
Separating NE from Some Nonuniform
Nondeterministic Complexity Classes

Bin Fu1, Angsheng Li2, and Liyu Zhang3

1 Dept. of Computer Science, University of Texas - Pan American
TX 78539, USA. binfu@cs.panam.edu

2 Institute of Software, Chinese Academy of Sciences, Beijing, P.R. China.
angsheng@gcl.iscas.ac.cn

3 Department of Computer and Information Sciences, University of Texas at
Brownsville, Brownsville, TX, 78520, USA. liyu.zhang@utb.edu

Abstract. We investigate the question whether NE can be separated
from the reduction closures of tally sets, sparse sets and NP. We show
that (1) NE 6⊆ RNP

no(1)−T
(TALLY); (2)NE 6⊆ RSN

m (SPARSE); and (3)

NE 6⊆ PNP
nk−T /nk for all k ≥ 1. Result (3) extends a previous result by

Mocas to nonuniform reductions. We also investigate how different an
NE-hard set is from an NP-set. We show that for any NP subset A of
a many-one-hard set H for NE, there exists another NP subset A′ of H
such that A′ ⊇ A and A′ −A is not of sub-exponential density.

1 Introduction

This paper continues a line of research that tries to separate nondeterministic
complexity classes in a stronger sense, i.e., separating nondeterministic complex-
ity classes from the reduction closure of classes with lower complexity. We focus
on the class NE of nondeterministically exponential-time computable sets. Two
most interesting but long standing open problems regarding NE are whether
every NE-complete set is polynomial-time Turing reducible to an NP set and
whether it is polynomial-time Turing reducible to a sparse set. The latter ques-
tion is equivalent to whether every NE-complete set has polynomial-size circuits,
since a set is polynomial-time Turing reducible to a sparse set if and only if it
has polynomial-size circuits [1]. We show results that generalize and/or improve
previous results regarding these questions and help to better understand them.
In complexity theory, a sparse set is a set with polynomially bounded density.
Whether sparse sets are hard for complexity classes is one of the central prob-
lems in complexity theory [13, 17, 12, 5]. In particular, Mahaney [13] showed that
sparse sets cannot be many-one complete for NP unless P=NP. In Section 3 we
study the question whether sparse sets can be hard for NE under reductions
that are weaker than the polynomial-time Turing reductions. We prove that
no NE-hard set can be reducible to sparse sets via the strong nondeterministic
polynomial-time many-one reduction. For a special case of sparse sets, tally sets,
we strengthen the result to the nondeterministic polynomial-time Turing reduc-
tions that make at most no(1) many queries. These are the main results of this

2 B. Fu, A. Li and L. Zhang

paper. Note that generalizing these results to polynomial-time Turing reductions
is hard since already the deterministic polynomial-time Turing reduction closure
of spare sets as well as that of p-selective sets equals P/poly [10], and it is not
even known whether NE 6⊆ P/poly.

We present a new result on the aforementioned long standing open question
whether every NE set is polynomial-time Turing-reducible to a NP set. Fu et al.
[7] first tackled this problem and showed that NE 6⊆ Pno(1)−T (NP). Their result
was later improved by Mocas [14] to NEXP 6⊆ Pnc−T (NP) for any constant
c > 0. Mocas’s result is optimal with respect to relativizable proofs, as Buhrman
and Torenvliet [3] constructed an oracle relative to which NEXP = PNP. In
this paper, we extend Mocas’s result to nonuniform polynomial-time Turing
reductions that uses a fixed polynomial number of advice bits. More precisely,
we show that NE 6⊆ Pnk−T (NP)/nk′ for any constant k, k′ > 0. Since it is
easy to show for any k > 0 that Pnk−T (NP ⊕ P-Sel) ⊆ Pnk−T (NP)/nk, where
P-Sel denotes the class of p-selective sets, we obtain as a corollary that NE 6⊆
Pnk−T (NP⊕ P-Sel).

