Separating NE from Some Nonuniform Nondeterministic Complexity Classes

Bin Fu¹, Angsheng Li², and Liyu Zhang³

¹ Dept. of Computer Science, University of Texas - Pan American TX 78539, USA. binfu@cs.panam.edu

² Institute of Software, Chinese Academy of Sciences, Beijing, P.R. China. angsheng@gcl.iscas.ac.cn

³ Department of Computer and Information Sciences, University of Texas at Brownsville, Brownsville, TX, 78520, USA. liyu.zhang@utb.edu

Abstract. We investigate the question whether NE can be separated from the reduction closures of tally sets, sparse sets and NP. We show that (1) NE $\not\subseteq R_{n^{o(1)}-T}^{NP}$ (TALLY); (2)NE $\not\subseteq R_m^{SN}$ (SPARSE); and (3) NE $\not\subseteq P_{n^k-T}^{NP}/n^k$ for all $k \geq 1$. Result (3) extends a previous result by Mocas to nonuniform reductions. We also investigate how different an NE-hard set is from an NP-set. We show that for any NP subset A of a many-one-hard set H for NE, there exists another NP subset A' of Hsuch that $A' \supseteq A$ and A' - A is not of sub-exponential density.

1 Introduction

This paper continues a line of research that tries to separate nondeterministic complexity classes in a stronger sense, i.e., separating nondeterministic complexity classes from the *reduction closure* of classes with lower complexity. We focus on the class NE of nondeterministically exponential-time computable sets. Two most interesting but long standing open problems regarding NE are whether every NE-complete set is polynomial-time Turing reducible to an NP set and whether it is polynomial-time Turing reducible to a sparse set. The latter question is equivalent to whether every NE-complete set has polynomial-size circuits, since a set is polynomial-time Turing reducible to a sparse set if and only if it has polynomial-size circuits [1]. We show results that generalize and/or improve previous results regarding these questions and help to better understand them. In complexity theory, a sparse set is a set with polynomially bounded density. Whether sparse sets are hard for complexity classes is one of the central problems in complexity theory [13, 17, 12, 5]. In particular, Mahaney [13] showed that sparse sets cannot be many-one complete for NP unless P=NP. In Section 3 we study the question whether sparse sets can be hard for NE under reductions that are weaker than the polynomial-time Turing reductions. We prove that no NE-hard set can be reducible to sparse sets via the strong nondeterministic polynomial-time many-one reduction. For a special case of sparse sets, tally sets, we strengthen the result to the nondeterministic polynomial-time Turing reductions that make at most $n^{o(1)}$ many queries. These are the main results of this

paper. Note that generalizing these results to polynomial-time Turing reductions is hard since already the deterministic polynomial-time Turing reduction closure of spare sets as well as that of p-selective sets equals P/poly [10], and it is not even known whether NE $\not\subseteq P/poly$.

We present a new result on the aforementioned long standing open question whether every NE set is polynomial-time Turing-reducible to a NP set. Fu et al. [7] first tackled this problem and showed that NE $\not\subseteq P_{n^c \cap T}(NP)$. Their result was later improved by Mocas [14] to NEXP $\not\subseteq P_{n^c \cap T}(NP)$ for any constant c > 0. Mocas's result is optimal with respect to relativizable proofs, as Buhrman and Torenvliet [3] constructed an oracle relative to which NEXP = P^{NP}. In this paper, we extend Mocas's result to nonuniform polynomial-time Turing reductions that uses a fixed polynomial number of advice bits. More precisely, we show that NE $\not\subseteq P_{n^k \cap T}(NP)/n^{k'}$ for any constant k, k' > 0. Since it is easy to show for any k > 0 that $P_{n^k \cap T}(NP \oplus P\text{-Sel}) \subseteq P_{n^k \cap T}(NP)/n^k$, where P-Sel denotes the class of p-selective sets, we obtain as a corollary that NE $\not\subseteq P_{n^k \cap T}(NP \oplus P\text{-Sel})$.

We investigate a different but related question. We study the question of how different a hard problem in NE is from a problem in NP. One way to measure the difference between sets is by using the notion of *closeness* introduced by Yesha [19]. We say two sets are *f*-close if the density of their symmetric difference if bounded by f(n). The closeness to NP-hard sets were further studied by Fu [6] and Ogihara [16]. We show that for every \leq_m^P -complete set H for NE and every NP-set $A \subseteq H$, there exists another NP-set $A' \subseteq H$ such that $A \subseteq A'$ and A' is not subexponential-close to A. For coNE-complete sets we show a stronger result. We show that for every \leq_m^p -complete set H for coNE and every NP-set $A \subseteq H$, there exists another NP-set $A' \subseteq H$ such that $A \cap A' = \emptyset$ and A' is exponentially dense.

