, of L. Let a1 and a2 be fixed members of L and let b1 and b2 be fixed
nonmembers of L. Let x be an input to s.

Let y0 = h(〈x, 1, q0〉). Since h is an m-reduction from A to L, and since x ∈ L if and only if
〈x, 1, q0〉 ∈ A, we have y0 ∈ L⇔ x ∈ L. So, in the case where y0 6= x, we can set s(x) = y0.

So, suppose that x = y0. Suppose that there is some q ∈ Q such that h(〈x, g(x), q〉) = x.
By definition 〈x, g(x), q〉 ∈ A ⇔ δ(q, f(x, g(x))) ∈ F . Since both f and g are polynomial-time
computable, we can test in polynomial time whether 〈x, g(x), q〉 ∈ A. Since h is an m-reduction
from A to L, 〈x, g(x), q〉 ∈ A ⇔ x ∈ L. So, in polynomial time we can test whether x ∈ L. If
x ∈ L, then we set s(x) to a string from {a1, a2} − {x}, otherwise we set s(x) to a string from
{b1, b2} − {x}.

Now, suppose that x 6∈ {h(〈x, g(x), q〉) | q ∈ Q}. Since x = y0 = h(〈x, 1, q0〉), we have
that x ∈ {h(〈x, 1, q〉) | q ∈ Q}. By binary search over the interval [1, g(x)] we can find some i,

1In terms of leaf languages, this theorem reads as follows: If B is a regular language different from ∅ and Σ∗, then
nontrivial m-complete sets for Leafp

b(B) are m-autoreducible. (The latter denotes the balanced leaf-language class
defined by B [HLS+93, Wag04].)
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1 ≤ i ≤ g(x)− 1, such that x ∈ {h(〈x, i, q〉) | q ∈ Q} and x 6∈ {h(〈x, i + 1, q〉) | q ∈ Q}. Let q ∈ Q
be such that x = h(〈x, i, q〉). We have x ∈ L⇔ 〈x, i, q〉 ∈ A. By definition,

〈x, i, q〉 ∈ A⇔ δ(q, f(x, i) · · · f(x, g(x))) = qf .

Let q′ = δ(q, f(x, i)) and let y1 = h(〈x, i + 1, q′〉). By the choice of i, x 6= y1. Also, y1 ∈ L ⇔
〈x, i + 1, q′〉 ∈ A. We have

δ(q, f(x, i) · · · f(x, g(x))) = δ(δ(q, f(x, i)), f(x, i + 1) · · · f(x, g(x)))
= δ(q′, f(x, i + 1) · · · f(x, g(x))).

So,
δ(q, f(x, i) · · · f(x, g(x))) = qf ⇔ δ(q′, f(x, i + 1) · · · f(x, g(x))) ∈ F.

This implies that
〈x, i, q〉 ∈ A⇔ 〈x, i + 1, q′〉 ∈ A.

Since x ∈ L⇔ 〈x, i, q〉 ∈ A and y1 ∈ L⇔ 〈x, i + 1, q′〉 ∈ A, we have x ∈ L⇔ y1 ∈ L. Since x 6= y1,
we set s(x) = y1.

Since f is polynomial-time computable, the value of s(x) can be computed in polynomial-time.
This proves the theorem. �

We note here that Theorem 3.1 can be derived from Theorem 3.2 because for each L ∈ NP we can
construct a bit-reduction as follows: Let M be a polynomial-time nondeterministic Turing machine
that accepts L. Let p be a polynomial bounding the running time of M . Define g(x) = 2p(|x|)

and f(x, i) = 1 if the i-th word in Σp(|x|) is an accepting path of M on x and 0 otherwise. Define
B = 0∗1{0, 1}∗. Then, for all x, x ∈ L ⇐⇒ f(x, 1) · · · f(x, g(x)) ∈ B. So, the hypothesis of
Theorem 3.2 holds.

Now we define the hierarchy MODPH.

Definition 3.2. [Sto77, Wra77] Let C be a language class. Define ∃·C to be the set of all languages
L for which there exist a polynomial p and a language A ∈ C such that for all x,

x ∈ L⇔ (∃y, |y| = p(|x|))[〈x, y〉 ∈ A]

and define ∀ · C to be the set of all languages L for which there exist a polynomial p and a language
A ∈ C such that for all x,

x ∈ L⇔ (∀y, |y| = p(|x|))[〈x, y〉 ∈ A].

Definition 3.3. [BG92, Sch89] Let k ≥ 2 be an integer. Define MODk · C to be the set of all
languages L for which there exist a polynomial p and a language A ∈ C such that for all x,

x ∈ L⇔ ‖{y | |y| = p(|x|) ∧ 〈x, y〉 ∈ A}‖ 6≡ 0 (mod k),

and define coMODk · C to be the set of all languages L for which there exist a polynomial p and a
language A ∈ C such that for all x,

x ∈ L⇔ ‖{y | |y| = p(|x|) ∧ 〈x, y〉 ∈ A}‖ ≡ 0 (mod k).
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Definition 3.4. [HLS+93] MODPH is the hierarchy consisting of the classes inductively defined
as follows:

• P belongs to MODPH.

• If C is a class belonging to MODPH then ∃ · C and ∀ · C belong to MODPH.

• For each integer k ≥ 2, if C is a class belonging to MODPH then MODk · C and coMODk · C
belong to MODPH.

Corollary 3.4. Let C be one of the following classes

• PSPACE.

• The levels ΣP
k , ΠP

k , and ∆P
k of the polynomial-time hierarchy.

• 1NP. 2

• The levels of the Boolean hierarchy over NP.

• The levels of the MODPH hierarchy.

Let r be one of the following reductions: ≤p
m, ≤p

1-tt, ≤
p
dtt , and ≤p

k-dtt for k ≥ 2. Then every
nontrivial set that is r-complete for C is r-autoreducible.

