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Abstract. We investigate the question whether NE can be separated
from the reduction closures of tally sets, sparse sets and NP. We show
that (1) NE 6⊆ RNP

no(1)−T
(TALLY); (2)NE 6⊆ RSN

m (SPARSE); and (3)

NE 6⊆ PNP
nk−T /nk for all k ≥ 1. Result (3) extends a previous result by

Mocas to nonuniform reductions. We also investigate how different an
NE-hard set is from an NP-set. We show that for any NP subset A of
a many-one-hard set H for NE, there exists another NP subset A′ of H
such that A′ ⊇ A and A′ −A is not of sub-exponential density.

1 Introduction

This paper continues a line of research that tries to separate nondeterministic
complexity classes in a stronger sense, i.e., separating nondeterministic complex-
ity classes from the reduction closure of classes with lower complexity. We focus
on the class NE of nondeterministically exponential-time computable sets. Two
most interesting but long standing open problems regarding NE are whether
every NE-complete set is polynomial-time Turing reducible to an NP set and
whether it is polynomial-time Turing reducible to a sparse set. The latter ques-
tion is equivalent to whether every NE-complete set has polynomial-size circuits,
since a set is polynomial-time Turing reducible to a sparse set if and only if it
has polynomial-size circuits [1]. We show results that generalize and/or improve
previous results regarding these questions and help to better understand them.
In complexity theory, a sparse set is a set with polynomially bounded density.
Whether sparse sets are hard for complexity classes is one of the central prob-
lems in complexity theory [13, 17, 12, 5]. In particular, Mahaney [13] showed that
sparse sets cannot be many-one complete for NP unless P=NP. In Section 3 we
study the question whether sparse sets can be hard for NE under reductions
that are weaker than the polynomial-time Turing reductions. We prove that
no NE-hard set can be reducible to sparse sets via the strong nondeterministic
polynomial-time many-one reduction. For a special case of sparse sets, tally sets,
we strengthen the result to the nondeterministic polynomial-time Turing reduc-
tions that make at most no(1) many queries. These are the main results of this
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paper. Note that generalizing these results to polynomial-time Turing reductions
is hard since already the deterministic polynomial-time Turing reduction closure
of spare sets as well as that of p-selective sets equals P/poly [10], and it is not
even known whether NE 6⊆ P/poly.

We present a new result on the aforementioned long standing open question
whether every NE set is polynomial-time Turing-reducible to a NP set. Fu et al.
[7] first tackled this problem and showed that NE 6⊆ Pno(1)−T (NP). Their result
was later improved by Mocas [14] to NEXP 6⊆ Pnc−T (NP) for any constant
c > 0. Mocas’s result is optimal with respect to relativizable proofs, as Buhrman
and Torenvliet [3] constructed an oracle relative to which NEXP = PNP. In
this paper, we extend Mocas’s result to nonuniform polynomial-time Turing
reductions that uses a fixed polynomial number of advice bits. More precisely,
we show that NE 6⊆ Pnk−T (NP)/nk′ for any constant k, k′ > 0. Since it is
easy to show for any k > 0 that Pnk−T (NP ⊕ P-Sel) ⊆ Pnk−T (NP)/nk, where
P-Sel denotes the class of p-selective sets, we obtain as a corollary that NE 6⊆
Pnk−T (NP⊕ P-Sel).

We investigate a different but related question. We study the question of how
different a hard problem in NE is from a problem in NP. One way to measure the
difference between sets is by using the notion of closeness introduced by Yesha
[19]. We say two sets are f -close if the density of their symmetric difference if
bounded by f(n). The closeness to NP-hard sets were further studied by Fu [6]
and Ogihara [16]. We show that for every ≤P

m-complete set H for NE and every
NP-set A ⊆ H, there exists another NP-set A′ ⊆ H such that A ⊆ A′ and A′

is not subexponential-close to A. For coNE-complete sets we show a stronger
result. We show that for every ≤p

m-complete set H for coNE and every NP-set
A ⊆ H, there exists another NP-set A′ ⊆ H such that A ∩ A′ = ∅ and A′ is
exponentially dense.