2 Notations

We use standard notations [11,9] in structrual complexity. All the languages throughout the paper are over the alphabet $\Sigma = \{0, 1\}$. For a string x, |x| is the length of x. For a finite set A, ||A|| is the number of elements in A. We use Σ^n to denote the set of all strings of length n and for any language L, $L^{=n} = L^n = L \cap \Sigma^n$. We fix a pairing function $\langle \cdot \rangle$ such that for every $u, v \in \Sigma^*$, $|\langle u, v \rangle| = 2(|u| + |v|)$. For a function $f(n) : N \to N$, f is exponential if for some constant c > 0, $f(n) \geq 2^{n^c}$ for all large n, and is sub-exponential if for every constant c > 0, $f(n) \leq 2^{n^c}$ for all large n. A language L is exponentially dense if there exists a constant c > 0 such that $||L^{\leq n}|| \geq 2^{n^c}$ for all large n. Let Density(d(n)) be the class of languages L such that $||L^{\leq n}|| \leq d(n)$ for all large n. For any language L, define its complementary language, denoted by \overline{L} , to be $\Sigma^* - L$.

For a function $t(n) : N \to N$, DTIME(t(n)) (NTIME(t(n)) is the class of languages accepted by (non)-deterministic Turing machines in time t(n). P (NP) is the class of languages accepted by (non-)deterministic polynomial-time Turing

machines. E (NE) is the class of languages accepted by (non-)deterministic Turing machines in $2^{O(n)}$ time. EXP (NEXP) is the class of languages accepted by (non-)deterministic Turing machines in time $2^{n^{O(1)}}$. TALLY is the class of languages contained in 1^{*} and SPARSE is the class of languages in $\bigcup_{c=1}^{\infty}$ Density (n^c) . Clearly, TALLY is a subclass of SPARSE. We use P-Sel to denote the class of p-selective sets [18]. For any language L and function $h : N \mapsto N$, let $L/h = \{x : \langle x, h(|x|) \rangle \in L\}$. For any class C of languages, coC is the class of languages L such that $\overline{L} \in C$ and C/h is the class of languages L such that L = L'/h for some $L' \in C$.

For two languages A and B, define the following reductions: (1) A is polynomialtime many-one reducible to B, $A \leq_m^p B$, if there exists a polynomial-time computable function $f : \Sigma^* \mapsto \Sigma^*$ such that for every $x \in \Sigma^*$, $x \in A$ if and only if $f(x) \in B$. (2) A is polynomial-time truth-table reducible to B, $A \leq_{tt}^p B$, if there exists a polynomial-time computable function $f : \Sigma^* \mapsto \Sigma^*$ such that for every $x \in \Sigma^*$, $f(x) = \langle y_1, y_2, \ldots, y_m, T \rangle$, where $y_i \in \Sigma^*$ and T is the encoding of a cicuit, and $x \in A$ if and only if $T(B(y_1)B(y_2)\cdots B(y_m)) = 1$. (3) A is polynomial-time Turing reducible to B, $A \leq_T^p B$, if there exists a polynomial-time oracle Turing machine M such that M^B accepts A. (4) A is exponential-time Turing reducible to B, $A \leq_T^{\text{EXP}} B$, if there exists an exponential-time oracle Turing machine M such that M^B accepts A. (5) We say $A \leq_1^p B$ if $A \leq_m^p$ via a reduction f that is one-to-one.

For a nondeterministic Turing machine M, denote M(x)[y] to be the computation of M with input x on a path y. If M(x) is an oracle Turing machine, $M^A(x)[y]$ is the computation of M with input x on a path y with oracle A.

For two languages A and B, define the following nondeterministic reductions: (1) A is nondeterministically polynomial-time many-one reducible to B, $A \leq_m^{\text{NP}} B$, if there exists a polynomial-time nondeterministic Turing machine M and a polynomial p(n) such that for every $x, x \in A$ if and only if there exists a path y of length p(|x|) with $M(x)[y] \in B$. (2) A is nondeterministically polynomial-time truth-table reducible to B, $A \leq_{tr}^{\text{NP}} B$, if there exists a polynomial-time nondeterministic Turing machine M and a polynomial p(n)such that for every $x \in \Sigma^*, x \in A$ if and only if there is at least one $y \in \Sigma^{p(|x|)}$ such that $M(x)[y] = (z_1, \dots, z_m, T)$, where $z_i \in \Sigma^*, T$ is the encoding of a circuit, and $T(B(z_1), \dots, B(z_m)) = 1$. (3) A is nondeterministically polynomialtime Turing reducible to B, $A \leq_T^{\text{NP}} B$, if there exists a polynomial-time nondeterministic oracle Turing machine M and a polynomial p such that for every $x \in \Sigma^*$, $x \in A$ if and only if there is at least one $y \in \Sigma^{p(|x|)}$ such that $M^B(x)[y]$ accepts. (4) A is strongly nondeterministically polynomial-time many-one reducible to B, $A \leq_m^{SN} B$, if there exists a polynomial-time many-one reducible to B, $A \leq_m^{SN} B$, if there exists a polynomial-time many-one reducible to B, $A \leq_m^{SN} B$, if there exists a polynomial-time many-one reducible to B, $A \leq_m^{SN} B$, if there exists a polynomial-time many-one reducible to B, $A \leq_m^{SN} B$, if there exists a polynomial-time nondeterministic Turing machine M() such that $x \in A$ if and only if 1) $M(x)[y] \in B$ for all y that M(x)[y] is not empty; 2) M(x)[y] is not empty for at least one $y \in \Sigma^{n^{O(1)}}$.

