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Abstract We investigate the question whether NE can be separated from the
reduction closures of tally sets, sparse sets and NP. We show that (1) NE �⊆
RNP

no(1)−T
(TALLY); (2) NE �⊆ RSN

m (SPARSE); (3) NEXP �⊆ PNP
nk−T

/nk for all k ≥ 1;
and (4) NE �⊆ Pbtt (NP ⊕ SPARSE). Result (3) extends a previous result by Mocas to
nonuniform reductions. We also investigate how different an NE-hard set is from an
NP-set. We show that for any NP subset A of a many-one-hard set H for NE, there ex-
ists another NP subset A′ of H such that A′ ⊇ A and A′ −A is not of sub-exponential
density.
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1 Introduction

Separating the complexity classes has been one of the central problems in complex-
ity theory. Approximation is widely studied method to use low resource computa-
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tion method to deal with some high resource computation. We would like to see
how a hard problem in NE can be approximated by a problem in NP. The differ-
ence between NE and NP has not been fully solved. One of the most interesting
problems between them is to separate NE from PT (NP). This paper continues a line
of research that tries to separate nondeterministic complexity classes in a stronger
sense, i.e., separating nondeterministic complexity classes from the reduction clo-
sure of classes with lower complexity. We focus on the class NE of nondetermin-
istically exponential-time computable sets. Two most interesting but long standing
open problems regarding NE are whether every NE-complete set is polynomial-time
Turing reducible to an NP set and whether it is polynomial-time Turing reducible to
a sparse set. The latter question is equivalent to whether every NE-complete set has
polynomial-size circuits, since a set is polynomial-time Turing reducible to a sparse
set if and only if it has polynomial-size circuits (Berman and Hartmanis 1977). We
show results that generalize and/or improve previous results regarding these ques-
tions and help to better understand them. In complexity theory, a sparse set is a
set with polynomially bounded density. Whether sparse sets are hard for complex-
ity classes is one of the central problems in complexity theory (Mahaney 1982;
Ogiwara and Watanabe 1991; Karp and Lipton 1980; Cai and Sivakumar 1999). In
particular, Mahaney (1982) showed that sparse sets cannot be many-one complete
for NP unless P = NP. Sparse sets play an important role in the study of complex-
ity theory (Mahaney 1982; Ogiwara and Watanabe 1991; Karp and Lipton 1980;
Cai and Sivakumar 1999). Ogihara and Tantau (2004) characterized sparse sets and
p-selective sets as “sets with low information content” as both sparse sets and p-
selective sets become tractable when a small amount of addition information, i.e.,
advice bits, is available. They studied whether problems of NP complexity can be
reduced in polynomial-time to sparse sets via various reductions. They proved that
several important problems inside NP including the Satisfiability problem and the
Graph Isomorphism problem cannot be reduced to sparse sets via certain restrictions
of the general polynomial-time Turing reduction. In Sect. 3 we study the question
whether sparse sets can be hard for NE under reductions that are weaker than the
polynomial-time Turing reductions. We prove that no NE-hard set can be reducible
to sparse sets via the strong nondeterministic polynomial-time many-one reduction.
For a special case of sparse sets, tally sets, we strengthen the result to the nonde-
terministic polynomial-time Turing reductions that make at most no(1) many queries.
These are the main results of this paper. They can be viewed as a step towards under-
standing the information content of high-complex sets such as NE-hard sets. Note that
generalizing these results to polynomial-time Turing reductions is hard since already
the deterministic polynomial-time Turing reduction closure of spare sets as well as
that of p-selective sets equals P/poly (Hemaspaandra and Torenvliet 2003), and it is
not even known whether NE �⊆ P/poly.

We present a new result on the aforementioned long standing open question
whether every NE set is polynomial-time Turing-reducible to a NP set. Fu et al.
(1992) first tackled this problem and showed that NE �⊆ Pno(1)−T (NP). Their re-
sult was later improved by Mocas (1996) to NEXP �⊆ Pnc−T (NP) for any constant
c > 0. Mocas’s result is optimal with respect to relativizable proofs, as Buhrman
and Torenvliet (1994) constructed an oracle relative to which NEXP = PNP. In this
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paper, we extend Mocas’s result to nonuniform polynomial-time Turing reductions
that uses a fixed polynomial number of advice bits. More precisely, we show that
NEXP �⊆ Pnk−T (NP)/nk′

for any constant k, k′ > 0. Since it is easy to show for any
k > 0 that Pnk−T (NP ⊕ P-Sel) ⊆ Pnk−T (NP)/nk , where P-Sel denotes the class of
p-selective sets, we obtain as a corollary that NEXP �⊆ Pnk−T (NP ⊕ P-Sel).