2 Notations

We use standard notations [11, 9] in structrual complexity. All the languages
throughout the paper are over the alphabet Σ = {0, 1}. For a string x, |x| is
the length of x. For a finite set A, ||A|| is the number of elements in A. We
use Σn to denote the set of all strings of length n and for any language L,
L=n = Ln = L∩Σn. We fix a pairing function 〈·〉 such that for every u, v ∈ Σ∗,
|〈u, v〉| = 2(|u|+ |v|). For a function f(n) : N → N , f is exponential if for some
constant c > 0, f(n) ≥ 2nc

for all large n, and is sub-exponential if for every
constant c > 0, f(n) ≤ 2nc

for all large n. A language L is exponentially dense
if there exists a constant c > 0 such that ||L≤n|| ≥ 2nc

for all large n. Let
Density(d(n)) be the class of languages L such that ||L≤n|| ≤ d(n) for all large
n. For any language L, define its complementary language, denoted by L, to be
Σ∗ − L.

For a function t(n) : N → N , DTIME(t(n)) (NTIME(t(n)) is the class of
languages accepted by (non)-deterministic Turing machines in time t(n). P (NP)
is the class of languages accepted by (non-)deterministic polynomial-time Turing
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machines. E (NE) is the class of languages accepted by (non-)deterministic Tur-
ing machines in 2O(n) time. EXP (NEXP) is the class of languages accepted by
(non-)deterministic Turing machines in time 2nO(1)

. TALLY is the class of lan-
guages contained in 1∗ and SPARSE is the class of languages in ∪∞c=1Density(nc).
Clearly, TALLY is a subclass of SPARSE. We use P-Sel to denote the class
of p-selective sets [18]. For any language L and function h : N 7→ N , let
L/h = {x : 〈x, h(|x|)〉 ∈ L}. For any class C of languages, coC is the class
of languages L such that L ∈ C and C/h is the class of languages L such that
L = L′/h for some L′ ∈ C.

For two languages A and B, define the following reductions: (1) A is polynomial-
time many-one reducible to B, A ≤p

m B, if there exists a polynomial-time com-
putable function f : Σ∗ 7→ Σ∗ such that for every x ∈ Σ∗, x ∈ A if and only
if f(x) ∈ B. (2) A is polynomial-time truth-table reducible to B, A ≤p

tt B, if
there exists a polynomial-time computable function f : Σ∗ 7→ Σ∗ such that
for every x ∈ Σ∗, f(x) = 〈y1, y2, . . . , ym, T 〉, where yi ∈ Σ∗ and T is the encod-
ing of a cicuit, and x ∈ A if and only if T (B(y1)B(y2) · · ·B(ym)) = 1. (3) A is
polynomial-time Turing reducible to B, A ≤p

T B, if there exists a polynomial-time
oracle Turing machine M such that MB accepts A. (4) A is exponential-time
Turing reducible to B, A ≤EXP

T B, if there exists an exponential-time oracle
Turing machine M such that MB accepts A. (5) We say A ≤p

1 B if A ≤p
m via a

reduction f that is one-to-one.
For a nondeterministic Turing machine M , denote M(x)[y] to be the com-

putation of M with input x on a path y. If M(x) is an oracle Turing machine,
MA(x)[y] is the computation of M with input x on a path y with oracle A.

For two languages A and B, define the following nondeterministic reduc-
tions: (1) A is nondeterministically polynomial-time many-one reducible to B,
A ≤NP

m B, if there exists a polynomial-time nondeterministic Turing machine
M and a polynomial p(n) such that for every x, x ∈ A if and only if there
exists a path y of length p(|x|) with M(x)[y] ∈ B. (2) A is nondeterminis-
tically polynomial-time truth-table reducible to B, A ≤NP

tt B, if there exists a
polynomial-time nondeterministic Turing machine M and a polynomial p(n)
such that for every x ∈ Σ∗, x ∈ A if and only if there is at least one y ∈ Σp(|x|)

such that M(x)[y] = (z1, · · · , zm, T ), where zi ∈ Σ∗, T is the encoding of a
circuit, and T (B(z1), · · · , B(zm)) = 1. (3) A is nondeterministically polynomial-
time Turing reducible to B, A ≤NP