Proof. Since we have Theorem 3.2, we have only to show that each of the above classes is
the polynomial-time bit-reduction closure of some regular language. Hertrampf et al. [HLS+93]
show that this is the case for PSPACE (based on the result of Cai and Furst [CF91]) and for the
MODPH classes. It is easy to observe that 1NP is the polynomial-time bit-reduction closure of
the regular language 0∗10∗. Also, for all k ≥ 1, ∆P

k is the polynomial-time bit-reduction closure of
a suitable regular language [BSS99, Tra02, BLS+04], and every level of the Boolean hierarchy over
NP is the polynomial-time bit-reduction closure of a suitable regular language [SW98, BKS99].
This proves the corollary. �

Now we obtain a result about genericity of complete sets. The notion of resource-bounded
genericity was defined by Ambos-Spies, Fleischhack, and Huwig [ASFH87]. We use the following
equivalent definition [BM95, PS02].

Definition 3.5. For a set L and a string x let L|x = {y ∈ L
∣∣ y < x}. A deterministic oracle

Turing machine M is a predictor for a set L, if for all x, ML|x(x) = L(x). L is a.e. unpredictable
in time t(n), if every predictor for L requires more than t(n) time for all but finitely many x.

Definition 3.6. A set L is t(n)-generic if it is a.e. unpredictable in time t(2n).
21NP [GW86] which is also called US [BG82] is the class of languages L for which there exists a nondeterministic

polynomial-time-bounded machine M such that an input x belongs to L if and only if M on input x has exactly one
accepting path. In contrast, UP is the class of languages L for which there exists a nondeterministic polynomial-
time-bounded machine M such that L = L(M) and on every input x, the machine M on input x has at most one
accepting path [Val76].
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This is equivalent to say that for every oracle Turing machine M , if ML|x(x) = L(x) for all x,
then the running time of M is at least t(2|x|) for all but finitely many x.

We obtain the following theorem regarding genericity of NP-complete sets. Earlier, it was
known that there must exist a k > 0 such that NP-complete sets are not O(nk)-generic. The result
is implicit in the work on small span theorems [JL95, ASNT96]. Note that it is an existence result
on k, i.e., the proof does not give an explicit value for k. Below we improve this.

Theorem 3.3. If L is a decidable and m-autoreducible set, then L is not 2n-generic.

Proof. Let L be an m-autoreducible set, and let f be an m-autoreduction for L. Consider
the following predictor for L. Recall that on input x, the predictor has access to the partial
characteristic sequence L|x. Given x, the predictor computes f(x). If f(x) < x, then the predictor
can decide the membership of x in L by making one query to L|x. This takes polynomial time in
|x|. If f(x) > x, then for every y < x, the predictor checks if f(y) = x. Once such y is found,
the predictor can decide membership of x in L. If no such y is found, then the predictor runs the
deterministic algorithm for L on x.

We claim that for infinitely many inputs, the predictor runs in time 22n. If for infinitely many
x, f(x) < x, then, on these strings, the predictor decides x in polynomial time. Assume for all
but finitely many x, f(x) ≥ x. Note that since f is an autoreduction, f(x) 6= x. Thus for all but
finitely many x, f(x) > x. Thus for infinitely many x, there exists y < x such that f(y) = x.
The predictor decides all such x by finding a y such that f(y) = x. The time for finding such y
is bounded by 22n. Thus the predictor decides infinitely many x in time 22n time. Thus L is not
2n-generic. �

Corollary 3.5. All m-complete sets for the classes NP, PSPACE, and levels of MODPH are not
2n-generic.

3.1 Relativization

We obtain an oracle satisfying the following properties:

Theorem 3.4. For any k ≥ 2, there is an oracle A such that relative to A there is a set B that is
≤p

k-dtt complete for NP but not ≤p
(k−1)-T autoreducible.

In light of this oracle it is probably not possible to improve Corollary 3.1 in the sense that
≤p

k-dtt -complete sets for NP are ≤p
(k−1 )-dtt -autoreducible. Also, this theorem is interesting because

of the following corollary:

Corollary 3.6. There is an oracle A such that relative to A there exists a ≤p
2-dtt -complete set for

NP that is not m-mitotic.

Proof. Taking k = 2 in Theorem 3.4, we obtain an oracle A such that there exists a
≤p

2-dtt -complete set for NP that is not ≤p
1-T autoreducible. The corollary follows from the facts

that if a set is m-mitotic then it is m-autoreducible [AS84] and every m-reduction is a 1-T
reduction. �

Corollary 3.6 gives a relativized negative answer to an open question of Buhrman and Toren-
vliet [BT94] as to whether all T-complete sets for NP are m-mitotic. Another related question
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raised by Buhrman and Torenvliet is whether all tt-complete sets for NP are tt-autoreducible. The
following theorem gives a partial answer to this question in a relativized world.

Theorem 3.5. For any k ≥ 2, there is an oracle A such that relative to A, there is a set B that
is ≤p

dtt complete for NP but not ≤p
btt -autoreducible.

The proof of Theorem 3.5 is similar to that of Theorem 3.4. Here we present the proof of
Theorem 3.4. The construction is similar to previous successful oracle constructions that require
both diagonalization and encoding and need to avoid conflicts. Diagonalization is needed to show
that the set BA is not ≤p

(k−1)-T autoreducible. At the same time one needs to encode a complete

set for NPA into BA in such a way that BA is ≤p
k-dtt complete for NPA. These two requirements

are seemingly contradictory and make the proof intricate.
Proof. Let k′ = dlog ke. Without loss of generality, we assume k′ is odd (the proof for the case

where k′ is even is essentially the same). Define G to be the set consisting of the first k strings of
length k′. We assume a polynomial-time computable one-to-one pairing function that can take any
finite number of inputs such that its range does not intersect with 0∗ and such that for all i, x, and
l, |〈i, x, 0l〉| > l. Let {Mj}j≥1 be an enumeration of polynomial-time (k−1)-Turing reductions. Let
{Ni}i≥1 be an enumeration of all nondeterministic polynomial-time oracle Turing machines. For
each j ≥ 1, let pj be a polynomial that bounds the running time of both Mj and Nj .