We investigate a different but related question. We study the question of how
different a hard problem in NE is from a problem in NP. One way to measure the
difference between sets is by using the notion of closeness introduced by Yesha
[19]. We say two sets are f -close if the density of their symmetric difference if
bounded by f(n). The closeness to NP-hard sets were further studied by Fu [6]
and Ogihara [16]. We show that for every ≤P

m-complete set H for NE and every
NP-set A ⊆ H, there exists another NP-set A′ ⊆ H such that A ⊆ A′ and A′

is not subexponential-close to A. For coNE-complete sets we show a stronger
result. We show that for every ≤p

m-complete set H for coNE and every NP-set
A ⊆ H, there exists another NP-set A′ ⊆ H such that A ∩ A′ = ∅ and A′ is
exponentially dense.

2 Notations

We use standard notations [11, 9] in structrual complexity. All the languages
throughout the paper are over the alphabet Σ = {0, 1}. For a string x, |x| is
the length of x. For a finite set A, ||A|| is the number of elements in A. We
use Σn to denote the set of all strings of length n and for any language L,
L=n = Ln = L∩Σn. We fix a pairing function 〈·〉 such that for every u, v ∈ Σ∗,
|〈u, v〉| = 2(|u|+ |v|). For a function f(n) : N → N , f is exponential if for some
constant c > 0, f(n) ≥ 2nc

for all large n, and is sub-exponential if for every
constant c > 0, f(n) ≤ 2nc

for all large n. A language L is exponentially dense
if there exists a constant c > 0 such that ||L≤n|| ≥ 2nc

for all large n. Let
Density(d(n)) be the class of languages L such that ||L≤n|| ≤ d(n) for all large
n. For any language L, define its complementary language, denoted by L, to be
Σ∗ − L.

For a function t(n) : N → N , DTIME(t(n)) (NTIME(t(n)) is the class of
languages accepted by (non)-deterministic Turing machines in time t(n). P (NP)
is the class of languages accepted by (non-)deterministic polynomial-time Turing

Separating NE from Nonuniform Nondeterministic Classes 3

machines. E (NE) is the class of languages accepted by (non-)deterministic Tur-
ing machines in 2O(n) time. EXP (NEXP) is the class of languages accepted by
(non-)deterministic Turing machines in time 2nO(1)

. TALLY is the class of lan-
guages contained in 1∗ and SPARSE is the class of languages in ∪∞c=1Density(nc).
Clearly, TALLY is a subclass of SPARSE. We use P-Sel to denote the class
of p-selective sets [18]. For any language L and function h : N 7→ N , let
L/h = {x : 〈x, h(|x|)〉 ∈ L}. For any class C of languages, coC is the class
of languages L such that L ∈ C and C/h is the class of languages L such that
L = L′/h for some L′ ∈ C.

For two languages A and B, define the following reductions: (1) A is polynomial-
time many-one reducible to B, A ≤p

m B, if there exists a polynomial-time com-
putable function f : Σ∗ 7→ Σ∗ such that for every x ∈ Σ∗, x ∈ A if and only
if f(x) ∈ B. (2) A is polynomial-time truth-table reducible to B, A ≤p

tt B, if
there exists a polynomial-time computable function f : Σ∗ 7→ Σ∗ such that
for every x ∈ Σ∗, f(x) = 〈y1, y2, . . . , ym, T 〉, where yi ∈ Σ∗ and T is the encod-
ing of a cicuit, and x ∈ A if and only if T (B(y1)B(y2) · · ·B(ym)) = 1. (3) A is
polynomial-time Turing reducible to B, A ≤p

T B, if there exists a polynomial-time
oracle Turing machine M such that MB accepts A. (4) A is exponential-time
Turing reducible to B, A ≤EXP

T B, if there exists an exponential-time oracle
Turing machine M such that MB accepts A. (5) We say A ≤p

1 B if A ≤p
m via a

reduction f that is one-to-one.
For a nondeterministic Turing machine M , denote M(x)[y] to be the com-

putation of M with input x on a path y. If M(x) is an oracle Turing machine,
MA(x)[y] is the computation of M with input x on a path y with oracle A.