For a function $g(n): N \to N$, we use $A \leq_{g(n)-tt}^{\mathrm{NP}} B$ to denote that $A \leq_{tt}^{\mathrm{NP}} B$ via a polynomial-time computable function f such that for every $x \in \Sigma^n$, $f(x,y) = (z_1, \dots, z_m, T)$ and $m \leq g(n)$. We use $A \leq_{btt}^{\mathrm{NP}} B$ to denote that $A \leq_{c-tt}^{\mathrm{NP}} B$ for some constant c > 0. For $t \in \{p, \mathrm{NP}, \mathrm{EXP}\}$, we use $A \leq_{g(n)-T}^{t}$ to denote

that $A \leq_T^t$ via a Turing machine M that makes at most g(n) queries on inputs of length n.

For a class C of languages, we use $R_r^t(C)$ $(R_{g(n)-r}^t(C))$ to denote the reduction closure of C under the reduction $\leq_r^t (\leq_{g(n)-r}^t)$, where $r \in \{p, \text{NP}, SN, \text{EXP}\}$ and $r \in \{m, tt, T\}$. We also use conventional notations for common reduction closures such as $P^{\text{NP}} = P_T(\text{NP}) = R_T^p(\text{NP})$ and $\text{EXP}_{n^k-T}^{\text{NP}} = \text{EXP}_{n^k-T}(\text{NP}) = R_{n^k-T}^{\text{EXP}}(\text{NP})$. For a function $l : N \mapsto N$ and a reduction closure R, we use R[l(n)] to denote the same reduction closure as R except that the reductions make queries of length at most l(n) on inputs of length n.

A function f(n) from N to N is time constructible if there exists a Turing machine M such that M(n) outputs f(n) in f(n) steps.

3 Separating NE from $R_{n^{o(1)}-T}^{NP}(TALLY)$

In this section, we present the main result that NE cannot be reduced to TALLY via polynomial time Turing reduction with the number of queries bounded by $n^{1/\alpha(n)}$ for some polynomial time computable nondecreasing function $\alpha(n)$ (for example, $\alpha(n) = \log \log n$). The proof is a combination of the translational method and the point of view from Kolmogorov complexity.

Lemma 1. Assume that function $g(n) : N \to N$ is nondecreasing unbounded and function $2^{\lfloor n \rfloor^{g(n)}/2}$ is time constructible. Then there exists a language $L_0 \in$ DTIME $(2^{n^{g(n)}})$ such that $||L_0^n|| = 1$, and for every Turing machine M, M cannot generate any sequence in L_0^n with any input of length $n - \log n$ in $2^{n^{O(1)}}$ time for large n.

Proof. We use the diagonal method to construct the language L_0 . Let M_1, \dots, M_k, \dots be an enumeration of all Turing transducers.

Construction:

Input n,

Simulate each machine $M_i(y)$ in $2^{n^{g(n)/2}}$ steps for $i = 1, \dots, \log n$ and all y of length $n - \log n$.

Find a string x of length n such that x cannot be generated by any machine among $M_1, \dots, M_{\log n}$ with any input of length at most $n - \log n$.

Put x into L_0 .

End of Construction

There are at most $2^{n-\log n+1}$ strings of length at most $n - \log n$. Those $\log n$ machines can generate at most $2^{n-\log n+1}\log n < 2^n$ strings. Since generating each string takes $2^{n^{g(n)/2}}$ steps. This takes $2^n \cdot 2^{n^{g(n)/2}} < 2^{n^{g(n)}}$ time for all large n.

Theorem 1. Assume that t(n) and f(n) are time constructible nondecreasing functions from N to N such that 1) t(f(n)) is $\Omega(2^{n^{g(n)}})$ for some nondecreasing unbounded function g(n), and 2) for any constant c > 0, $f(n) \leq$ $t(n)^{1/c}$ and $f(n) \ge 4n$ for all large n. If q(n) is a nondecreasing function with $q(f(n))(\log f(n)) = o(n)$, then $\operatorname{NTIME}(t(n)) \not\subseteq R_{q(n)-T}^{\operatorname{NP}}(\operatorname{TALLY})$.

Proof. We apply a translational method to obtain such a separation. We prove by contradiction and assume that $\text{NTIME}(t(n)) \subseteq R_{q(n)-T}^{\text{NP}}(\text{TALLY})$. Without loss of generality, we assume that $q(n) \geq 1$.