We investigate a different but related question. We study the question of how dif-
ferent a hard problem in NE is from a problem in NP. One way to measure the differ-
ence between sets is by using the notion of closeness introduced by Yesha (1983). We
say two sets are f -close if the density of their symmetric difference if bounded by
f (n). The closeness to NP-hard sets were further studied by Fu (1993) and Ogiwara
(1991). We show that for every ≤P

m-complete set H for NE and every NP-set A ⊆ H ,
there exists another NP-set A′ ⊆ H such that A ⊆ A′ and A′ is not subexponential-
close to A. For coNE-complete sets we show a stronger result. We show that for every
≤p

m-complete set H for coNE and every NP-set A ⊆ H , there exists another NP-set
A′ ⊆ H such that A ∩ A′ = ∅ and A′ is exponentially dense. Finally, we also show
that NE �⊆ Pbtt (NP ⊕ SPARSE).

2 Notations

We use standard notations (Homer and Selman 2001; Hemaspaandra and Ogihara
2002) in structural complexity. All the languages throughout the paper are over the
alphabet � = {0,1}. For a string x, |x| is the length of x. For a finite set A, ||A||
is the number of elements in A. We use �n to denote the set of all strings of length
n and for any language L, L=n = Ln = L ∩ �n. We fix a pairing function 〈·〉 such
that for every u,v ∈ �∗, |〈u,v〉| = 2(|u| + |v|). For a function f (n) : N → N , f

is exponential if for some constant c > 0, f (n) ≥ 2nc
for all large n, and is sub-

exponential if for every constant c > 0, f (n) ≤ 2nc
for all large n. A language L is

exponentially dense if there exists a constant c > 0 such that ||L≤n|| ≥ 2nc
for all

large n. Let Density(d(n)) be the class of languages L such that ||L≤n|| ≤ d(n) for
all large n. For any language L, define its complementary language, denoted by L, to
be �∗ − L.

For a function t (n) : N → N , DTIME(t (n)) (NTIME(t (n)) is the class of lan-
guages accepted by (non)-deterministic Turing machines in time t (n). P (NP) is
the class of languages accepted by (non-)deterministic polynomial-time Turing ma-
chines. E (NE) is the class of languages accepted by (non-)deterministic Turing
machines in 2O(n) time. EXP (NEXP) is the class of languages accepted by (non-
)deterministic Turing machines in time 2nO(1)

. TALLY is the class of languages con-
tained in 1∗ and SPARSE is the class of languages in

⋃∞
c=1 Density(nc). Clearly,

TALLY is a subclass of SPARSE. We use P-Sel to denote the class of p-selective
sets (Selman 1979). For any language L and function h : N �→ N , let L/h = {x :
〈x,h(|x|)〉 ∈ L}. For any class C of languages, coC is the class of languages L such
that L ∈ C and C/h is the class of languages L such that L = L′/h for some L′ ∈ C .

For two languages A and B , define the following reductions: (1) A is polynomial-
time many-one reducible to B , A ≤p

m B , if there exists a polynomial-time com-
putable function f : �∗ �→ �∗ such that for every x ∈ �∗, x ∈ A if and only if
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f (x) ∈ B . (2) A is polynomial-time truth-table reducible to B , A ≤p
tt B , if there ex-

ists a polynomial-time computable function f : �∗ �→ �∗ such that for every x ∈ �∗,
f (x) = 〈y1, y2, . . . , ym,T 〉, where yi ∈ �∗ and T is the encoding of a circuit, and
x ∈ A if and only if T (B(y1)B(y2) · · ·B(ym)) = 1. (3) A is polynomial-time Turing
reducible to B , A ≤P

T B , if there exists a polynomial-time oracle Turing machine M

such that MB accepts A. (4) A is exponential-time Turing reducible to B , A ≤EXP
T B ,

if there exists an exponential-time oracle Turing machine M such that MB accepts A.
(5) We say A ≤P

1 B if A ≤P
m B via a reduction f that is one-to-one.

For a nondeterministic Turing machine M , denote M(x)[y] to be the computation
of M with input x on a path y. If M(x) is an oracle Turing machine, MA(x)[y] is the
computation of M with input x on a path y with oracle A.