For two languages A and B, define the following nondeterministic reduc-
tions: (1) A is nondeterministically polynomial-time many-one reducible to B,
A ≤NP

m B, if there exists a polynomial-time nondeterministic Turing machine
M and a polynomial p(n) such that for every x, x ∈ A if and only if there
exists a path y of length p(|x|) with M(x)[y] ∈ B. (2) A is nondeterminis-
tically polynomial-time truth-table reducible to B, A ≤NP

tt B, if there exists a
polynomial-time nondeterministic Turing machine M and a polynomial p(n)
such that for every x ∈ Σ∗, x ∈ A if and only if there is at least one y ∈ Σp(|x|)

such that M(x)[y] = (z1, · · · , zm, T), where zi ∈ Σ∗, T is the encoding of a
circuit, and T (B(z1), · · · , B(zm)) = 1. (3) A is nondeterministically polynomial-
time Turing reducible to B, A ≤NP

T B, if there exists a polynomial-time nondeter-
ministic oracle Turing machine M and a polynomial p such that for every x ∈ Σ∗,
x ∈ A if and only if there is at least one y ∈ Σp(|x|) such that MB(x)[y] accepts.
(4) A is strongly nondeterministically polynomial-time many-one reducible to B,
A ≤SN

m B, if there exists a polynomial-time nondeterministic Turing machine
M() such that x ∈ A if and only if 1) M(x)[y] ∈ B for all y that M(x)[y] is not
empty; 2) M(x)[y] is not empty for at least one y ∈ ΣnO(1)

.
For a function g(n) : N → N , we use A ≤NP

g(n)−tt B to denote that A ≤NP
tt

B via a polynomial-time computable function f such that for every x ∈ Σn,
f(x, y) = (z1, · · · , zm, T) and m ≤ g(n). We use A ≤NP

btt B to denote that A ≤NP
c−tt

B for some constant c > 0. For t ∈ {p, NP, EXP}, we use A ≤t
g(n)−T to denote

4 B. Fu, A. Li and L. Zhang

that A ≤t
T via a Turing machine M that makes at most g(n) queries on inputs

of length n.
For a class C of languages, we use Rt

r(C) (Rt
g(n)−r(C)) to denote the reduction

closure of C under the reduction ≤t
r (≤t

g(n)−r), where r ∈ {p,NP, SN,EXP}
and r ∈ {m, tt, T}. We also use conventional notations for common reduction
closures such as PNP = PT (NP) = Rp

T (NP) and EXPNP
nk−T = EXPnk−T (NP) =

REXP
nk−T (NP). For a function l : N 7→ N and a reduction closure R, we use

R[l(n)] to denote the same reduction closure as R except that the reductions
make queries of length at most l(n) on inputs of length n.

A function f(n) from N to N is time constructible if there exists a Turing
machine M such that M(n) outputs f(n) in f(n) steps.

3 Separating NE from RNP
no(1)−T

(TALLY)

In this section, we present the main result that NE cannot be reduced to TALLY
via polynomial time Turing reduction with the number of queries bounded by
n1/α(n) for some polynomial time computable nondecreasing function α(n) (for
example, α(n) = log log n). The proof is a combination of the translational
method and the point of view from Kolmogorov complexity.

Lemma 1. Assume that function g(n) : N → N is nondecreasing unbounded
and function 2bnc

g(n)/2 is time constructible. Then there exists a language L0 ∈
DTIME(2ng(n)

) such that ||Ln
0 || = 1, and for every Turing machine M , M cannot

generate any sequence in Ln
0 with any input of length n− log n in 2nO(1)

time for
large n.

Proof. We use the diagonal method to construct the language L0. Let M1, · · · ,
Mk, · · · be an enumeration of all Turing transducers.

Construction:
Input n,
Simulate each machine Mi(y) in 2ng(n)/2

steps for i = 1, · · · , log n and all y
of length n− log n.

Find a string x of length n such that x cannot be generated by any machine
among M1, · · · ,Mlog n with any input of length at most n− log n.

Put x into L0.
End of Construction

There are at most 2n−log n+1 strings of length at most n− log n. Those log n
machines can generate at most 2n−log n+1 log n < 2n strings. Since generating
each string takes 2ng(n)/2

steps. This takes 2n · 2ng(n)/2
< 2ng(n)

time for all large
n. 2

Theorem 1. Assume that t(n) and f(n) are time constructible nondecreas-
ing functions from N to N such that 1) t(f(n)) is Ω(2ng(n)

) for some non-
decreasing unbounded function g(n), and 2) for any constant c > 0, f(n) ≤

Separating NE from Nonuniform Nondeterministic Classes 5

t(n)1/c and f(n) ≥ 4n for all large n. If q(n) is a nondecreasing function with
q(f(n))(log f(n)) = o(n), then NTIME(t(n)) 6⊆ RNP

q(n)−T (TALLY).