For any set A, let KA = {〈i, x, 0l〉 | NA
i accepts x within l steps } be the canonical complete

set for NPA. Now define

BA
e = {s〈i, x, 0l〉 | s ∈ G ∧ [∃y[|y| = |〈i, x, 0l〉| ∧ s〈i, x, 0l〉y ∈ A]]},

BA
d = {02n | ∃y[|y| = 2n ∧ y ∈ A]},

and
BA = BA

e ∪BA
d .

Clearly BA
e , BA

d and BA all belong to NPA. We will construct A such that for all but finitely many
combinations of i, x, and l,

〈i, x, 0l〉 ∈ KA ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BA],

which implies KA≤p
k-dttB

A. Also, we will construct A such that for every j, there exists an even
number nj such that

MA
j accepts 0nj with oracle BA ⇔ 0nj /∈ BA

or
MA

j on input 0nj queries 0nj to oracle BA,

which will ensure that Mj is not an ≤p
(k−1 )-T autoreduction of B.

We construct A in stages. We initialize n1 = 2, so that p1(n1) < 2n1 , and define A<2 = ∅.
At Stage j, we assume the construction has been done up to strings of length nj − 1, where nj is
some even number chosen in Stage j − 1. Let Aj−1 = A≤nj−1. Now the construction for Stage j

proceeds in two steps. In the first step, we will diagonalize against Mj . If M
Aj−1

j on input 0nj does

not query the string 0nj to BAj−1 , then we will find a string y of length nj such that M
Aj−1∪{y}
j ,

making k−1 queries to BAj−1∪{y} accepts 0nj if and only if 0nj 6∈ BAj−1∪{y}. In the second step, we
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will do the encoding. We will choose some sufficiently large even number nj+1 and make sure, for
every 〈i, x, 0l〉 such that nj < |s〈i, x, 0l〉y| < nj+1, s ∈ G, and |y| = |〈i, x, 0l〉|, that 〈i, x, 0l〉 ∈ KA if
and only if ∃s∃y[s ∈ G ∧ |y| = |〈i, x, 0l〉| ∧ s〈i, x, 0l〉y ∈ A. This will ensure for those 〈i, x, 0l〉 that
〈i, x, 0l〉 ∈ KA if and only if ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BA].

We first show that the string y of length nj needed for the diagonalization step exists. We use
a set NA for reserving strings of length greater than or equal to nj for A. NA is set to ∅ at the
beginning of each stage. We then simulate Mj on input 0nj and resolve each query in the following
way. For each query q made to A, we answer YES if and only if q ∈ Aj−1. If |q| ≥ nj , set NA to
NA ∪{q}. For each query q made to BA, if q = 0nj , we proceed to the encoding step. (In this case,
Mj is not an autoreduction.) Now q 6= 0nj . We answer q with YES if and only if q ∈ BAj−1 . For
those q’s such that q is of the form 02n, where 2n > nj , we set NA to NA ∪ {y||y| = |q|}, which will
ensure that q = 02n 6∈ BA. For those q’s such that q = s〈i, x, 0l〉, s ∈ G, and k′ + 2|〈i, x, 0l〉| > nj ,
we set NA to NA ∪ {s〈i, x, 0l〉y | |y| = |〈i, x, 0l〉|}, which will ensure that q = s〈i, x, 0l〉 6∈ BA.
Observe that strings of length nj (an even length) can only be put into NA if they are queried by
Mj to A. So ‖NA ∩ Σ=nj‖ ≤ pj(nj) since Mj is pj-time bounded. We will see below that in Stage
j − 1, nj was chosen such that pj(nj) < 2nj = ‖Σnj‖. So we choose a string y of length nj such
that y 6∈ NA. For this y, M

Aj−1

j (0nj ), which makes k − 1 queries to BAj−1 , accepts if and only if

M
Aj−1∪{y}
j (0nj ), making k− 1 queries to BAj−1∪{y}, accepts. Thus we add y to Aj−1 if and only if

M
Aj−1

j (0nj ) rejects with oracle BAj−1 . This completes the diagonalization step.
Now we need to do the encoding step. At the same time we want to maintain the diagonalization

properties of the oracle from the diagonalization step. This can be ensured by not putting any
string in NA into A. However, by doing so we have to make sure encoding can be done up to length
maxy∈NA

|y|. Also we need pj(nj) < 2nj for the diagonalization step at any Stage j. To fulfill all
these requirements, we choose nj+1 to be the minimum even number such that the following hold:

• pj+1(nj+1) < 2(nj+1−k′)/2

• nj+1 > nj

• nj+1 > maxy∈NA
|y|

Now we encode each triple 〈i, x, 0l〉 such that nj < |s〈i, x, 0l〉y| < nj+1, s ∈ G, and |y| =
|〈i, x, 0l〉|. We have to decide whether to put some string s〈i, x, 0l〉y into A according to whether
〈i, x, 0l〉 ∈ KA, so as to make sure 〈i, x, 0l〉 ∈ KA if and only if ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BA]. As we
said earlier, this task is nontrivial since some of these strings might have already been put into NA.
We need to show that there exist strings that are unreserved for each triple 〈i, x, 0l〉, to be used
for encoding. We will also need a set YA that contains strings reserved for A during the encoding
process. Now we use the following procedure in Fig. 1 to do the encoding from length nj + 1 to
nj+1 − 1.