T B, if there exists a polynomial-time nondeter-
ministic oracle Turing machine M and a polynomial p such that for every x ∈ Σ∗,
x ∈ A if and only if there is at least one y ∈ Σp(|x|) such that MB(x)[y] accepts.
(4) A is strongly nondeterministically polynomial-time many-one reducible to B,
A ≤SN

m B, if there exists a polynomial-time nondeterministic Turing machine
M() such that x ∈ A if and only if 1) M(x)[y] ∈ B for all y that M(x)[y] is not
empty; 2) M(x)[y] is not empty for at least one y ∈ ΣnO(1)

.
For a function g(n) : N → N , we use A ≤NP

g(n)−tt B to denote that A ≤NP
tt

B via a polynomial-time computable function f such that for every x ∈ Σn,
f(x, y) = (z1, · · · , zm, T ) and m ≤ g(n). We use A ≤NP

btt B to denote that A ≤NP
c−tt

B for some constant c > 0. For t ∈ {p, NP, EXP}, we use A ≤t
g(n)−T to denote
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that A ≤t
T via a Turing machine M that makes at most g(n) queries on inputs

of length n.
For a class C of languages, we use Rt

r(C) (Rt
g(n)−r(C)) to denote the reduction

closure of C under the reduction ≤t
r (≤t

g(n)−r), where r ∈ {p,NP, SN,EXP}
and r ∈ {m, tt, T}. We also use conventional notations for common reduction
closures such as PNP = PT (NP) = Rp

T (NP) and EXPNP
nk−T = EXPnk−T (NP) =

REXP
nk−T (NP). For a function l : N 7→ N and a reduction closure R, we use

R[l(n)] to denote the same reduction closure as R except that the reductions
make queries of length at most l(n) on inputs of length n.

A function f(n) from N to N is time constructible if there exists a Turing
machine M such that M(n) outputs f(n) in f(n) steps.

3 Separating NE from RNP
no(1)−T

(TALLY)

In this section, we present the main result that NE cannot be reduced to TALLY
via polynomial time Turing reduction with the number of queries bounded by
n1/α(n) for some polynomial time computable nondecreasing function α(n) (for
example, α(n) = log log n). The proof is a combination of the translational
method and the point of view from Kolmogorov complexity.

Lemma 1. Assume that function g(n) : N → N is nondecreasing unbounded
and function 2bnc

g(n)/2 is time constructible. Then there exists a language L0 ∈
DTIME(2ng(n)

) such that ||Ln
0 || = 1, and for every Turing machine M , M cannot

generate any sequence in Ln
0 with any input of length n− log n in 2nO(1)

time for
large n.

Proof. We use the diagonal method to construct the language L0. Let M1, · · · ,
Mk, · · · be an enumeration of all Turing transducers.

Construction:
Input n,
Simulate each machine Mi(y) in 2ng(n)/2

steps for i = 1, · · · , log n and all y
of length n− log n.

Find a string x of length n such that x cannot be generated by any machine
among M1, · · · ,Mlog n with any input of length at most n− log n.

Put x into L0.
End of Construction

There are at most 2n−log n+1 strings of length at most n− log n. Those log n
machines can generate at most 2n−log n+1 log n < 2n strings. Since generating
each string takes 2ng(n)/2

steps. This takes 2n · 2ng(n)/2
< 2ng(n)

time for all large
n. 2

Theorem 1. Assume that t(n) and f(n) are time constructible nondecreas-
ing functions from N to N such that 1) t(f(n)) is Ω(2ng(n)

) for some non-
decreasing unbounded function g(n), and 2) for any constant c > 0, f(n) ≤
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t(n)1/c and f(n) ≥ 4n for all large n. If q(n) is a nondecreasing function with
q(f(n))(log f(n)) = o(n), then NTIME(t(n)) 6⊆ RNP

q(n)−T (TALLY).

Proof. We apply a translational method to obtain such a separation. We prove
by contradiction and assume that NTIME(t(n)) ⊆ RNP

q(n)−T (TALLY). Without
loss of generality, we assume that q(n) ≥ 1.

Let L be an arbitrary language in DTIME(t(f(n)). Define L1 = {x10f(|x|)−|x|−1 :
x ∈ L}. It is easy to see that L1 is in DTIME(t(n)) since L is in DTIME(t(f(n))).