Let L be an arbitrary language in DTIME(t(f(n))). Define $L_1 = \{x \ge 10^{f(|x|) - |x| - 1} : x \in L\}$. It is easy to see that L_1 is in DTIME(t(n)) since L is in DTIME(t(f(n))).

By our hypothesis, there exist a set $A_1 \in \text{TALLY}$ such that $L_1 \leq_{q(n)-T}^{\text{NP}} A_1$ via some polynomial time nondeterministic oracle Turing machine M_1 , which runs in polynomial n^{c_1} time for all large n.

Let $L_2 = \{(x, (e_1, \dots, e_m, a_1 \dots a_m)) : \text{there is a path } y \text{ such that}$ $M_1^{A_1}(x10^{f(|x|)-|x|-1})[y] \text{ accepts and queries } 1^{e_1}, \dots, 1^{e_m} \text{ in path } y \text{ and receives}$ answers $a_1 = A_1[1^{e_1}], \dots, a_m = A_1[1^{e_m}] \text{ respectively } \}$. Since M_1 runs in time n^{c_1} and $f(n) = t(n)^{o(1)}$, we have L_2 is in $\text{NTIME}(f(n)^{c_1}) \subseteq \text{NTIME}(t(n))$.

By our hypothesis, there exists a set $A_2 \in \text{TALLY}$ such that $L_2 \leq_{q(n)-T}^{\text{NP}} A_2$ via some polynomial time nondeterministic oracle Turing machine $M_2()$.

Therefore, for every string x, in order to generate $x \in L$, we need to provide $(e_1, \dots, e_m, a_1 \dots a_m)$ and $(z_1, \dots, z_t, b_1 \dots b_t)$ such that there exists a path y_1 that $M_1^{A_1}(x10^{f(|x|)-|x|-1})[y_1]$ queries $1^{e_1}, \dots, 1^{e_m}$ with answers $a_i = A_1(1^{e_i})$ for $i = 1, \dots, m$ and there exists a path y_2 that $M_2^{A_2}(x, (e_1, \dots, e_m, a_1 \dots a_m))[y_2]$ queries $1^{z_1}, \dots, 1^{z_t}$ with $b_i = A_2(1^{z_i})$ for $i = 1, \dots, t$. Let n^{c_2} be the polynomial time bound for M_2 . We have the following Turing machine M^* .

 $M^{*}():$

Input: a string of u of length o(n).

If u does not have the format $(e_1, \dots, e_m, a_1 \dots a_m)(z_1, \dots, z_t, b_1 \dots b_t)$,

then return λ (empty string).

Extract $(e_1, \dots, e_m, a_1 \dots a_m)$ and $(z_1, \dots, z_t, b_1 \dots b_t)$ from u.

For each x of length n

Simulate $M_2^{\overline{A}_2}(x, (e_1, \dots, e_m, a_1 \dots a_m))$ with the query help from $(z_1, \dots, z_t, b_1 \dots b_t)$ (by assuming that $b_i = A_2(1^{z_i})$ for $i = 1, \dots, t$). Output x if it accepts.

It is easy to see that M^* takes $2^{n^{O(1)}}$ time. There exists a path y_1 such that $M_1^{A_1}(x10^{f(|x|)-|x|-1})[y_1]$ makes at most q(f(n)) queries, where n = |x|. So, we have $m \leq q(f(n))$, $e_i \leq f(n)^{c_1}$ and $|e_i| \leq c_1(\log f(n))$. Therefore, $(e_1, \dots, e_m, a_1, \dots, a_m)$ has length $h \leq 2(O(q(f(n))\log f(n)) + q(f(n))) = O(q(f(n))\log f(n)) = o(n)$. There exists a path y_2 such that $M_2^{A_1}((x, (e_1, \dots, e_m, a_1 \dots a_m))[y_2]$ makes at most q(n+h) queries to $1^{z_1}, \dots, 1^{z_t}$. The length of $(x, (e_1, \dots, e_m, a_1 \dots a_m))$ is at most $2(n+h) \leq 4n$. So, $t \leq q(4n)$. Therefore, $(z_1, \dots, z_t, b_1 \dots b_t)$ has length $q(4n)\log((4n)^{c_2}) = O(q(f(n))\log f(n)) = o(n)$. Therefore, the total length of $(e_1, \dots, e_m, a_1 \dots a_m)$ and $(z_1, \dots, z_t, b_1 \dots b_t)$ is o(n). So, $(e_1, \dots, e_m, a_1 \dots a_m)$ and $(z_1, \dots, z_t, b_1 \dots b_t)$ is on the encoded into a string of length o(n). Let L be the language L_0 in Lemma 1. This contradicts Lemma 1 since a string of length n can be generated by $M^*()$ with the input $(e_1, \cdots, e_m, a_1 \cdots a_m)(z_1, \cdots, z_t, b_1 \cdots b_t)$ of length o(n).