The correctness of the above encoding procedure follows from the following claims where Qj =
{〈i, x, 0l〉 | nj < k′ + 2|〈i, x, 0l〉| < nj+1}.

Claim 3.1. For every 〈i, x, 0l〉 ∈ Qj in the above procedure, there exists a string s〈i, x, 0l〉y 6∈ NA

such that s ∈ G and |y| = |〈i, x, 0l〉|, to select when step 6 is executed.

Proof. We look back at the diagonalization step. For each query q made to A by Mj , we
put q into NA only if |q| ≥ nj . Since there are at most pj(nj) many such queries due to the fact
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1 YA := ∅;
//NA is initially the set constructed in the diagonalization step.

2 Qj := {〈i, x, 0l〉 | nj < k′ + 2|〈i, x, 0l〉| < nj+1};
// set of triples 〈i, x, 0l〉 that we need to consider for encoding.

3 For all triples 〈i, x, 0l〉 in Qj in lexicographical order do
4 Simulate Ni on x for l steps with oracle Aj−1 ∪ YA;
5 If Ni accepts then
6 Choose s〈i, x, 0l〉y 6∈ NA, such that s ∈ G and |y| = |〈i, x, 0l〉|;
7 YA := YA ∪ {s〈i, x, 0l〉y};
8 Else
9 NA := NA ∪ {s〈i, x, 0l〉y | s ∈ G ∧ |y| = |〈i, x, 0l〉|};
10 EndFor;
11 Aj := Aj−1 ∪ YA;

Figure 1: Procedure for the encoding step at Stage j in Theorem 3.4 (comments start with //).

that Mj is pj-time bounded, we put at most pj(nj) many strings into NA because of queries to A.
Now for each 〈i, x, 0l〉 ∈ Qj , for each s ∈ G consider Ss = {s〈i, x, 0l〉y||y| = |〈i, x, 0l〉|}. For each
query q made to BA by Mj , at most one such Ss might be put into NA. Since Mj only makes
k − 1 queries to BA, there must exist one Ss such that no string in Ss is put into NA due to
queries made to BA by Mj . Let Ss be such a set. Note that ‖Ss‖ = 2|〈i,x,0l〉| ≥ 2(nj−k′)/2 > pj(nj),
where the last inequality follows from the choice of nj at Stage j − 1. So there must exist z ∈ Ss

that is not put into NA because of queries made to A by Mj . Hence, z is a string of the form
s〈i, x, 0l〉y such that s ∈ G and |y| = |〈i, x, 0l〉|, and z 6∈ NA by the end of the diagonalization
step. Now during the encoding step, we will only put into NA strings of the form s〈i′, x′, 0l′〉y,
where 〈i′, x′, 0l′〉 6= 〈i, x, 0l〉, upon processing triples 〈i′, x′, 0l′〉 that are lexicographically less than
〈i, x, 0l〉. So z cannot have been put into NA during the encoding step by the time the triple
〈i, x, 0l〉 is processed. Hence, the claim follows. �

Claim 3.2. For any 〈i, x, 0l〉 ∈ Qj in the above procedure,

〈i, x, 0l〉 ∈ KAj ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BAj ].

Proof. First note that the following equivalence holds after the triple 〈i, x, 0l〉 ∈ Qj is processed:

〈i, x, 0l〉 ∈ KAj−1∪YA ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BAj−1∪YA ]. (∗)

For every triple 〈i′, x′, 0l′〉 ∈ Qj that is processed after 〈i, x, 0l〉, either a string in the form
s′〈i′, x′, 0l′〉y′ such that s′ ∈ G and |y′| = |〈i′, x′, 0l′〉| is put into YA or all the members of the
set {s′〈i′, x′, 0l′〉y′ | s′ ∈ G ∧ |y′| = |〈i′, x′, 0l′ |} are put into NA. Neither of these will change the
truth value of the right-hand side of (∗). Also note that all the strings added to YA or NA after
〈i, x, 0l〉 is processed are of length at least k′ + 2|〈i, x, 0l〉| > l. So the truth value of the left side of
(∗) will not change either after 〈i, x, 0l〉 is processed since the first l steps of Ni’s computation on x
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makes queries of length at most l. Therefore, (∗) becomes a loop invariant once the triple 〈i, x, 0l〉
is processed. Since by the end of the loop we have Aj = Aj−1 ∪ YA, it follows that

〈i, x, 0l〉 ∈ KAj ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BAj ].

�

Claim 3.3. For every triple 〈i, x, 0l〉 such that |〈i, x, 0l〉| > 2,

〈i, x, 0l〉 ∈ KA ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BA].

Proof. Let |〈i, x, 0l〉| > 2. Then 〈i, x, 0l〉 belongs to Qj , for some j ≥ 1. Then, by Claim 3.2, it
holds that

〈i, x, 0l〉 ∈ KAj ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BAj ].

We know from the above construction that only strings of length greater than or equal to nj will
be added into A after Stage j and nj > k′ + 2|〈i, x, 0l〉| > l for any 〈i, x, 0l〉 ∈ Qj . It follows that

〈i, x, 0l〉 ∈ KA

⇔ 〈i, x, 0l〉 ∈ KAj

⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BAj ]

⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BA].

�

This finishes the proof of Theorem 3.4. �

4 Mitoticity

Buhrman, Hoene, and Torenvliet [BHT98] show that all EXP-complete sets are weakly m-mitotic.
We improve this to show that all EXP-complete sets are m-mitotic. We remark that Buhrman and
Torenvliet [BT05] cite a private communication with Kurtz for an independent proof of this result.

Theorem 4.1. Let C be a complexity class closed under many-one reductions. If L is many-one
complete for C with respect to honest reductions, then L is m-mitotic.

Proof. Note that L × Σ∗ ∈ C and hence there exists an honest many-one reduction f from
L× Σ∗ to L. So there exists an l > 0 such that

∀x, |x|1/l < |f(x)| < |x|l.