By our hypothesis, there exist a set A1 ∈ TALLY such that L1 ≤NP
q(n)−T A1

via some polynomial time nondeterministic oracle Turing machine M1, which
runs in polynomial nc1 time for all large n.

Let L2 = {(x, (e1, · · · , em, a1 · · · am)) : there is a path y such that
MA1

1 (x10f(|x|)−|x|−1)[y] accepts and queries 1e1 , · · · , 1em in path y and receives
answers a1 = A1[1e1 ], · · · , am = A1[1em ] respectively }. Since M1 runs in time
nc1 and f(n) = t(n)o(1), we have L2 is in NTIME(f(n)c1) ⊆ NTIME(t(n)).

By our hypothesis, there exists a set A2 ∈ TALLY such that L2 ≤NP
q(n)−T A2

via some polynomial time nondeterministic oracle Turing machine M2().
Therefore, for every string x, in order to generate x ∈ L, we need to provide

(e1, · · · , em, a1 · · · am) and (z1, · · · , zt, b1 · · · bt) such that there exists a path y1

that MA1
1 (x10f(|x|)−|x|−1)[y1] queries 1e1 , · · · , 1em with answers ai = A1(1ei) for

i = 1, · · · ,m and there exists a path y2 that MA2
2 (x, (e1, · · · , em, a1 · · · am))[y2]

queries 1z1 , · · · , 1zt with bi = A2(1zi) for i = 1, · · · , t. Let nc2 be the polynomial
time bound for M2. We have the following Turing machine M∗.

M∗():
Input: a string of u of length o(n).
If u does not have the format (e1, · · · , em, a1 · · · am)(z1, · · · , zt, b1 · · · bt),
then return λ (empty string).
Extract (e1, · · · , em, a1 · · · am) and (z1, · · · , zt, b1 · · · bt) from u.
For each x of length n

Simulate MA2
2 (x, (e1, · · · , em, a1 · · · am)) with the query help from

(z1, · · · , zt, b1 · · · bt) (by assuming that bi = A2(1zi) for i = 1, · · · , t).
Output x if it accepts.

It is easy to see that M∗ takes 2nO(1)
time. There exists a path y1 such

that MA1
1 (x10f(|x|)−|x|−1)[y1] makes at most q(f(n)) queries, where n = |x|.

So, we have m ≤ q(f(n)), ei ≤ f(n)c1 and |ei| ≤ c1(log f(n)). Therefore,
(e1, · · · , em, a1, · · · , am) has length h ≤ 2(O(q(f(n)) log f(n)) + q(f(n))) =
O(q(f(n)) log f(n)) = o(n). There exists a path y2 such that MA1

2 ((x, (e1, · · · ,
em, a1 · · · am))[y2] makes at most q(n + h) queries to 1z1 , · · · , 1zt . The length of
(x, (e1, · · · , em, a1 · · · am)) is at most 2(n + h) ≤ 4n. So, t ≤ q(4n). Therefore,
(z1, · · · , zt, b1 · · · bt) has length q(4n) log((4n)c2) = O(q(f(n)) log f(n)) = o(n).
Therefore, the total length of (e1, · · · , em, a1 · · · am) and (z1, · · · , zt, b1 · · · bt) is
o(n). So, (e1, · · · , em, a1 · · · am) and (z1, · · · , zt, b1 · · · bt) can be encoded into a
string of length o(n). Let L be the language L0 in Lemma 1. This contradicts
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Lemma 1 since a string of length n can be generated by M∗() with the input
(e1, · · · , em, a1 · · · am)(z1, · · · , zt, b1 · · · bt) of length o(n). 2

Corollary 1. NE 6⊆ RNP
n1/α(n)−T

(TALLY) for any polynomial computable non-
decreasing unbounded function α(n) : N → N .

Proof. Define g(n) =
⌊√

α(n)
⌋
, f(n) = ng(n), q(n) = n

1
α(n) , and t(n) = 2n. By

Theorem 1, we have that NTIME(t(n)) 6⊆ RNP
q(n)−T (TALLY). We have that NE 6⊆

RNP
n1/α(n)−T

(TALLY) since RNP
n1/α(n)−T

(TALLY) is closed under ≤P
m reductions

and there exists a NE-≤p
m-hard set in NTIME(t(n)). 2

It is natural to extend Theorem 1 by replacing TALLY by SPARSE. We feel
it is still hard to separate NE from RNP

m (SPARSE). The following theorem shows
that we can separate NE from RSN

m (SPARSE). Its proof is another application
of the combination of translational method with Kolmogorov complexity point
of view.