For two languages A and B , define the following nondeterministic reductions:
(1) A is nondeterministically polynomial-time many-one reducible to B , A ≤NP

m B ,
if there exists a polynomial-time nondeterministic Turing machine M and a polyno-
mial p(n) such that for every x, x ∈ A if and only if there exists a path y of length
p(|x|) with M(x)[y] ∈ B . (2) A is nondeterministically polynomial-time truth-table
reducible to B , A ≤NP

t t B , if there exists a polynomial-time nondeterministic Tur-
ing machine M and a polynomial p(n) such that for every x ∈ �∗, x ∈ A if and
only if there is at least one y ∈ �p(|x|) such that M(x)[y] = (z1, . . . , zm,T ), where
zi ∈ �∗, T is the encoding of a circuit, and T (B(z1), . . . ,B(zm)) = 1. (3) A is non-
deterministically polynomial-time Turing reducible to B , A ≤NP

T B , if there exists a
polynomial-time nondeterministic oracle Turing machine M and a polynomial p such
that for every x ∈ �∗, x ∈ A if and only if there is at least one y ∈ �p(|x|) such that
MB(x)[y] accepts. (4) A is strongly nondeterministically polynomial-time many-one
reducible to B , A ≤SN

m B , if there exists a polynomial-time nondeterministic Turing
machine M() such that x ∈ A if and only if (1) M(x)[y] ∈ B for all y that M(x)[y]
is not empty; (2) M(x)[y] is not empty for at least one y ∈ �nO(1)

.
For a function g(n) : N → N , we use A ≤NP

g(n)−t t B to denote that A ≤NP
t t B via

a polynomial-time computable function f such that for every x ∈ �n, f (x, y) =
(z1, . . . , zm,T ) and m ≤ g(n). We use A ≤NP

btt B to denote that A ≤NP
c−t t B for some

constant c > 0. For t ∈ {P,NP,EXP}, we use A ≤t
g(n)−T to denote that A ≤t

T via a
Turing machine M that makes at most g(n) queries on inputs of length n.

For a class C of languages, we use Rt
r(C) (Rt

g(n)−r (C)) to denote the reduction
closure of C under the reduction ≤t

r (≤t
g(n)−r ), where r ∈ {P,NP, SN,EXP} and r ∈

{m, tt, T }. We also use conventional notations for common reduction closures such
as PNP = PT (NP) = RP

T (NP) and EXPNP
nk−T

= EXPnk−T (NP) = REXP
nk−T

(NP). For a
function l : N �→ N and a reduction closure R, we use R[l(n)] to denote the same
reduction closure as R except that the reductions make queries of length at most l(n)

on inputs of length n.
We fix a universal Turing machine U and define C(f (n), t (n)) to be the class of

strings x that can be generated by U from a string of length c(f (|x|)) in time t (|x|)
for some constant c.

A function f (n) from N to N is time constructible if there exists a Turing machine
M such that M(n) outputs f (n) in f (n) steps.
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3 Separating NE from RNP
no(1)−T

(TALLY)

In this section, we present the main result that NE cannot be reduced to TALLY via
polynomial time Turing reduction with the number of queries bounded by n1/α(n)

for some polynomial time computable nondecreasing function α(n) (for example,
α(n) = log logn). The proof is a combination of the translational method and the
point of view from Kolmogorov complexity.

Lemma 1 Assume that function g(n) : N → N is nondecreasing unbounded
and function 2ng(n)/2 is time constructible. Then there exists a language L0 ∈
DTIME(2ng(n)

) such that ||Ln
0|| = 1, and for every Turing machine M , M cannot

generate any sequence in Ln
0 with any input of length n − logn in 2nO(1)

time for all
large n.

Proof We use the diagonal method to construct the language L0. Let M1, . . . , Mk, . . .

be an enumeration of all Turing transducers.

Construction:
Input n,
Simulate each machine Mi(y) in 2ng(n)/2

steps for i = 1, . . . , logn and all y of
length n − logn.

Find a string x of length n such that x cannot be generated by any machine among
M1, . . . ,Mlogn with any input of length at most n − logn.

Put x into L0.
End of Construction

There are at most 2n−logn+1 strings of length at most n − logn. Those logn ma-
chines can generate at most 2n−logn+1 logn < 2n strings. Since generating each string
takes 2ng(n)/2

steps. This takes 2n · 2ng(n)/2
< 2ng(n)

time for all large n. �

Theorem 2 Assume that t (n) and f (n) are time constructible nondecreasing func-
tions from N to N such that (1) t (f (n)) is �(2ng(n)

) for some nondecreasing un-
bounded function g(n), and (2) for any constant c > 0, f (n) ≤ t (n)1/c and f (n) ≥ 4n

for all large n. If q(n) is a nondecreasing function with q(f (n))(logf (n)) = o(n),
then NTIME(t (n)) �⊆ RNP

q(n)−T
(TALLY).