Corollary 1. NE $\not\subseteq R_{n^{1/\alpha(n)}-T}^{\text{NP}}(\text{TALLY})$ for any polynomial computable nondecreasing unbounded function $\alpha(n): N \to N$.

Proof. Define $g(n) = \lfloor \sqrt{\alpha(n)} \rfloor$, $f(n) = n^{g(n)}$, $q(n) = n^{\frac{1}{\alpha(n)}}$, and $t(n) = 2^n$. By Theorem 1, we have that $\operatorname{NTIME}(t(n)) \not\subseteq R_{q(n)-T}^{\operatorname{NP}}(\operatorname{TALLY})$. We have that $\operatorname{NE} \not\subseteq R_{q(n)-T}(\operatorname{TALLY})$. $R_{n^{1/\alpha(n)}-T}^{\text{NP}}(\text{TALLY})$ since $R_{n^{1/\alpha(n)}-T}^{\text{NP}}(\text{TALLY})$ is closed under \leq_m^P reductions and there exists a NE- \leq_m^p -hard set in NTIME(t(n)). \Box

It is natural to extend Theorem 1 by replacing TALLY by SPARSE. We feel it is still hard to separate NE from $R_m^{\text{NP}}(\text{SPARSE})$. The following theorem shows that we can separate NE from $R_m^{SN}(\text{SPARSE})$. Its proof is another application of the combination of translational method with Kolmogorov complexity point of view.

Theorem 2. Assume that $t_0(n)$ and t(n) are time constructible nondecreasing functions from N to N such that for any positive constant c, $t_0(n)^c = O(t(n))$ and $t(t_0(n)) > 2^{n^{\alpha(n)}}$ for some nondecreasing unbounded function $\alpha(n)$, and d(n)is a nondecreasing function such that $d((t_0(n))^c) = 2^{n^{o(1)}}$. Then NTIME $(t(n)) \not\subseteq$ $R_m^{SN}(\text{Density}((d(n)))).$

Proof. Assume that $\operatorname{NTIME}(t(n)) \subseteq R_m^{SN}(\operatorname{Density}(d(n)))$. We will derive a contradiction.

Construction of $L^{=n}$: Let S be the sequence of length $n^{1+\frac{1}{k}}$ in L_0 of Lemma 1 with $g(n) = \alpha(n)$, where $n = m^k$ and k is a constant (for example k =100). Assume that $S = y_1 y_2 \cdots y_{m^2}$, where each y_i is of length $m^{\hat{k}-1}$. Let $L^{=n} = \{y_{i_1} y_{i_2} \cdots y_{i_m} : 1 \leq i_1 < i_2 < \cdots < i_m \leq m^2\}$. Define block $(x) = \sum_{i=1}^{n} (x_i + y_i) + (x_$ $\{y_{i_1}, y_{i_2}, \cdots, y_{i_m}\}$ if $x = y_{i_1}y_{i_2}\cdots y_{i_m}$. Clearly, $L^{=n}$ contains $\binom{m^2}{m}$ elements. Define $L_1 = \{x10^{t_0(|x|)-|x|-1} : x \in L\}$. It is easy to see that L_1 is in

DTIME(t(n)) since L is in DTIME $(t(t_0(n)))$.

By our hypothesis, there exists a set $A_1 \in \text{Density}(d(n))$ such that $L_1 \leq_m^{SN}$ A_1 via some polynomial time nondeterministic Turing machine f(), which runs in polynomial time n^{c_1} . For a sequence z and integer n, define $H(z,n) = \{x \in$ $L^n: f(x)[y] = z$ for some path y}. Therefore, there are a sequence z such that

 $\begin{aligned} ||H(z,n)|| &\geq \frac{\binom{m^2}{m}}{d((t_0(n))^{c_1})}.\\ \text{Let } L_2 &= \{(x,y) : |x| = |y| \text{ and there are paths } z_1 \text{ and } z_2 \text{ such that } f(x10^{t_0(|x|)-|x|-1})[z_1] = f(y10^{t_0(|y|)-|y|-1})[z_2]\}. \end{aligned}$ time and $t_0(n)^{c_1} = O(t(n))$, we have $L_2 \in \text{NTIME}(t(n))$.

By our hypothesis, there exists a set $A_2 \in \text{Density}(d(n))$ with such that

 $L_2 \leq_m^{SN} A_2$ via some polynomial time nondeterministic Turing machine u(). Define $L_2(x) = \{x_1 : (x, x_1) \in L_2\}$. There exists $x \in L^{=n}$ such that $||L_2(x)|| \ge \frac{\binom{m^2}{m}}{d((t_0(n))^{c_1})}$

Define $L'_{2}(x, x') = \{x_{2} : u(x, x')[z'] = u(x, x_{2})[z_{2}]$ for some paths z' for u(x, x') and z_2 for $u(x, x_2)$. There exists $x' \in L_2(x)$ such that $L'_2(x, x')$ contains at least $\frac{\binom{m^2}{m}}{d((t_0(n))^{c_1})d((t_0(n))^{c_2})}$ elements. We fix x and x'.