Proof. We apply a translational method to obtain such a separation. We prove
by contradiction and assume that NTIME(t(n)) ⊆ RNP

q(n)−T (TALLY). Without
loss of generality, we assume that q(n) ≥ 1.

Let L be an arbitrary language in DTIME(t(f(n)). Define L1 = {x10f(|x|)−|x|−1 :
x ∈ L}. It is easy to see that L1 is in DTIME(t(n)) since L is in DTIME(t(f(n))).

By our hypothesis, there exist a set A1 ∈ TALLY such that L1 ≤NP
q(n)−T A1

via some polynomial time nondeterministic oracle Turing machine M1, which
runs in polynomial nc1 time for all large n.

Let L2 = {(x, (e1, · · · , em, a1 · · · am)) : there is a path y such that
MA1

1 (x10f(|x|)−|x|−1)[y] accepts and queries 1e1 , · · · , 1em in path y and receives
answers a1 = A1[1e1], · · · , am = A1[1em] respectively }. Since M1 runs in time
nc1 and f(n) = t(n)o(1), we have L2 is in NTIME(f(n)c1) ⊆ NTIME(t(n)).

By our hypothesis, there exists a set A2 ∈ TALLY such that L2 ≤NP
q(n)−T A2

via some polynomial time nondeterministic oracle Turing machine M2().
Therefore, for every string x, in order to generate x ∈ L, we need to provide

(e1, · · · , em, a1 · · · am) and (z1, · · · , zt, b1 · · · bt) such that there exists a path y1

that MA1
1 (x10f(|x|)−|x|−1)[y1] queries 1e1 , · · · , 1em with answers ai = A1(1ei) for

i = 1, · · · ,m and there exists a path y2 that MA2
2 (x, (e1, · · · , em, a1 · · · am))[y2]

queries 1z1 , · · · , 1zt with bi = A2(1zi) for i = 1, · · · , t. Let nc2 be the polynomial
time bound for M2. We have the following Turing machine M∗.

M∗():
Input: a string of u of length o(n).
If u does not have the format (e1, · · · , em, a1 · · · am)(z1, · · · , zt, b1 · · · bt),
then return λ (empty string).
Extract (e1, · · · , em, a1 · · · am) and (z1, · · · , zt, b1 · · · bt) from u.
For each x of length n

Simulate MA2
2 (x, (e1, · · · , em, a1 · · · am)) with the query help from

(z1, · · · , zt, b1 · · · bt) (by assuming that bi = A2(1zi) for i = 1, · · · , t).
Output x if it accepts.

It is easy to see that M∗ takes 2nO(1)
time. There exists a path y1 such

that MA1
1 (x10f(|x|)−|x|−1)[y1] makes at most q(f(n)) queries, where n = |x|.

So, we have m ≤ q(f(n)), ei ≤ f(n)c1 and |ei| ≤ c1(log f(n)). Therefore,
(e1, · · · , em, a1, · · · , am) has length h ≤ 2(O(q(f(n)) log f(n)) + q(f(n))) =
O(q(f(n)) log f(n)) = o(n). There exists a path y2 such that MA1

2 ((x, (e1, · · · ,
em, a1 · · · am))[y2] makes at most q(n + h) queries to 1z1 , · · · , 1zt . The length of
(x, (e1, · · · , em, a1 · · · am)) is at most 2(n + h) ≤ 4n. So, t ≤ q(4n). Therefore,
(z1, · · · , zt, b1 · · · bt) has length q(4n) log((4n)c2) = O(q(f(n)) log f(n)) = o(n).
Therefore, the total length of (e1, · · · , em, a1 · · · am) and (z1, · · · , zt, b1 · · · bt) is
o(n). So, (e1, · · · , em, a1 · · · am) and (z1, · · · , zt, b1 · · · bt) can be encoded into a
string of length o(n). Let L be the language L0 in Lemma 1. This contradicts

6 B. Fu, A. Li and L. Zhang

Lemma 1 since a string of length n can be generated by M∗() with the input
(e1, · · · , em, a1 · · · am)(z1, · · · , zt, b1 · · · bt) of length o(n). 2

Corollary 1. NE 6⊆ RNP
n1/α(n)−T

(TALLY) for any polynomial computable non-
decreasing unbounded function α(n) : N → N .