Proof We apply a translational method to obtain such a separation. We prove by
contradiction and assume that NTIME(t (n)) ⊆ RNP

q(n)−T (TALLY). Without loss of
generality, we assume that q(n) ≥ 1.

Let L be an arbitrary language in DTIME(t (f (n)). Define L1 = {x10f (|x|)−|x|−1 :
x ∈ L}. It is easy to see that L1 is in DTIME(t (n)) since L is in DTIME(t (f (n))).

By our hypothesis, there exists a set A1 ∈ TALLY such that L1 ≤NP
q(n)−T A1 via

some polynomial time nondeterministic oracle Turing machine M1, which runs in
polynomial nc1 time for all large n.

Let L2 = {(x, (e1, . . . , em, a1 · · ·am)) : there is a path y such that
M

A1
1 (x10f (|x|)−|x|−1)[y] accepts and queries 1e1, . . . ,1em in path y and receives an-
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swers a1 = A1[1e1], . . . , am = A1[1em ] respectively }. Since M1 runs in time nc1 and
f (n) = t (n)o(1), we have L2 is in NTIME(f (n)c1) ⊆ NTIME(t (n)).

By our hypothesis, there exists a set A2 ∈ TALLY such that L2 ≤NP
q(n)−T A2 via

some polynomial time nondeterministic oracle Turing machine M2().
Therefore, for every string x, in order to generate x ∈ L, we need to provide

(e1, . . . , em, a1 · · ·am) and (z1, . . . , zt , b1 · · ·bt ) such that there exists an accepting
path y1 that MA1

1 (x10f (|x|)−|x|−1)[y1] queries 1e1, . . . ,1em with answers ai = A1(1ei )

for i = 1, . . . ,m and there exists an accepting path y2 that M
A2
2 (x, (e1, . . . , em,

a1 · · ·am))[y2] queries 1z1 , . . . ,1zt with bi = A2(1zi ) for i = 1, . . . , t . Let nc2 be
the polynomial time bound for M2. We have the following Turing machine M∗.

M∗():
Input: a string of u of length o(n).
If u does not have the format (e1, . . . , em, a1 · · ·am)(z1, . . . , zt , b1 · · ·bt ),
then return λ (empty string).
Extract (e1, . . . , em, a1 · · ·am) and (z1, . . . , zt , b1 · · ·bt ) from u.
For each x of length n

Simulate M
A2
2 (x, (e1, . . . , em, a1 · · ·am)) with the query help from

(z1, . . . , zt , b1 · · ·bt ) (by assuming that bi = A2(1zi ) for i = 1, . . . , t).
Output x if it accepts.

It is easy to see that M∗ takes 2nO(1)
time. There exists an accepting path

y1 such that M
A1
1 (x10f (|x|)−|x|−1)[y1] makes at most q(f (n)) queries, where

n = |x|. So, we have m ≤ q(f (n)), ei ≤ f (n)c1 and |ei | ≤ c1(logf (n)). There-
fore, (e1, . . . , em, a1, . . . , am) has length h ≤ 2(O(q(f (n)) logf (n)) + q(f (n))) =
O(q(f (n)) logf (n)) = o(n). There exists an accepting path y2 such that
M

A1
2 ((x, (e1, . . . , em, a1 · · ·am))[y2] makes at most q(n + h) queries to 1z1, . . . ,1zt .

The length of (x, (e1, . . . , em, a1 · · ·am)) is at most 2(n + h) ≤ 4n. So, t ≤ q(4n).
Therefore, (z1, . . . , zt , b1 · · ·bt ) has length q(4n) log((4n)c2) = O(q(f (n)) ·
logf (n)) = o(n). Therefore, the total length of (e1, . . . , em, a1 · · ·am) and (z1, . . . , zt ,

b1 · · ·bt ) is o(n). So, (e1, . . . , em, a1 · · ·am) and (z1, . . . , zt , b1 · · ·bt ) can be encoded
into a string of length o(n). Let L be the language L0 in Lemma 1. This contra-
dicts Lemma 1 since a string of length n can be generated by M∗() with the input
(e1, . . . , em, a1 · · ·am)(z1, . . . , zt , b1 · · ·bt ) of length o(n). �

Corollary 3 NE �⊆ RNP
n1/α(n)−T

(TALLY) for any polynomial computable nondecreas-
ing unbounded function α(n) : N → N .