Define t1 = 2 and ti+1 = (ti)2l2 . Consider the following set.

S = {x | for some odd i, ti ≤ |x| < ti+1}

Clearly S is in P. We claim that L∩S and L∩S are complete for C. This shows that L is m-mitotic.
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Claim 4.1. L ∩ S is complete for C.

Proof. It is clear that L∩ S ∈ C. We construct a reduction h from L to L∩ S. Given input x,
the reduction computes i such that ti ≤ |x| < ti+1. We consider two cases.

Case 1: i is odd, i.e., x ∈ S. Choose y sufficiently large such that

(ti+2)l < |〈x, y〉| < (ti+2)2l.

This is possible in polynomial time in |x|, since

(ti+2)l = (((ti)2l2)2l2)l = (ti)4l5 ≤ |x|4l5 .

Let z = 〈x, y〉 and set h(x) = f(z). Observe that |f(z)| > |z|1/l > ti+2 and |f(z)| < |z|l <
(ti+2)2l2 = ti+3. So ti+2 < |f(z)| < ti+3 and hence f(z) ∈ S, since i + 2 is odd. Now,

x ∈ L ⇔ z ∈ L× Σ∗

⇔ f(z) ∈ L (f is a reduction from L× Σ∗ to L)
⇔ f(z) ∈ L ∩ S (f(z) ∈ S).

Case 2: i is even, i.e., x /∈ S. Choose y sufficiently large such that

(ti+1)l < |〈x, y〉| < (ti+1)2l.

Again this is possible in polynomial time in |x|. Let z = 〈x, y〉 and set h(x) = f(z). As in Case 1,
we obtain ti+1 < |f(z)| < ti+2 and hence f(z) ∈ S, since i + 1 is odd. Therefore, as above,

x ∈ L⇔ f(z) ∈ L ∩ S.

The function h is computable in polynomial time. Thus L ∩ S is complete for C. �

By symmetry we obtain:

Claim 4.2. L ∩ S is complete for C.

The theorem follows from Claims 4.1 and 4.2. �

Corollary 4.1. All EXP-complete sets are m-mitotic.

Proof. EXP is closed under many-one reductions and all EXP-complete sets are complete
with respect to length increasing reductions [Ber77]. �

A preliminary version of this paper [GOP+05] stated the following results regarding mitoticity
of complete sets for NEXP, and PSPACE.

Theorem 4.2. All m-complete sets for NEXP are weakly m-mitotic.

Theorem 4.3. All m-complete sets for PSPACE are weakly T-mitotic.
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Since then, these results were improved [GPSZ06] to show that m-complete sets for NEXP and
PSPACE are m-mitotic. This is shown by proving that every m-autoreducible set is m-mitotic. So
the Theorems 4.2 and 4.3 are consequences of the m-autoreducibility of m-complete sets for NEXP
(cf. beginning of section 3) and m-complete sets for PSPACE (Corollary 3.4). Here we present a
proof of Theorem 4.2, because it is much easier than the proof of the stronger result.

For this we use a result of Ganesan and Homer [GH92] who showed that every NEXP-complete
set is complete via 1-1 reductions. We first describe the simplified idea of our proof: If K is the
standard NEXP-complete set and if L is an arbitrary NEXP-complete set, then 0K∪1K m-reduces
to L by a 1-1 function f . It follows that L1 = f(0K) and L2 = L− f(0K) are m-hard for NEXP.
Moreover, L1 and L2 are disjoint subsets of L and it holds that L = L1 ∪ L2. In order to obtain
weak m-mitoticity it remains to argue that both sets belong to NEXP. In our proof we argue that
appropriate modified sets L1 and L2 have all the properties we described so far and additionally
belong to NEXP.

Proof of Theorem 4.2. Let K be the standard NEXP-complete set. Let L be any given NEXP-
complete set. We show that L is weakly m-mitotic.

K ′ df=0K ∪ 1K

is NEXP-complete. K ′ reduces to L via some f ∈ PF. L reduces to K (really K, not K ′) via some
g ∈ PF. Choose k such that f and g can be computed in time O(nk). Since every NEXP-complete
sets are complete via 1-1 reductions [GH92], we can assume f and g to be 1-1.

L0
df= {y

∣∣ ∃x, |x| ≤ |y|k, f(0x) = y}
L1

df= {y
∣∣ ∃x, |x| ≤ |y|k, f(1x) = y}

Observe that L0, L1 ∈ EXP. Define the following function:

f0(x) df=

 f(0x) : if |f(0x)|k ≥ |x|,

f0(g(f(0x))) : otherwise.

Note that if |f(0x)|k < |x| then |g(f(0x))| ≤ |f(0x)|k < |x|. So, for some y, |y| < |x|, f0(x) = f0(y).
So, the recursion terminates. Thus, f0 ∈ PF. Note that for every x there exists some y such that
f0(x) = f(0y) and |f(0y)|k ≥ |y|. This implies that for all x, f0(x) ∈ L0.

Similarly define f1 as

f1(x) df=

 f(1x) : if |f(1x)|k ≥ |x|,

f1(g(f(1x))) : otherwise.

By following an argument similar to the one above we can show that f1 ∈ PF and that f1(Σ∗) ⊆ L1.
We first show K≤p

mL via reduction f0. This is done by induction on the number of recursion
steps r in the definition of f0(x). If r = 0, then f0(x) = f(0x) and therefore,

x ∈ K ⇔ 0x ∈ 0K ⇔ 0x ∈ K ′ ⇔ f0(x) = f(0x) ∈ L.