Proof. Define g(n) =
⌊√

α(n)
⌋
, f(n) = ng(n), q(n) = n

1
α(n) , and t(n) = 2n. By

Theorem 1, we have that NTIME(t(n)) 6⊆ RNP
q(n)−T (TALLY). We have that NE 6⊆

RNP
n1/α(n)−T

(TALLY) since RNP
n1/α(n)−T

(TALLY) is closed under ≤P
m reductions

and there exists a NE-≤p
m-hard set in NTIME(t(n)). 2

It is natural to extend Theorem 1 by replacing TALLY by SPARSE. We feel
it is still hard to separate NE from RNP

m (SPARSE). The following theorem shows
that we can separate NE from RSN

m (SPARSE). Its proof is another application
of the combination of translational method with Kolmogorov complexity point
of view.

Theorem 2. Assume that t0(n) and t(n) are time constructible nondecreasing
functions from N to N such that for any positive constant c, t0(n)c = O(t(n))
and t(t0(n)) > 2nα(n)

for some nondecreasing unbounded function α(n), and d(n)
is a nondecreasing function such that d((t0(n))c) = 2no(1)

. Then NTIME(t(n)) 6⊆
RSN

m (Density((d(n))).

Proof. Assume that NTIME(t(n)) ⊆ RSN
m (Density(d(n)). We will derive a con-

tradiction.
Construction of L=n: Let S be the sequence of length n1+ 1

k in L0 of Lemma 1
with g(n) = α(n), where n = mk and k is a constant (for example k =
100). Assume that S = y1y2 · · · ym2 , where each yi is of length mk−1. Let
L=n = {yi1yi2 · · · yim : 1 ≤ i1 < i2 < · · · < im ≤ m2}. Define block(x) =
{yi1 , yi2 , · · · , yim} if x = yi1yi2 · · · yim . Clearly, L=n contains

(
m2

m

)
elements.

Define L1 = {x10t0(|x|)−|x|−1 : x ∈ L}. It is easy to see that L1 is in
DTIME(t(n)) since L is in DTIME(t(t0(n))).

By our hypothesis, there exists a set A1 ∈ Density(d(n)) such that L1 ≤SN
m

A1 via some polynomial time nondeterministic Turing machine f(), which runs
in polynomial time nc1 . For a sequence z and integer n, define H(z, n) = {x ∈
Ln : f(x)[y] = z for some path y}. Therefore, there are a sequence z such that

||H(z, n)|| ≥ (m2

m)
d((t0(n))c1) .

Let L2 = {(x, y) : |x| = |y| and there are paths z1 and z2 such that
f(x10t0(|x|)−|x|−1)[z1] = f(y10t0(|y|)−|y|−1)[z2]}. Since f() runs in polynomial
time and t0(n)c1 = O(t(n)), we have L2 ∈ NTIME(t(n)).

By our hypothesis, there exists a set A2 ∈ Density(d(n)) with such that
L2 ≤SN

m A2 via some polynomial time nondeterministic Turing machine u().
Define L2(x) = {x1 : (x, x1) ∈ L2}. There exists x ∈ L=n such that

||L2(x)|| ≥ (m2

m)
d((t0(n))c1) .

Separating NE from Nonuniform Nondeterministic Classes 7

Define L′2(x, x′) = {x2 : u(x, x′)[z′] = u(x, x2)[z2] for some paths z′ for
u(x, x′) and z2 for u(x, x2)}. There exists x′ ∈ L2(x) such that L′2(x, x′) contains

at least (m2

m)
d((t0(n))c1)d((t0(n))c2) elements. We fix x and x′.