Since $||\operatorname{block}(x) \cup \operatorname{block}(x')|| \le 2m$, those 2m strings in $\operatorname{block}(x) \cup \operatorname{block}(x')$ can generate at most $\binom{2m}{m} < \frac{\binom{m^2}{m}}{d((t_0(n))^{c_1})d((t_0(n))^{c_2})}$ sequences of length n in $L^{=n}$ for all large n. Therefore, there is a string $x_3 \in L^{=n}$ such that $x_3 \in L'_2(x, x')$ and $block(x_3) \not\subseteq block(x) \cup block(x')$.

This makes it possible to compress S. We can encode the strings x, x' and those blocks of S not in x_3 . The total time is at most $2^{n^{O(1)}}$ to compress S.

Let $y_{i_1} < y_{i_2} < \dots < y_{i_{m^2}}$ be the sorted list of y_1, y_2, \dots, y_{m^2} . Let $(i_1, i_2, \dots, y_{m^2})$ i_{m^2}) be encoded into a string of length $O(m^2(\log n))$. Define $Y = y_{j_1}y_{j_2}\cdots y_{j_t}$,

where $\{y_{j_1}, y_{j_2}, \dots, y_{j_t}\} = \{y_1, \dots, y_{m^2}\} - (\operatorname{block}(x) \cup \operatorname{block}(x') \cup \operatorname{block}(x_3)).$ We can encode $(i_1, i_2, \dots, i_{m^2})$ into the format $0a_10a_2 \cdot 0a_u 11$. We have sequence $Z = (i_1, i_2, \dots, i_{m^2})xx'Y$ to generate S in $2^{n^{O(1)}}$ time. Since at least one block y_i among y_1, y_2, \dots, y_{m^2} is missed in block(xx'Y), $|y_i| = m^{k-1}$, and $|(i_1, i_2, \dots, i_{m^2})| < m^3$, it is easy to see that $|Z| \le n - (\log n)^2$. This brings a contradiction.

Corollary 2. NE $\not\subseteq R_m^{SN}(\text{SPARSE})$.

Proof. Let $t(n) = 2^n$, $t_0(n) = n^{\log n}$, and $d(n) = n^{\log n}$. Apply Theorem 2.

On the differences between NE and NP 4

In this section we investigate the differences between NE-hard sets and NP sets. We use the following well-known result:

Lemma 2 ([8]). Let H be \leq_m^p -hard for NE and $A \in NE$. Then $A \leq_1^p H$.

Theorem 3. For every set H and $A \subseteq H$ such that H is \leq_m^p -hard for NE and $A \in NP$, there exists another set $A' \subseteq H$ such that $A' \in NP$ and A' - A is not of subexponential density.

Proof. Fix H and A as in the premise and let $A \in \text{NTIME}(n^c)$ for some constant c > 1. Let $\{NP_i\}_i$ be an enumeration of all nondeterministic polynomial-time Turing machines such that the computation NP_i on x can be simulated nondeterministically in time $2^{O((|i|+\log(|x|))^2)}$ [8]. Define $S = \{\langle i, x, y \rangle : x, y \in \Sigma^*$ and NP_i accepts x}. Clearly S belongs to NEXP and therefore S is manyone reducible to H via some polynomial-time computable one-one function f. Suppose f can be computed in time n^d for some d > 1. By Cook [4], let $B \in NP - NTIME(n^{2cd})$. Suppose $B = L(NP_i)$ for some *i*. For each $x \in \Sigma^*$, define $T_x = \{z : \exists y (|x| = |y|/2 \le |z| \text{ and } z = f(\langle i, x, y \rangle)\}$. Let $T = \bigcup_{x \in B} T_x$. Clearly $T \in NP$. Since f reduces S to H, $T_x \subseteq H$ for all $x \in B$ and therefore $T \subseteq H$. We now establish the following claims:

Claim 1 For infinitely many $x \in B$, $A \cap T_x = \emptyset$.

Proof. Suppose not. Consider the following machine M:

- 0 On input x
- 1 Guess y with |y| = 2|x|;
- 2 Compute $z = f(\langle i, x, y \rangle);$
- 3 Accept x if and only if $|z| \ge |x|$ and $z \in A$.

Assume $x \in B$ and $A \cap T_x \neq \emptyset$. Let $z \in A \cap T_x$ and hence there exists y with $|y|/2 = |x| \leq |z|$ and $z = f(\langle i, x, y \rangle)$. Thus, M accepts x if it correctly guess y in line 1. Now assume $x \notin B$. Then $T_x \subseteq \overline{H}$ and hence $A \cap T_x = \emptyset$. Thus, for any z computed in line 3, $z \notin A$. So M does not accept x. This shows that M decides B for all but finitely many x. However, the machine M runs in time $O(((2|x|)^d)^c) = O((|x|)^{cd})$ for sufficiently large x, which contradicts that $B \notin \operatorname{NTIME}(n^{2cd})$.