If r ≥ 1 then f0(x) = f0(g(f(0x))). Let y = g(f(0x)). By our induction hypothesis, y ∈ K ⇔
f0(y) ∈ L. So we obtain

x ∈ K ⇔ 0x ∈ 0K ⇔ 0x ∈ K ′ ⇔ f(0x) ∈ L

⇔ y = g(f(0x)) ∈ K ⇔ f0(y) = f0(g(f(0x))) = f0(x) ∈ L.
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Thus, K≤p
mL via f0. Analogously we show K≤p

mL via f1.
Since K≤p

mL via f0 and f0(Σ∗) ⊆ L0 we have

• K≤p
m(L ∩ L0) via f0.

Since f is 1-1, L0 and L1 are disjoint. Since f1(Σ∗) ⊆ L1, we have f1(Σ∗) ⊆ L0. Combining this
with K≤p

mL via f1, we have:

• K≤p
m(L ∩ L0) via f1.

Therefore (L∩L0) and (L∩L0) are each NEXP-hard. Both sets are in NEXP since L0 ∈ EXP and
L ∈ NEXP. �

5 Immunity

In Glaßer et al. [GPSS06], the authors proved immunity results for NP-complete sets under the
assumption that certain average-case hardness conditions are true. For example, they show that
if one-way permutations exist, then NP-complete sets are not 2nε

-immune. Here we obtain a non-
immunity result for NP-complete sets under the assumption that the following worst-case hardness
hypothesis holds.

Hypothesis H: There is an NP machine M that accepts 0∗ and no P-machine can compute
its accepting computations. This means that for every polynomial-time machine N there exist
infinitely many n such that N(0n) is not an accepting computation of M(0n).

Though the hypothesis looks verbose, we note that it is implied by a simply stated and believable
hypothesis.

Observation 5.1. If there is a tally language in NP ∩ coNP− P, then Hypothesis H is true.

We show that if Hypothesis H holds, then NP-complete languages are not 2n(1+ε)-immune.
Ganesan and Homer [GH92] defined a function f to be exponentially honest if ∀x, 2|f(x)| ≥ |x|.

Theorem 5.1. If Hypothesis H holds, then, for every ε > 0, NP-complete languages are not
2n(1+ε)-immune.

Proof. Let L be any NP-complete language. We first show that there is a reduction from
0∗ to L that is infinitely often exponentially honest. We then use this fact to show that L is not
2n(1+ε)-immune.

Lemma 5.1. Assume that the hypothesis holds. For every NP complete language L, there exists
a constant c > 0, such that for every k′ > 0, there exists a reduction f from 0∗ to L such that for
infinitely many n, |f(0n)| > k′ log n. The reduction f can be computed in time O(nk′+c).

Before giving a formal proof, we mention the intuition behind the proof. Consider the left-
set [OW91] of an NP-machine M . Suppose there is a reduction from this set to L that shrinks
inputs to logarithmically small strings. This can be interpreted as “there is a reduction from the
left-set to a sparse language”. Now we can apply Ogihara-Watanabe type arguments to show that
accepting computations of M can be computed in polynomial time. If M is the machine from the
Hypothesis H, then this gives a contradiction. Thus, any reduction from the left-set of M to L must
be exponentially honest infinitely often. However, this does not quite give an exponentially-honest
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reduction from 0∗ to L. We modify Ogihara-Watanabe construction to exhibit a reduction from 0∗

to L that is exponentially honest infinitely often.
Proof. Let M be the NP machine from the hypothesis. Let an be the lexicographically

maximum accepting computation of M on 0n. Consider the left-set

S = {〈0n, y〉 | y ≤ an},

where ≤ is the dictionary order on strings with 0 < 1. It is obvious that S is in NP. Let g be an
m-reduction from S to L. We now describe a reduction from 0∗ to L with the desired properties.
Let T be the computation tree of M on 0n. Without loss of generality, assume T is a complete
binary tree, and let d denote the depth of T . The reduction traverses T in stages. At stage k it
maintains a list of nodes at level k. The reduction also maintains a variable called next. Stage 1,
places the root of the tree into list1, and sets next to 1m+1, where m is the length of an accepting
computation of M on 0n. We now describe Stage k > 1.

1. Let listk−1 = 〈u1, u2, . . . , ul〉. Let v1, v2, . . . , v2l be the children of nodes in listk−1. Assume
v1 < v2 < · · · < v2l. Set listk = 〈v1, . . . , v2l〉.

2. Consider the first j such that |g(〈0n, vj〉)| > k′ log n.

3. If such j exists, then let listk = 〈v1, v2, . . . , vj−1〉 and next = vj .

4. Prune listk, i.e., if there exist i < r such that g(〈0n, vi〉) = g(〈0n, vr〉), then remove
vi, vi+1, . . . , vr−1 from listk.

The following is the desired reduction f from 0∗ to L. Let x be the input and let n = |x|.

• If x 6= 0n, then output a fixed string not in L.

• Run Stages 1, . . . , d.

• All nodes in listd are leaf nodes. If listd contains an accepting node, then output a fixed
string in L, else output g(〈0n, next〉).

We claim that the above reduction has the desired properties. It is obvious that the reduction
is correct on non-tally strings. So we focus only on tally strings. We show a series of claims that
help us in showing the correctness of the reduction. Let max(listk) denote the maximum node of
listk.

Observation 5.2. Consider Step 4 of Stage k, if a node vm is removed from listk, then the
rightmost accepting computation of M on 0n does not pass through vm.