Since ||block(x) ∪ block(x′)|| ≤ 2m, those 2m strings in block(x) ∪ block(x′)

can generate at most
(
2m
m

)
<

(m2

m)
d((t0(n))c1)d((t0(n))c2) sequences of length n in L=n

for all large n. Therefore, there is a string x3 ∈ L=n such that x3 ∈ L′2(x, x′)
and block(x3) 6⊆ block(x) ∪ block(x′).

This makes it possible to compress S. We can encode the strings x, x′ and
those blocks of S not in x3. The total time is at most 2nO(1)

to compress S.
Let yi1 < yi2 < · · · < yim2 be the sorted list of y1, y2, · · · , ym2 . Let (i1, i2, · · · ,

im2) be encoded into a string of length O(m2(log n)). Define Y = yj1yj2 · · · yjt
,

where {yj1 , yj2 , · · · , yjt} = {y1, · · · , ym2} − (block(x) ∪ block(x′) ∪ block(x3)).
We can encode (i1, i2, · · · , im2) into the format 0a10a2 · 0au11. We have se-

quence Z = (i1, i2, · · · , im2)xx′Y to generate S in 2nO(1)
time. Since at least

one block yi among y1, y2, · · · , ym2 is missed in block(xx′Y), |yi| = mk−1, and
|(i1, i2, · · · , im2)| < m3, it is easy to see that |Z| ≤ n − (log n)2. This brings a
contradiction. 2

Corollary 2. NE 6⊆ RSN
m (SPARSE).

Proof. Let t(n) = 2n, t0(n) = nlog n, and d(n) = nlog n. Apply Theorem 2. 2

4 On the differences between NE and NP

In this section we investigate the differences between NE-hard sets and NP sets.
We use the following well-known result:

Lemma 2 ([8]). Let H be ≤p
m-hard for NE and A ∈ NE. Then A ≤p

1 H.

Theorem 3. For every set H and A ⊆ H such that H is ≤p
m-hard for NE and

A ∈ NP, there exists another set A′ ⊆ H such that A′ ∈ NP and A′ − A is not
of subexponential density.

Proof. Fix H and A as in the premise and let A ∈ NTIME(nc) for some constant
c > 1. Let {NPi}i be an enumeration of all nondeterministic polynomial-time
Turing machines such that the computation NPi on x can be simulated non-
deterministically in time 2O((|i|+log(|x|))2) [8]. Define S = {〈i, x, y〉 : x, y ∈ Σ∗

and NPi accepts x}. Clearly S belongs to NEXP and therefore S is many-
one reducible to H via some polynomial-time computable one-one function f .
Suppose f can be computed in time nd for some d > 1. By Cook [4], let
B ∈ NP − NTIME(n2cd). Suppose B = L(NPi) for some i. For each x ∈ Σ∗,
define Tx = {z : ∃y(|x| = |y|/2 ≤ |z| and z = f(〈i, x, y〉)}. Let T =

⋃
x∈B Tx.

Clearly T ∈ NP. Since f reduces S to H, Tx ⊆ H for all x ∈ B and therefore
T ⊆ H. We now establish the following claims:

Claim 1 For infinitely many x ∈ B, A ∩ Tx = ∅.

8 B. Fu, A. Li and L. Zhang

Proof. Suppose not. Consider the following machine M :

0 On input x
1 Guess y with |y| = 2|x|;
2 Compute z = f(〈i, x, y〉);
3 Accept x if and only if |z| ≥ |x| and z ∈ A.

Assume x ∈ B and A ∩ Tx 6= ∅. . Let z ∈ A ∩ Tx and hence there exists
y with |y|/2 = |x| ≤ |z| and z = f(〈i, x, y〉). Thus, M accepts x if it correctly
guess y in line 1. Now assume x 6∈ B. Then Tx ⊆ H and hence A ∩ Tx = ∅.
Thus, for any z computed in line 3, z 6∈ A. So M does not accept x. This shows
that M decides B for all but finitely many x. However, the machine M runs in
time O(((2|x|)d)c) = O((|x|)cd) for sufficiently large x, which contradicts that
B 6∈ NTIME(n2cd). 2

Claim 2: For any infinite set R, the set ∪x∈RTx is not in Density(f(n)) for
any sub-exponential function f : N → N .