Proof Define g(n) = �√α(n)�, f (n) = ng(n), q(n) = n
1

α(n) , and t (n) = 2n. By
Theorem 2, we have that NTIME(t (n)) �⊆ RNP

q(n)−T (TALLY). We have that NE �⊆
RNP

n1/α(n)−T
(TALLY) since RNP

n1/α(n)−T
(TALLY) is closed under ≤P

m reductions and

there exists a NE-≤p
m-hard set in NTIME(t (n)). �

It is natural to extend Theorem 2 by replacing TALLY by SPARSE. We feel it is
still hard to separate NE from RNP

m (SPARSE). The following theorem shows that we
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can separate NE from RSN
m (SPARSE). Its proof is another application of the combi-

nation of translational method with Kolmogorov complexity point of view.

Theorem 4 Assume that t0(n) and t (n) are time constructible nondecreasing func-
tions from N to N such that for any positive constant c, t0(n)c = O(t(n)) and
t (t0(n)) > 2nα(n)

for some nondecreasing unbounded function α(n), and d(n) is a
nondecreasing function such that d((t0(n))c) = 2no(1)

. Then NTIME(t (n)) �⊆ RSN
m

(Density((d(n))).

Proof Assume that NTIME(t (n)) ⊆ RSN
m (Density(d(n)). We will derive a contradic-

tion.
Construction of L=n: Let S be the sequence of length n1+ 1

k in L0 of Lemma 1
with g(n) = α(n), where n = mk and k = 100. Assume that S = y1y2 · · ·ym2 , where
each yi is of length mk−1. Let L=n = {yi1yi2 · · ·yim : 1 ≤ i1 < i2 < · · · < im ≤ m2}.
Define block(x) = {yi1, yi2, . . . , yim} if x = yi1yi2 · · ·yim . Clearly, L=n contains

(
m2

m

)

elements.
Define L1 = {x10t0(|x|)−|x|−1 : x ∈ L}. It is easy to see that L1 is in DTIME(t (n))

since L is in DTIME(t (t0(n))).
By our hypothesis, there exists a set A1 ∈ Density(d(n)) such that L1 ≤SN

m A1 via
some polynomial time nondeterministic Turing machine f (), which runs in polyno-
mial time nc1 . For a sequence z and integer n, define H(z,n) = {x ∈ Ln : f (x)[y] = z

for some path y}. Therefore, there are a sequence z such that ||H(z,n)|| ≥ (m2
m )

d((t0(n))c1 )
.

Let L2 = {(x, y) : |x| = |y| and there are paths z1 and z2 such that
f (x10t0(|x|)−|x|−1)[z1] = f (y10t0(|y|)−|y|−1)[z2]}. Since f () runs in polynomial time
and t0(n)c1 = O(t(n)), we have L2 ∈ NTIME(t (n)).

By our hypothesis, there exists a set A2 ∈ Density(d(n)) with such that L2 ≤SN
m A2

via some a nondeterministic Turing machine u(), which runs in a polynomial nc2

time.
Define L2(x) = {x1 : (x, x1) ∈ L2}. There exists x ∈ L=n such that ||L2(x)|| ≥
(m2

m )
d((t0(n))c1 )

.

Define L′
2(x, x′) = {x2 : u(x, x′)[z′] = u(x, x2)[z2] for some paths z′ for u(x, x′)

and z2 for u(x, x2)}. There exists x′ ∈ L2(x) such that L′
2(x, x′) contains at least

(m2
m )

d((t0(n))c1 )d((t0(n))c2 )
elements. We fix x and x′.

Since ||block(x)∪ block(x′)|| ≤ 2m, those 2m strings in block(x)∪ block(x′) can

generate at most
(2m

m

)
<

(m2
m )

d((t0(n))c1 )d((t0(n))c2 )
sequences of length n in L=n for all large

n. Therefore, there is a string x3 ∈ L=n such that x3 ∈ L′
2(x, x′) and block(x3) �⊆

block(x) ∪ block(x′).
This makes it possible to compress S. We can encode the strings x, x′ and those

blocks of S not in x3. The total time is at most 2nO(1)
to compress S.