Theorem 2. Assume that t0(n) and t(n) are time constructible nondecreasing
functions from N to N such that for any positive constant c, t0(n)c = O(t(n))
and t(t0(n)) > 2nα(n)

for some nondecreasing unbounded function α(n), and d(n)
is a nondecreasing function such that d((t0(n))c) = 2no(1)

. Then NTIME(t(n)) 6⊆
RSN

m (Density((d(n))).

Proof. Assume that NTIME(t(n)) ⊆ RSN
m (Density(d(n)). We will derive a con-

tradiction.
Construction of L=n: Let S be the sequence of length n1+ 1

k in L0 of Lemma 1
with g(n) = α(n), where n = mk and k is a constant (for example k =
100). Assume that S = y1y2 · · · ym2 , where each yi is of length mk−1. Let
L=n = {yi1yi2 · · · yim : 1 ≤ i1 < i2 < · · · < im ≤ m2}. Define block(x) =
{yi1 , yi2 , · · · , yim} if x = yi1yi2 · · · yim . Clearly, L=n contains

(
m2

m

)
elements.

Define L1 = {x10t0(|x|)−|x|−1 : x ∈ L}. It is easy to see that L1 is in
DTIME(t(n)) since L is in DTIME(t(t0(n))).

By our hypothesis, there exists a set A1 ∈ Density(d(n)) such that L1 ≤SN
m

A1 via some polynomial time nondeterministic Turing machine f(), which runs
in polynomial time nc1 . For a sequence z and integer n, define H(z, n) = {x ∈
Ln : f(x)[y] = z for some path y}. Therefore, there are a sequence z such that

||H(z, n)|| ≥ (m2

m )
d((t0(n))c1 ) .

Let L2 = {(x, y) : |x| = |y| and there are paths z1 and z2 such that
f(x10t0(|x|)−|x|−1)[z1] = f(y10t0(|y|)−|y|−1)[z2]}. Since f() runs in polynomial
time and t0(n)c1 = O(t(n)), we have L2 ∈ NTIME(t(n)).

By our hypothesis, there exists a set A2 ∈ Density(d(n)) with such that
L2 ≤SN

m A2 via some polynomial time nondeterministic Turing machine u().
Define L2(x) = {x1 : (x, x1) ∈ L2}. There exists x ∈ L=n such that

||L2(x)|| ≥ (m2

m )
d((t0(n))c1 ) .
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Define L′2(x, x′) = {x2 : u(x, x′)[z′] = u(x, x2)[z2] for some paths z′ for
u(x, x′) and z2 for u(x, x2)}. There exists x′ ∈ L2(x) such that L′2(x, x′) contains

at least (m2

m )
d((t0(n))c1 )d((t0(n))c2 ) elements. We fix x and x′.

Since ||block(x) ∪ block(x′)|| ≤ 2m, those 2m strings in block(x) ∪ block(x′)

can generate at most
(
2m
m

)
<

(m2

m )
d((t0(n))c1 )d((t0(n))c2 ) sequences of length n in L=n

for all large n. Therefore, there is a string x3 ∈ L=n such that x3 ∈ L′2(x, x′)
and block(x3) 6⊆ block(x) ∪ block(x′).

This makes it possible to compress S. We can encode the strings x, x′ and
those blocks of S not in x3. The total time is at most 2nO(1)

to compress S.
Let yi1 < yi2 < · · · < yim2 be the sorted list of y1, y2, · · · , ym2 . Let (i1, i2, · · · ,

im2) be encoded into a string of length O(m2(log n)). Define Y = yj1yj2 · · · yjt
,

where {yj1 , yj2 , · · · , yjt} = {y1, · · · , ym2} − (block(x) ∪ block(x′) ∪ block(x3)).
We can encode (i1, i2, · · · , im2) into the format 0a10a2 · 0au11. We have se-

quence Z = (i1, i2, · · · , im2)xx′Y to generate S in 2nO(1)
time. Since at least

one block yi among y1, y2, · · · , ym2 is missed in block(xx′Y ), |yi| = mk−1, and
|(i1, i2, · · · , im2)| < m3, it is easy to see that |Z| ≤ n − (log n)2. This brings a
contradiction. 2

Corollary 2. NE 6⊆ RSN
m (SPARSE).