Proof. Step 4 removes nodes vi, . . . , vr−1 from listk, if there exist i < r such that
g(〈0n, vi〉) = g(〈0n, vr〉). Assume that the right most accepting computation passes through a
node vm such that i ≤ m ≤ r − 1. By definition of S, 〈0n, vi〉 ∈ S and 〈0n, vr〉 /∈ S. Since, g is an
m-reduction from S to L, and g(〈0n, vi〉) = g(〈0n, vr〉), this is a contradiction. �

Observation 5.3. For every k, at the end of stage k, max(listk) < next.
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Proof. We prove the claim by induction. At the end of Stage 1, list1 contains the root and
next is 1m+1. Thus the claim holds after Stage 1. Assume that the claim holds at the end of
Stage k − 1. We consider two cases: First assume that the value of next does not change during
Stage k. Observe that every node in listk is a children of some node in listk−1. Since every node
in listk−1 is smaller than next, the claim follows in this case. Suppose the value of next changes
during Stage k. This happens in Step 3, where next is set to vj and listk becomes 〈v1, · · · , vj−1〉.
In the later stages of Stage k, listk will be a subset of 〈v1, · · · , vj−1〉. Thus the claim holds in this
case also. �

Claim 5.1. For every k ≥ 1, the following statement holds at the end of Stage k: There is no node
v such that rightmost accepting computation passes through v and max(listk) < v < next.

Proof. We prove the claim by induction. After Stage 1, list1 contains the root node and
next = 1m+1. Since the rightmost accepting computation passes through the root the claim holds
after Stage 1. Assume that the claim holds after Stage k − 1. We again consider two cases.

First, assume that the value of next does not change during Stage k. After Step 1, listk contains
all children of all nodes of listk−1. Thus the claim holds after Step 1. During Step 4, the algorithm
removes some nodes from listk. However, by Observation 5.2, the rightmost accepting computation
can not pass through any of the removed nodes. Thus the claim holds after Stage k.

Now assume that the value of next changes during Stage k. This happens in Step 3, and
when it happens listk = 〈v1, · · · , vj−1〉 and next = vj . Since there is no node with vj−1 < v < vj

the claim holds at this time. During Step 4, the algorithm may remove some nodes from listk.
Again, by Observation 4, the rightmost accepting computation can not pass through any of these
removed nodes. Thus the claim holds in this case also. �

Claim 5.2. The above reduction f is correct, i.e., for every n, f(0n) is a string in L.

Proof. Note that f(0n) is a fixed string in L, if listd contains an accepting leaf node. In this
case the reduction is obviously correct. Suppose none of the leaf nodes in listd is an accepting
node. Then the right most accepting computation does not pass through any node in listd. By the
previous claim, at the end of Stage d, the right most accepting computation either passes through
next or lies to the right of next. Thus 〈0n, next〉 ∈ S. Since the reduction outputs g(〈0n, next〉),
and g is an m-reduction from S to L, the claim follows. �

Now we show that the reduction runs in polynomial time. Assume that, for any node u ∈ T ,
the computation of g(〈0n, u〉) takes nr steps. Let the depth of the tree T be nl. We define c to be
r + l. Note that the constant c depends only on L, and is independent of k′.

Claim 5.3. The running time of the reduction is O(nk′+c).

Proof. We first bound the size of listk. Consider Stage k− 1. Note that after Step 3, for every
node u in listk, |g(〈0n, u〉)| ≤ k′ log n. After Step 4, for every pair of nodes u and v in listr, we
have g(〈0n, u〉) 6= g(〈0n, v〉). Thus, after Stage k − 1, |listk−1| ≤ nk′ . Thus after Step 1 of Stage k,
|listk| ≤ 2nk′ .

Now we calculate the running time for Stage k. Observe that Step 2 is the most expensive step,
where the reduction g is applied on every tuple 〈0n, vj〉 with vj ∈ listk. At this time |listk| ≤ 2nk′ .
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Thus time required for this computation is O(nk′+r). So, Stage k requires O(nk′+r) steps. Since
there are d = nl stages, the time taken for the reduction is O(nk′+r+l) = O(nk′+c). �

Claim 5.4. For infinitely many n, the reduction outputs a string whose length is bigger than k′ log n.

Proof. Let 0n be the input to the reduction. The reduction outputs a fixed string from L,
only when it discovers an accepting computation of M(0n), else it outputs g(〈0n, next〉). Since
the reduction runs in polynomial time, the reduction cannot discover an accepting computation of
M(0n) for all but finitely many n. Otherwise, it will contradict Hypothesis H. Thus for infinitely
many n, the reduction outputs g(〈0n, next〉). Since the reduction is correct, the value of next can
not be 1m+1. Thus next is set to a node v during some stage. However, the reduction sets next to
v only if |g(〈0n, v〉)| > k′ log n. Thus for infinitely many n, the reduction outputs a string whose
length is bigger than k′ log n. �

This concludes the proof of Lemma 5.1. �

Combing the following lemma with Lemma 5.1 completes the proof of the theorem.

Lemma 5.2. Let L be any NP-complete language. If there is a constant c > 0 such that for every
k > 0 there is a reduction f from 0∗ to L such that, for infinitely many n, |f(0n)| > k log n, and f
can be computed in time O(nk+c), then for every ε > 0, L is not 2n(1+ε)-immune.

Proof. Given ε > 0, pick k such that k > (c + 1)/ε. There is a reduction f from 0∗ to L such
that for infinitely many n, |f(0n)| > k log n. From this it follows that there exist infinitely many
x, |x| = m, for which there exist n < 2m/k such that f(0n) = x. Consider the algorithm that, on
input x, |x| = m, behaves as follows:

1. For i = 1 to 2m/k, if f(0i) = x then accept x and halt.

2. Reject x.

The above algorithm accepts a string x only when it finds that for some i, f(0i) = x. Since f
is an m-reduction from 0∗ to L, the above algorithm accepts a subset of L. There exist infinitely
many x for which f(0i) = x for some i, 1 ≤ i ≤ 2m/k. So, the above algorithm accepts an infinite
set. The most time-consuming step of the algorithm is computation of f(0i) and this requires ik+c

steps. Since i ranges between 1 and 2m/k, the running time of the algorithm is 2m(1+ c+1
k

). Since
c+1
k < ε, the time taken by the algorithm is 2m(1+ε). Thus L is not 2n(1+ε)-immune. �

Theorem 5.1 follows from the Lemmas 5.1 and 5.2. �

Corollary 5.1. If there is a tally language in NP∩ coNP−P, then, for every ε > 0, NP-complete
languages are not 2n(1+ε)-immune.