Let yi1 < yi2 < · · · < yi
m2 be the sorted list of y1, y2, . . . , ym2 . Let (i1, i2, . . . , im2)

be encoded into a string of length O(m2(logn)). Define Y = yj1yj2 · · ·yjt , where
{yj1, yj2, . . . , yjt } = {y1, . . . , ym2} − (block(x) ∪ block(x′) ∪ block(x3)).
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We can encode (i1, i2, . . . , im2) into the format 0a10a2 · 0au11. We have se-

quence Z = (i1, i2, . . . , im2)xx′Y to generate S in 2nO(1)
time. Since at least

one block yi among y1, y2, . . . , ym2 is missed in block(xx′Y), |yi | = mk−1, and
|(i1, i2, . . . , im2)| < m3, it is easy to see that |Z| ≤ n − (logn)2. This brings a contra-
diction. �

Corollary 5 NE �⊆ RSN
m (SPARSE).

Proof Let t (n) = 2n, t0(n) = nlogn, and d(n) = nlogn. Apply Theorem 4. �

4 On the differences between NE and NP

In this section we investigate the differences between NE-hard sets and NP sets. We
use the following well-known result:

Lemma 6 (Ganesan and Homer 1992) Let H be ≤p
m-hard for NE and A ∈ NE. Then

A ≤p

1 H .

Theorem 7 For every set H and A ⊆ H such that H is ≤p
m-hard for NE and A ∈ NP,

there exists another set A′ ⊆ H such that A′ ∈ NP and A′ −A is not of subexponential
density.

Proof Fix H and A as in the premise and let A ∈ NTIME(nc) for some constant
c > 1. Let {NPi}i be an enumeration of all nondeterministic polynomial-time Turing
machines such that the computation NPi on x can be simulated nondeterministically
in time 2O((|i|+log(|x|))2) (Ganesan and Homer 1992). Define S = {〈i, x, y〉 : x, y ∈
�∗ and NPi accepts x}. Clearly S belongs to NEXP and therefore S is many-one
reducible to H via some polynomial-time computable one-one function f . Suppose
f can be computed in time nd for some constant d > 1. By Cook (1973), let B ∈
NP − NTIME(n2cd). Suppose B = L(NPi ) for some i. For each x ∈ �∗, define Tx =
{z : ∃y(|x| = |y|/2 ≤ |z| and z = f (〈i, x, y〉)}. Let T = ⋃

x∈B Tx . Clearly T ∈ NP.
Since f reduces S to H , Tx ⊆ H for all x ∈ B and therefore T ⊆ H . We now establish
the following claims:

Claim 1 For infinitely many x ∈ B , A ∩ Tx = ∅.

Proof Suppose not. Consider the following machine M :

0 On input x

1 Guess y with |y| = 2|x|;
2 Compute z = f (〈i, x, y〉);
3 Accept x if and only if |z| ≥ |x| and z ∈ A.

Assume that x ∈ B and A ∩ Tx �= ∅. Let z ∈ A ∩ Tx and hence there exists y with
|y|/2 = |x| ≤ |z| and z = f (〈i, x, y〉). Thus, M accepts x if it correctly guesses y

in line 1. Now assume x �∈ B . Then Tx ⊆ H and hence A ∩ Tx = ∅. Thus, for any z
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computed in line 3, z �∈ A. So M does not accept x. This shows that M decides B

for all but finitely many x. However, the machine M runs in time O(((2|x|)d)c) =
O((|x|)cd ) for sufficiently large x, which contradicts that B �∈ NTIME(n2cd). �

Claim 2 For any infinite set R, the set
⋃

x∈R Tx is not in Density(f (n)) for any
sub-exponential function f : N → N .

Proof Let R be an infinite set and T ′ = ⋃
x∈R Tx . Fix a string x. Since f is

a one-one function, ‖{f (〈i, x, y〉)}|y|=2|x|‖ = 22|x|. Since there are only 2|x| of
strings of length less than |x|, it follows that there are at least 22|x| − 2|x| ≥ 2|x|
many strings in Tx . Note that the strings in Tx have lengths at most �(|x|d) and
hence, ‖(T ′)≤�((|x|)d )‖ ≥ 2|x|. Since x is arbitrary, this shows that

⋃
x∈R Tx is not

Density(f (n)) for any sub-exponential function f : N → N . �

Now Let A′ = A ∪ T . By Claims 1 and 2, A′ clearly has all the desired properties.
This proves Theorem 7. �

Theorem 7 shows that many-one-hard sets for NE are very different from their NP
subsets. Namely they’re not even sub-exponentially close to their NP subsets. Next
we show a stronger result for many-one-hard sets for coNE. We show that the differ-
ence between a many-one-hard set for coNE and any of its NP subset has exponential
density.