Claim 2: For any infinite set R, the set $\bigcup_{x \in R} T_x$ is not in Density(f(n)) for any sub-exponential function $f: N \to N$.

Proof. Let R be an infinite set and $T' = \bigcup_{x \in R} T_x$. Fix a string x. Since f is a one-one function, $\|\{f(\langle i, x, y \rangle)\}_{|y|=2|x|}\| = 2^{2|x|}$. Since there are only $2^{|x|}$ of strings of length less than |x|, it follows that there are at least $2^{2|x|} - 2^{|x|} \ge 2^{|x|}$ many strings in T_x . Note that the strings in T_x have lengths at most $\Theta(|x|^d)$ and hence, $\|(T')^{\leq \Theta((|x|)^d)}\| \ge 2^{|x|}$. Since x is arbitrary, this shows that $\bigcup_{x \in R} T_x$ is not Density(f(n)) for any sub-exponential function $f: N \to N$. \Box

Now Let $A' = A \cup T$. By Claims 1 and 2 , A' clearly has all the desired properties.

Theorem 3 shows that many-one-hard sets for NE are very different from their NP subsets. Namely they're not even sub-exponentially close to their NP subsets. Next we show a stronger result for many-one-hard sets for coNE. We show that the difference between a many-one-hard set for coNE and any of its NP subset has exponential density.

Theorem 4. Assume that H is a many-one-hard set for coNE and $t(n) : N \to N$ is a sub-exponential function. Then for any $A \subseteq H$ with $A \in \text{NTIME}(t(n))$, there exists another set $A' \subseteq H$ such that $A' \in \text{NP}$, $A' \cap A = \emptyset$, and A' is exponentially dense.

Proof. Fix H and A as in the premise. By a result of Fu et al. [7, Corollary 4.2], $H' = \overline{H} \cup A$ is many-one hard for NE. Now let f be a polynomial-time one-one reduction from $0\Sigma^*$ to H' and suppose f is computable in time n^d . Let $A' = \{z : z = f(1x) \text{ for some } x \text{ with } |x| \leq 2|z|\}$. Clearly $A' \in NP$ and $A' \subseteq \overline{H'}$. Therefore $A' \subseteq H - A$. It remains to show that A' is exponentially dense. For any n > 0, let $F_n = \{f(1x)\}_{|x|=2n}$. Since f is one-one, $||F_n|| = 2^{2n}$. As there are only 2^n strings of length less than n, it follows that there are at least $2^{2n} - 2^n \geq 2^n$ many strings in F_n belonging to A' for each n > 0. Note that the maximal length of a string in F_n is $(2n+1)^d$. This shows that $(A')^{\leq (2n+1)^d} \geq 2^n$ for each n > 0 and hence, A' is exponentially dense. \Box

Corollary 3. Assume that H is $a \leq_m^P$ -hard set for coNE. Then for $A \subseteq H$ with $A \in NP$, there exists another subset $A' \subseteq H$ such that $A' \in NP$, $A' \cap A = \emptyset$, and A' is exponentially dense.

5 Separating NE from $P_{n^k-T}^{NP}$ for nonuniform reductions

In this section we generalize Mocas's result [14] that NEXP $\not\subseteq P_{n^c-T}(NP)$ for any constant c > 0 to non-uniform Turing reductions.

Lemma 3. For any positive constants k, k' > 0, $\operatorname{EXP}_{n^k - T}^{\operatorname{NP}} \not\subseteq \operatorname{P}_{n^k - T}^{\operatorname{NP}}/n^{k'}$.

Proof. Burtschick and Linder [2] showed that

DTIME $(2^{4f(n)}) \not\subseteq$ DTIME $(2^{f(n)})/f(n)$ for any function $f: N \to N$ with $n \leq f(n) < 2^n$. Applying their result with $f(n) = n^{k'}$ yields EXP $\not\subseteq$ P/n^{k'} for any k' > 0. The lemma follows by noting the fact that Burtschick and Linder's result also holds relative to any oracle.

Theorem 5. For any positive constants k, k' > 0, NEXP $\not\subseteq \mathbb{P}_{n^k - T}^{NP} / n^{k'}$.