Next we consider the possibility of obtaining an unconditional result regarding non-immunity
of NP-complete languages. We show that for certain type of NP-complete languages we get an
unconditional result.
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Definition 5.1. A language L does not have superpolynomial gaps, if there exists k > 0 such that
for all but finitely many n, there exists a string x in L such that n ≤ |x| ≤ nk.

We show that NP-complete languages that have no superpolynomial gaps are not immune.

Theorem 5.2. If L is an NP-complete language that has no superpolynomial gaps, then for every
ε > 0, L is not 2n(1+ε)-immune.

Proof. Suppose there exists a 2n(1+ε)-immune NP-complete language L that does not have
superpolynomial gaps. Thus there exists k > 0 such that for all but finitely many n, there
exists a string x in L such that n ≤ |x| ≤ nk. Consider a machine N that on input 0n, guesses
strings x and w and accepts if n ≤ |x| ≤ nk and w witnesses that x ∈ L. Clearly N accepts
0∗, and if there is a machine that computes infinitely many accepting computations of N , then
L is not 2n(1+ε)-immune. Thus the Hypothesis H holds. By Theorem 5.1, we have a contradiction. �

The above theorem prompts the following question: Are there NP-complete languages with
superpolynomial gaps? We have the following result. Given two complexity classes A and B, we
say A ⊆ io-B, if for every language A ∈ A, there exists a language B ∈ B such that for infinitely
many n, An = Bn.

Theorem 5.3. If NP has a complete language with superpolynomial gaps, then for every ε > 0,
NP ⊆ io-DTIME(2nε

).

Proof. Assume L is an NP-complete language with superpolynomial gaps, let L ∈ DTIME(2nk
).

Let S be any language in NP. Since L is NP-complete, S is m-reducible to L via a reduction f
whose running time is nr. Note that for every x, |f(x)| ≤ |x|r. Without loss of generality, assume
r > k, and let l = r/ε. Since L has superpolynomial gaps, for infinitely many n, L is empty between
lengths n1/l and nl. Consider the following algorithm M .

1. Input x, |x| = n.

2. Compute f(x).

3. If n1/l ≤ |f(x)|, then reject x.

4. Else accepts x if and only if f(x) belongs to L.

The algorithm checks for membership of f(x) in L, only when |f(x)| < n1/l. The time taken
for this step is 2|f(x)|k ≤ 2|f(x)|r ≤ 2nr/l

= 2nε
. Thus the language accepted by the above machine

M belongs to DTIME(2nε
).

We now claim that L(M) equals S at infinitely many lengths. Since L has superpolynomial
gaps, for infinitely many n, L is empty between lengths n1/l and nl. Consider one such length n.
Observe that for any string x of length n, |f(x)| ≤ nr ≤ nl. If n1/l ≤ |f(x)| ≤ nl, then x /∈ S.
In this case the algorithm decides x correctly. If |f(x)| < n1/l, the algorithm accepts x if and
only if f(x) ∈ L. Thus the algorithm is correct on x. Thus at length n, Sn = L(M)n. Thus
S ∈ io-DTIME(2nε

). �

Combining Theorems 5.2 and 5.3 we have the following corollary.

Corollary 5.2. If for some δ > 0, NP 6⊆ io-DTIME(2nδ
), then for every ε > 0, no NP-complete

language is 2n(1+ε)-immune.
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6 Robustness

Recently Buhrman and Torenvliet [BT04] proved that T-complete sets for EXP are robust against
log-dense sets in P. Using similar ideas, we can prove the same for NP. The proof is easier though,
due to the fact that search reduces to decision for all T-complete sets for NP [HS01]. A set S is
log-dense if there is a constant c > 0 such that for all n, ‖S≤n‖ ≤ c log n.

Theorem 6.1. If a set A is T-complete for NP and S is a log-dense set in P, then A − S is
T-complete for NP.

Proof. Let A be T-complete for NP and let S be a log-dense set in P. Then A − S belongs
to NP, because S belongs to P. Now we show that A is T-reducible to A − S. Consider the
machine T that reduces search to decision for A in time p(n), for some polynomial p. We may
assume that T never asks the same query twice, since T can hold a list that stores queries that
have been asked together with the corresponding answers. Let c > 0 be a constant such that for
all n, ‖S≤n‖ ≤ c log n. Then the following machine M is a T-reduction from A to A− S:

1 Input x
2 For all bit strings s of length c log p(|x|) do
3 k ←− 0;
4 Repeat
5 Simulate T on x until T makes the next query q;
6 If q 6∈ S then continue simulation with YES iff q ∈ A− S;
7 Else
8 Continue the simulation with YES iff sk = 1;

//sk is the k-th bit of s
9 k ←− k + 1;
10 Until T outputs ys or rejects;
11 If T outputs ys and ys is a witness of x then ACCEPT;
12 Endfor;
13 REJECT.

If q /∈ S, then a query to A − S has the same answer as a query to A. So in this case M ’s
simulation of T behaves correctly. At most c log p(|x|) queries q belong to S. For each of these
queries, the bit string s determines the response. If x /∈ A, then no witness ys for x exists. So in
this case M does not accept x. If x ∈ A, then the bit string s that represents the correct answers to
the queries that are in S will make T output a correct witness ys. Hence, M accepts x. Therefore,
the algorithm is correct.

For the running time, there are at most p(|x|)c iterations of the outer loop, each of which is
a simulation of T on x, which costs p(|x|) time. Hence, the total running time is bounded by a
polynomial in |x|. �
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