Theorem 8 Assume that H is a many-one-hard set for coNE and t (n) : N → N is
a sub-exponential function. Then for any A ⊆ H with A ∈ NTIME(t (n)), there exists
another set A′ ⊆ H such that A′ ∈ NP, A′ ∩ A = ∅, and A′ is exponentially dense.

Proof Fix H and A as in the premise. By a result of Fu et al. (1992, Corol-
lary 4.2), H ′ = H ∪ A is many-one hard for NE. Now let f be a polynomial-
time one-one reduction from 0�∗ to H ′ and suppose f is computable in time nd .
Let A′ = {z : z = f (1x) for some x with |x| ≤ 2|z|}. Clearly A′ ∈ NP and A′ ⊆ H ′.
Therefore A′ ⊆ H − A. It remains to show that A′ is exponentially dense. For any
n > 0, let Fn = {f (1x)}|x|=2n. Since f is one-one, ‖Fn‖ = 22n. As there are only
2n strings of length less than n, it follows that there are at least 22n − 2n ≥ 2n many
strings in Fn belonging to A′ for each n > 0. Note that the maximal length of a string
in Fn is (2n+ 1)d . This shows that (A′)≤(2n+1)d ≥ 2n for each n > 0 and hence, A′ is
exponentially dense. �

Corollary 9 Assume that H is a ≤P
m-hard set for coNE. Then for A ⊆ H with

A ∈ NP, there exists another subset A′ ⊆ H such that A′ ∈ NP, A′ ∩ A = ∅, and
A′ is exponentially dense.

5 Separating NEXP from PNP
nk−T

for nonuniform reductions

In this section we generalize Mocas’s result (Mocas 1996) that NEXP �⊆ Pnc−T (NP)

for any constant c > 0 to non-uniform Turing reductions.
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Lemma 10 For any positive constants k, k′ > 0, EXPNP
nk−T

�⊆ PNP
nk−T

/nk′
.

Proof Burtschick and Lindner (1997) showed that DTIME(24f (n)) �⊆
DTIME(2f (n))/f (n) for any function f : N → N with n ≤ f (n) < 2n. Applying
their result with f (n) = nk′

yields EXP �⊆ P/nk′
for any k′ > 0. The lemma fol-

lows by noting the fact that Burtschick and Linder’s result also holds relative to any
oracle. �

Theorem 11 For any positive constants k, k′ > 0, NEXP �⊆ PNP
nk−T

/nk′
.

Proof Assume that NEXP ⊆ PNP
nk−T

/nk′
for some k, k′ > 0. Since EXPNP

nk−T
⊆

PNEXP
T [nk+1] (Mocas 1996), we have EXPNP

nk−T
⊆ PT (PNP

nk−T
/nk′

)[nk+1] ⊆
PNP

T /(nk+1)k
′ ⊆ NEXP/n(k+1)k′ ⊆ (PNP

nk−T
/nk′

)/n(k+1)k′ ⊆ PNP
nk−T

/nk′′
for some

k′′ > 0. The last inclusion is a contradiction to Lemma 10. �

Lemma 12 For any k > 0, Pnk−T (NP ⊕ P-Sel) ⊆ Pnk−T (NP)/nk .

Proof Assume that L ∈ Pnk−T (NP ⊕ P-Sel) via polynomial time Turing reduc-
tion D. Let A be a P-selective set with order � such that A is an initial segment
with � and L ∈ Pnk−T (SAT ⊕ A) via D. Let y be the largest element in A (with the
order �) queried by DSAT⊕A among all inputs of length ≤ n. It is easy to see that
y can be generated by simulating D with advice of length nk . When we compute
DSAT⊕A(x), we handle the queries to A by comparing with y. �

By Theorem 11 and Lemma 12, we have the following theorem.

Theorem 13 For any constant k > 0, NEXP �⊆ Pnk−T (NP ⊕ P-Sel).

6 Separating NE from Pbtt (NP ⊕ SPARSE)

In this section, we separate NE from Pbtt (NP ⊕ SPARSE) by applying translational
method and Kolmogorov complexity again.

Theorem 14 NE �⊆ Pbtt (NP ⊕ Density(nlogn)).

Proof We prove by contradiction by assuming that NE �⊆ Pbtt (NP⊕Density(nlogn)).
A method from Fu (1995) is used in this proof. Let L be an arbitrary language in
DTIME(2f (n)), where f (n) = nlogn. Define L1 = {x10f (|x|)−|x|−1 : x ∈ L}. It is easy
to see that L1 ∈ DTIME(2n) ⊆ NE.