Proof. Let t(n) = 2n, t0(n) = nlog n, and d(n) = nlog n. Apply Theorem 2. 2

4 On the differences between NE and NP

In this section we investigate the differences between NE-hard sets and NP sets.
We use the following well-known result:

Lemma 2 ([8]). Let H be ≤p
m-hard for NE and A ∈ NE. Then A ≤p

1 H.

Theorem 3. For every set H and A ⊆ H such that H is ≤p
m-hard for NE and

A ∈ NP, there exists another set A′ ⊆ H such that A′ ∈ NP and A′ − A is not
of subexponential density.

Proof. Fix H and A as in the premise and let A ∈ NTIME(nc) for some constant
c > 1. Let {NPi}i be an enumeration of all nondeterministic polynomial-time
Turing machines such that the computation NPi on x can be simulated non-
deterministically in time 2O((|i|+log(|x|))2) [8]. Define S = {〈i, x, y〉 : x, y ∈ Σ∗

and NPi accepts x}. Clearly S belongs to NEXP and therefore S is many-
one reducible to H via some polynomial-time computable one-one function f .
Suppose f can be computed in time nd for some d > 1. By Cook [4], let
B ∈ NP − NTIME(n2cd). Suppose B = L(NPi) for some i. For each x ∈ Σ∗,
define Tx = {z : ∃y(|x| = |y|/2 ≤ |z| and z = f(〈i, x, y〉)}. Let T =

⋃
x∈B Tx.

Clearly T ∈ NP. Since f reduces S to H, Tx ⊆ H for all x ∈ B and therefore
T ⊆ H. We now establish the following claims:

Claim 1 For infinitely many x ∈ B, A ∩ Tx = ∅.
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Proof. Suppose not. Consider the following machine M :

0 On input x
1 Guess y with |y| = 2|x|;
2 Compute z = f(〈i, x, y〉);
3 Accept x if and only if |z| ≥ |x| and z ∈ A.

Assume x ∈ B and A ∩ Tx 6= ∅. . Let z ∈ A ∩ Tx and hence there exists
y with |y|/2 = |x| ≤ |z| and z = f(〈i, x, y〉). Thus, M accepts x if it correctly
guess y in line 1. Now assume x 6∈ B. Then Tx ⊆ H and hence A ∩ Tx = ∅.
Thus, for any z computed in line 3, z 6∈ A. So M does not accept x. This shows
that M decides B for all but finitely many x. However, the machine M runs in
time O(((2|x|)d)c) = O((|x|)cd) for sufficiently large x, which contradicts that
B 6∈ NTIME(n2cd). 2

Claim 2: For any infinite set R, the set ∪x∈RTx is not in Density(f(n)) for
any sub-exponential function f : N → N .

Proof. Let R be an infinite set and T ′ = ∪x∈RTx. Fix a string x. Since f is
a one-one function, ‖{f(〈i, x, y〉)}|y|=2|x|‖ = 22|x|. Since there are only 2|x| of
strings of length less than |x|, it follows that there are at least 22|x| − 2|x| ≥ 2|x|

many strings in Tx. Note that the strings in Tx have lengths at most Θ(|x|d)
and hence, ‖(T ′)≤Θ((|x|)d)‖ ≥ 2|x|. Since x is arbitrary, this shows that

⋃
x∈R Tx

is not Density(f(n)) for any sub-exponential function f : N → N . 2

Now Let A′ = A∪T . By Claims 1 and 2 , A′ clearly has all the desired properties.
2

Theorem 3 shows that many-one-hard sets for NE are very different from their
NP subsets. Namely they’re not even sub-exponentially close to their NP subsets.
Next we show a stronger result for many-one-hard sets for coNE. We show that
the difference between a many-one-hard set for coNE and any of its NP subset
has exponential density.