Proof. Assume that NEXP ⊆ $\mathbf{P}_{n^k-T}^{NP}/n^{k'}$ for some k, k' > 0. Since $\mathbf{EXP}_{n^k-T}^{NP} \subseteq \mathbf{P}_T^{NEXP}[n^{k+1}]$ [14], we have $\mathbf{EXP}_{n^k-T}^{NP} \subseteq \mathbf{P}_T(\mathbf{P}_{n^k-T}^{NP}/n^{k'})[n^{k+1}] \subseteq \mathbf{P}_T^{NP}/(n^{k+1})^{k'} \subseteq \mathbf{NEXP}/n^{(k+1)k'} \subseteq (\mathbf{P}_{n^k-T}^{NP}/n^{k'})/n^{(k+1)k'} \subseteq \mathbf{P}_{n^k-T}^{NP}/n^{k''}$ for some k'' > 0. The last inclusion is a contradiction to Lemma 3.

Since any NEXP set can be easily padded to an NE set, we immediate obtain the following corollary:

Corollary 4. For any positive constants k, k' > 0, NE $\not\subseteq \mathbb{P}_{n^k - T}^{NP}/n^{k'}$.

Lemma 4. For any k > 0, $P_{n^k-T}(NP \oplus P\text{-Sel}) \subseteq P_{n^k-T}(NP)/n^k$.

Proof. Assume that $L \in P_{n^k - T}(NP \oplus P\text{-Sel})$ via polynomial time Turing reduction D. Let A be a P-selective set with order \preceq such that A is an initial segment with \preceq and $L \in P_{n^k - T}(SAT \oplus A)$ via D. Let y be the largest element in A (with the order \preceq) queried by $D^{SAT \oplus A}$ among all inputs of length length $\leq n$. It is easy to see that y can be generated by simulating D with advice of length n^k . When we compute $D^{SAT \oplus A}(x)$, we handle the queries to A by comparing with y.

By Theorem 5 and Lemma 4, we have the following theorem.

Theorem 6. For any constant k > 0, NE $\subseteq P_{n^k-T}(NP \oplus P\text{-Sel})$.

6 Conclusions

We derived some separations between NE and other nondeterministic complexity classes. The further research along this line may be in separating NE from P_T^{NP} , and NE from BPP, which is a subclass of P/Poly.

Acknowledgements: We thank unknown referees for their helpful comments. Bin Fu is supported in part by National Science Foundation Early Career Award 0845376.

References

- 1. L. Berman and J. Hartmanis. On isomorphisms and density of NP and other complete sets. *SIAM Journal on Computing*, 6(2):305–322, 1977.
- H.-J. Burtschick and W. Lindner. On sets Turing reducible to p-selective sets. Theory of Computing Systems, 30:135–143, 1997.
- H. Buhrman and L. Torenvliet. On the Cutting Edge of Relativization: The Resource Bounded Injury Method. ICALP 1994, Lecture Notes in Computer Science 820 Springer 1994, pages 263-273
- S. Cook. A Hierarchy for Nondeterministic Time Complexity. J. Comput. Syst. Sci. 7(4): 343-353 (1973)
- J. Cai and D. Sivakumar. Sparse hard sets for P: resolution of a conjecture of hartmanis. Journal of Computer and System Sciences (0022-0000), 58(2):280-296, 1999.
- B. Fu. On lower bounds of the closeness between complexity classes. *Mathematical Systems Theory*, 26(2):187–202, 1993.
- B. Fu, H. Li, and Y. Zhong. Some properties of exponential time complexity classes. In Proceedings 7th IEEE Annual Conference on Structure in Complexity Theory, pages 50–57, 1992.
- K. Ganesan and S. Homer. Complete Problems and Strong Polynomial Reducibilities. SIAM J. Comput., 21(4), pages 733-742, 1992.
- 9. L. Hemaspaandra and M. Ogihara. *The Complexity Theory Companion*. Texts in Theoretical Computer Science An EATCS Series. Springer, 2002.
- L. Hemaspaandra and L. Torenvliet. Theory of Semi-Feasible Algorithms. Springer, 2003.
- S. Homer and A. Selman. Computability and Complexity Theory. Texts in Computer Science. Springer, New York, 2001.
- R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In Proceedings of the twelfth annual ACM symposium on theory of computing, pages 302 – 309, 1980.
- 13. S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of berman and hartmanis. *Journal of Computer and Systems Sciences*, 25(2):130–143, 1982.
- S. Mocas. Separating classes in the exponential-time hierarchy from classes in PH. Theoretical Computer Science, 158:221–231, 1996.
- M. Ogihara and T. Tantau. On the reducibility of sets inside NP to sets with low information content. Journal of Computer and System Sciences, 69:499–524, 2004.
- M. Ogiwara. On P-closeness of polynomial-time hard sets. Unpublished manuscript, 1991.
- 17. M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibility of NP sets to sparse sets. *SIAM Journal on Computing*, 20(3):471–483, 1991.
- A. Selman. P-selective sets, tally languages and the behavior of polynomial time reducebilities on NP. *Mathematical Systems Theory*, 13:55–65, 1979.
- Y. Yesha. On certain polynomial-time truth-table reducibilities of complete sets to sparse sets. SIAM Journal on Computing, 12(3):411–425, 1983.