Proof. Let R be an infinite set and T ′ = ∪x∈RTx. Fix a string x. Since f is
a one-one function, ‖{f(〈i, x, y〉)}|y|=2|x|‖ = 22|x|. Since there are only 2|x| of
strings of length less than |x|, it follows that there are at least 22|x| − 2|x| ≥ 2|x|

many strings in Tx. Note that the strings in Tx have lengths at most Θ(|x|d)
and hence, ‖(T ′)≤Θ((|x|)d)‖ ≥ 2|x|. Since x is arbitrary, this shows that

⋃
x∈R Tx

is not Density(f(n)) for any sub-exponential function f : N → N . 2

Now Let A′ = A∪T . By Claims 1 and 2 , A′ clearly has all the desired properties.
2

Theorem 3 shows that many-one-hard sets for NE are very different from their
NP subsets. Namely they’re not even sub-exponentially close to their NP subsets.
Next we show a stronger result for many-one-hard sets for coNE. We show that
the difference between a many-one-hard set for coNE and any of its NP subset
has exponential density.

Theorem 4. Assume that H is a many-one-hard set for coNE and t(n) : N →
N is a sub-exponential function. Then for any A ⊆ H with A ∈ NTIME(t(n)),
there exists another set A′ ⊆ H such that A′ ∈ NP, A′ ∩ A = ∅, and A′ is
exponentially dense.

Proof. Fix H and A as in the premise. By a result of Fu et al. [7, Corollary
4.2], H ′ = H ∪ A is many-one hard for NE. Now let f be a polynomial-time
one-one reduction from 0Σ∗ to H ′ and suppose f is computable in time nd. Let
A′ = {z : z = f(1x) for some x with |x| ≤ 2|z|}. Clearly A′ ∈ NP and A′ ⊆ H ′.
Therefore A′ ⊆ H−A. It remains to show that A′ is exponentially dense. For any
n > 0, let Fn = {f(1x)}|x|=2n. Since f is one-one, ‖Fn‖ = 22n. As there are only
2n strings of length less than n, it follows that there are at least 22n − 2n ≥ 2n

many strings in Fn belonging to A′ for each n > 0. Note that the maximal length
of a string in Fn is (2n + 1)d. This shows that (A′)≤(2n+1)d ≥ 2n for each n > 0
and hence, A′ is exponentially dense. 2

Separating NE from Nonuniform Nondeterministic Classes 9

Corollary 3. Assume that H is a ≤P
m-hard set for coNE. Then for A ⊆ H with

A ∈ NP, there exists another subset A′ ⊆ H such that A′ ∈ NP, A′∩A = ∅, and
A′ is exponentially dense.

5 Separating NE from PNP
nk−T for nonuniform reductions

In this section we generalize Mocas’s result [14] that NEXP 6⊆ Pnc−T (NP) for
any constantc c > 0 to non-uniform Turing reductions.

Lemma 3. For any positive constants k, k′ > 0, EXPNP
nk−T 6⊆ PNP

nk−T /nk′ .

Proof. Burtschick and Linder [2] showed that
DTIME(24f(n)) 6⊆ DTIME(2f(n))/f(n) for any function f : N → N with n ≤
f(n) < 2n. Applying their result with f(n) = nk′ yields EXP 6⊆ P/nk′ for any
k′ > 0. The lemma follows by noting the fact that Burtschick and Linder’s result
also holds relative to any oracle. 2

Theorem 5. For any positive constants k, k′ > 0, NEXP 6⊆ PNP
nk−T /nk′ .

Proof. Assume that NEXP ⊆ PNP
nk−T /nk′ for some k, k′ > 0. Since EXPNP

nk−T ⊆
PNEXP

T [nk+1] [14], we have EXPNP
nk−T ⊆ PT (PNP

nk−T /nk′)[nk+1] ⊆ PNP
T /(nk+1)k′ ⊆

NEXP/n(k+1)k′ ⊆ (PNP
nk−T /nk′)/n(k+1)k′ ⊆ PNP

nk−T /nk′′ for some k′′ > 0. The
last inclusion is a contradiction to Lemma 3. 2

Since any NEXP set can be easily padded to an NE set, we immediate obtain
the following corollary:

Corollary 4. For any positive constants k, k′ > 0, NE 6⊆ PNP
nk−T /nk′ .