Theorem 4. Assume that H is a many-one-hard set for coNE and t(n) : N →
N is a sub-exponential function. Then for any A ⊆ H with A ∈ NTIME(t(n)),
there exists another set A′ ⊆ H such that A′ ∈ NP, A′ ∩ A = ∅, and A′ is
exponentially dense.

Proof. Fix H and A as in the premise. By a result of Fu et al. [7, Corollary
4.2], H ′ = H ∪ A is many-one hard for NE. Now let f be a polynomial-time
one-one reduction from 0Σ∗ to H ′ and suppose f is computable in time nd. Let
A′ = {z : z = f(1x) for some x with |x| ≤ 2|z|}. Clearly A′ ∈ NP and A′ ⊆ H ′.
Therefore A′ ⊆ H−A. It remains to show that A′ is exponentially dense. For any
n > 0, let Fn = {f(1x)}|x|=2n. Since f is one-one, ‖Fn‖ = 22n. As there are only
2n strings of length less than n, it follows that there are at least 22n − 2n ≥ 2n

many strings in Fn belonging to A′ for each n > 0. Note that the maximal length
of a string in Fn is (2n + 1)d. This shows that (A′)≤(2n+1)d ≥ 2n for each n > 0
and hence, A′ is exponentially dense. 2
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Corollary 3. Assume that H is a ≤P
m-hard set for coNE. Then for A ⊆ H with

A ∈ NP, there exists another subset A′ ⊆ H such that A′ ∈ NP, A′∩A = ∅, and
A′ is exponentially dense.

5 Separating NE from PNP
nk−T for nonuniform reductions

In this section we generalize Mocas’s result [14] that NEXP 6⊆ Pnc−T (NP) for
any constantc c > 0 to non-uniform Turing reductions.

Lemma 3. For any positive constants k, k′ > 0, EXPNP
nk−T 6⊆ PNP

nk−T /nk′ .

Proof. Burtschick and Linder [2] showed that
DTIME(24f(n)) 6⊆ DTIME(2f(n))/f(n) for any function f : N → N with n ≤
f(n) < 2n. Applying their result with f(n) = nk′ yields EXP 6⊆ P/nk′ for any
k′ > 0. The lemma follows by noting the fact that Burtschick and Linder’s result
also holds relative to any oracle. 2

Theorem 5. For any positive constants k, k′ > 0, NEXP 6⊆ PNP
nk−T /nk′ .

Proof. Assume that NEXP ⊆ PNP
nk−T /nk′ for some k, k′ > 0. Since EXPNP

nk−T ⊆
PNEXP

T [nk+1] [14], we have EXPNP
nk−T ⊆ PT (PNP

nk−T /nk′)[nk+1] ⊆ PNP
T /(nk+1)k′ ⊆

NEXP/n(k+1)k′ ⊆ (PNP
nk−T /nk′)/n(k+1)k′ ⊆ PNP

nk−T /nk′′ for some k′′ > 0. The
last inclusion is a contradiction to Lemma 3. 2

Since any NEXP set can be easily padded to an NE set, we immediate obtain
the following corollary:

Corollary 4. For any positive constants k, k′ > 0, NE 6⊆ PNP
nk−T /nk′ .

Lemma 4. For any k > 0, Pnk−T (NP ⊕ P-Sel) ⊆ Pnk−T (NP )/nk.

Proof. Assume that L ∈ Pnk−T (NP ⊕P-Sel) via polynomial time Turing reduc-
tion D. Let A be a P-selective set with order ¹ such that A is an initial segment
with ¹ and L ∈ Pnk−T (SAT ⊕A) via D. Let y be the largest element in A (with
the order ¹) queried by DSAT⊕A among all inputs of length length ≤ n. It is
easy to see that y can be generated by simulating D with advice of length nk.
When we compute DSAT⊕A(x), we handle the queries to A by comparing with
y. 2

By Theorem 5 and Lemma 4, we have the following theorem.

Theorem 6. For any constant k > 0, NE 6⊆ Pnk−T (NP⊕ P-Sel).

6 Conclusions

We derived some separations between NE and other nondeterministic complexity
classes. The further research along this line may be in separating NE from PNP

T ,
and NE from BPP, which is a subclass of P/Poly.
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