By our assumption, there exists a language S1 ∈ Density(nlogn) such that L1 ∈
Pc1−t t (SAT ⊕ S1) via some ≤P

c1−t t reduction g1, where c1 is a constant.
Define L2 = {(x, i) : the i-element of g1(x10f (|x|)−|x|−1) is in SAT}. It is easy

to see that L2 is in NE. Therefore, there exists S2 ∈ Density(nlogn) such that L2 ∈
Pc2−t t (SAT ⊕ S2) via some ≤P

c2−t t reduction g2, where c2 is a constant.
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In order to make a decision if x ∈ L, it is converted into some constant number
of queries to SAT with length nO(1), and constant queries to S1 of length nO(logn)

and some queries to S2 of length nO(1). The conversion is through the above two
reductions g1 and g2. Each query to SAT can be answered in 2nO(1)

time by using the
exhaustive search. Therefore, making decision if x ∈ L we need 2nO(1)

time and con-
stant number c3 queries to S1 ⊕ S2 with length at most nO(logn). There are n(logn)O(1)

elements of length nO(logn) in S1 ⊕ S2. Assume that MS1⊕S2 is such a oracle Turing
machine for accepting language L.

We derive a contradiction via the Kolmogorov complexity point of view. Let

m = n
1
k with k = 100. Assume that Sn = y1y2 · · ·ym2 , where each yi is of length

mk−1. Let L=n = {yi1yi2 · · ·yim : 1 ≤ i1 < i2 < · · · < im ≤ m2}. Assume that Sn can-

not be compressed in time 2n(logn)/2
. The sequence Sn can be found via an exhaus-

tive method to try all strings of length mk−1+2 = mk+1 = n1+ 1
k with a universal

Turing machine to test if it is compressible. Searching such a Sn can be done in
2nlogn

time. Therefore, L is in DTIME(2f (n)). Define block(x) = {yi1, yi2, . . . , yim}
if x = yi1yi2 · · ·yim . Clearly, L=n contains

(
m2

m

)
elements.

Partition strings in �≤nO(logn)
into U1, . . . ,Uu such that 1) each Ui contain a series

strings in consecutive lexicographic order in �≤nO(logn)
; and 2)(S1 ⊕ S2)(x) = (S1 ⊕

S2)(y) for any strings x and y from the same Ui , where (S1 ⊕ S2)(x) = 1 if x ∈
S1 ⊕S2, and (S1 ⊕S2)(x) = 0 otherwise. Since there are n(logn)O(1)

elements of length
nO(logn) in S1 ⊕ S2, we have u = n(logn)O(1)

.
For two strings x and x′ in �n, they have the same type if both strings zi and z′

i are
in the same Uj for some j , where zi and z′

i are the i-th queries made by MS1⊕S2(x)

and MS1⊕S2(x′), respectively. Since M makes at most constant c3 queries, the total
number of types is n(logn)O(1)

.

There exists one type T ⊆ L=n that contains ||L=n||
n(logn)O(1) = (m2

m )

n(logn)O(1) = �
((

m2−o(1)

m

))

strings in L=n. Assume that Ui1, . . . ,Uic3
are the sets that holds all queries generated

by strings from T .
There are many strings in L=n have the queries to S1 ⊕ S2 in the same type. For

each Uij , let xj be the string in T such that it generates the least queries in Uij under
lexicographic order, and let x′

j be the string in T such that it generates the largest
queries in Uij under lexicographic order.

Using {x1, x
′
1, . . . , xc3, x

′
c3

}, we can generate all strings in T in 2nO(1)
time by

checking the range for all queries to S1 ⊕ S2. This can generate �
((

m2−o(1)

m

))
many

strings that contain m2−o(1) blocks. Note that the number of blocks of the strings
in {x1, x

′
1, . . . , xc3, x

′
c3

} is only O(m). Assume the blocks for the strings in T

are yi1, . . . , yit . With information {x1, x
′
1, . . . , xc3, x

′
c3

}, i1, . . . , it , and the blocks

{y1, y2, . . . , ym2} − {yi1, . . . , yit } (the sets are ordered), we can recover Sn in 2nO(1)

time. This makes Sn compressible in 2n(logn)/2
time. A contradiction is brought. �

Corollary 15 NE �⊆ Pbtt (NP ⊕ SPARSE).
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7 Conclusions

We derived some separations between NE and other nondeterministic complexity
classes. The further research along this line may be in separating NE from P NP

T , and
NE from BPP, which is a subclass of P/Poly.
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