Lemma 4. For any k > 0, Pnk−T (NP ⊕ P-Sel) ⊆ Pnk−T (NP)/nk.

Proof. Assume that L ∈ Pnk−T (NP ⊕P-Sel) via polynomial time Turing reduc-
tion D. Let A be a P-selective set with order ¹ such that A is an initial segment
with ¹ and L ∈ Pnk−T (SAT ⊕A) via D. Let y be the largest element in A (with
the order ¹) queried by DSAT⊕A among all inputs of length length ≤ n. It is
easy to see that y can be generated by simulating D with advice of length nk.
When we compute DSAT⊕A(x), we handle the queries to A by comparing with
y. 2

By Theorem 5 and Lemma 4, we have the following theorem.

Theorem 6. For any constant k > 0, NE 6⊆ Pnk−T (NP⊕ P-Sel).

6 Conclusions

We derived some separations between NE and other nondeterministic complexity
classes. The further research along this line may be in separating NE from PNP

T ,
and NE from BPP, which is a subclass of P/Poly.

Acknowledgements: We thank unknown referees for their helpful com-
ments. Bin Fu is supported in part by National Science Foundation Early Career
Award 0845376.

10 B. Fu, A. Li and L. Zhang

References

1. L. Berman and J. Hartmanis. On isomorphisms and density of NP and other
complete sets. SIAM Journal on Computing, 6(2):305–322, 1977.

2. H.-J. Burtschick and W. Lindner. On sets Turing reducible to p-selective sets.
Theory of Computing Systems, 30:135–143, 1997.

3. H. Buhrman and L. Torenvliet. On the Cutting Edge of Relativization: The Re-
source Bounded Injury Method. ICALP 1994, Lecture Notes in Computer Science
820 Springer 1994, pages 263-273

4. S. Cook. A Hierarchy for Nondeterministic Time Complexity. J. Comput. Syst.
Sci. 7(4): 343-353 (1973)

5. J. Cai and D. Sivakumar. Sparse hard sets for P: resolution of a conjecture of
hartmanis. Journal of Computer and System Sciences (0022-0000), 58(2):280–296,
1999.

6. B. Fu. On lower bounds of the closeness between complexity classes. Mathematical
Systems Theory, 26(2):187–202, 1993.

7. B. Fu, H. Li, and Y. Zhong. Some properties of exponential time complexity classes.
In Proceedings 7th IEEE Annual Conference on Structure in Complexity Theory,
pages 50–57, 1992.

8. K. Ganesan and S. Homer. Complete Problems and Strong Polynomial Reducibil-
ities. SIAM J. Comput., 21(4), pages 733-742, 1992.

9. L. Hemaspaandra and M. Ogihara. The Complexity Theory Companion. Texts in
Theoretical Computer Science - An EATCS Series. Springer, 2002.

10. L. Hemaspaandra and L. Torenvliet. Theory of Semi-Feasible Algorithms. Springer,
2003.

11. S. Homer and A. Selman. Computability and Complexity Theory. Texts in Com-
puter Science. Springer, New York, 2001.

12. R. Karp and R. Lipton. Some connections between nonuniform and uniform com-
plexity classes. In Proceedings of the twelfth annual ACM symposium on theory of
computing, pages 302 – 309, 1980.

13. S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of berman and
hartmanis. Journal of Computer and Systems Sciences, 25(2):130–143, 1982.

14. S. Mocas. Separating classes in the exponential-time hierarchy from classes in PH.
Theoretical Computer Science, 158:221–231, 1996.

15. M. Ogihara and T. Tantau. On the reducibility of sets inside NP to sets with low
information content. Journal of Computer and System Sciences, 69:499–524, 2004.

16. M. Ogiwara. On P-closeness of polynomial-time hard sets. Unpublished
manuscript, 1991.

17. M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibil-
ity of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471–483, 1991.

18. A. Selman. P-selective sets, tally languages and the behavior of polynomial time
reducebilities on NP. Mathematical Systems Theory, 13:55–65, 1979.

19. Y. Yesha. On certain polynomial-time truth-table reducibilities of complete sets
to sparse sets. SIAM Journal on Computing, 12(3):411–425, 1983.

