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I am interested in theoretical computer science and its applications. I believe breakthroughs in
theoretical computer science have the potential to affect all of computer science radically.

My Ph.D. dissertation is in computational complexity. This area of research raises fundamental
questions, such as the problem of whether P equals NP. I focused on the following topics for my
Ph.D. research.

Disjoint NP-Pairs

A disjoint NP-pair is a pair of disjoint, nonempty sets in NP. The study of disjoint NP-pairs
is motivated by its connections to secure public-key cryptosystems and to propositional proof
complexity. The latter subject is concerned with the complexity of proof systems for propositional
logic, which itself is related to the problem of whether NP equals coNP [8]. In a reasonable
formulation of public-key cryptosystems [18], the problem of cracking public-key cryptosystems
is equivalent to separating certain disjoint NP-pairs. For this reason, answers to questions about
the existence of NP-hard or P-inseparable disjoint NP-pairs informs us about the question of
whether secure public-key cryptosystems exist or whether public-key cryptosystems can be NP-
hard to crack. My dissertation concentrates primarily on disjoint NP-pairs and connections with
propositional proof systems.

Razborov [25] was the first to discover a connection between disjoint NP-pairs and propositional
proof systems. A proof system is optimal if its proofs of tautologies are not much longer than
those of any other proof system. The problem is that we do not know whether optimal proof
systems exist. Concerning the study of disjoint NP-pairs, we do not know whether there is a
complete disjoint NP-pair. In fact some of the results I proved in Glaßer et al. [11] show that
it is very hard to either prove or disprove existence of complete disjoint NP-pairs. Razborov
discovered a connection between these problems. He defined a canonical disjoint NP-pair for
every propositional proof system and showed that the canonical pair of an optimal propositional
proof system is complete for the class of all disjoint NP-pairs. Also, it is a known fact [24]
that the canonical NP-pair of every propositional proof system is P-separable if and only if
the propositional proof system is simulated by an automatizable propositional proof system, a
concept in the study of automated theorem proving. The recent paper by Glaßer et al. [12], shows
that every disjoint NP-pair is equivalent to the canonical NP-pair of some propositional proof
system. This is a surprising result. These results display an unexpected connection of existence
of complete and/or non-trivial P-separable disjoint NP-pairs to propositional proof complexity
and automated theorem proving. Due to this connection, it is interesting to study the degree
structure of disjoint NP-pairs, which is also the degree structure of all canonical NP-pairs of
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propositional proof systems. In Glaßer et al. [12] I proved that the degree structure of disjoint
NP-pairs is “universal” in the sense that every countable distributive lattice can be embedded
into it, assuming P-inseparable NP-pairs exist. This result tells us that the degree structure
of disjoint NP-pairs is very complicated. (Similar results were shown for degrees of NP-sets by
Ambos-Spies [1].)

Another interesting question regarding the relation between disjoint NP-pairs and propositional
proof systems is to what extent canonical NP-pairs represent the properties of their associated
propositional proof systems, or more precisely, how different can two propositional proof sys-
tems be if they have equivalent canonical NP-pairs. In my recent joint work with Glaßer and
Selman [14], we show that the strength of canonical NP-pairs only relate to the strength of their
corresponding proof systems in a very limited way.

Structural Properties of Complete Sets

One basic problem in computational complexity is what structural properties complete sets of
different complexity classes have. For example, are all NP-complete sets dense, meaning that
they have exponentially many strings per length? It is important to study such computational
structure of complete sets, because they, by reductions of all the sets in the class to the complete
sets, represent all of the structure that a class might have. For this reason, the study of structural
properties of complete sets gave us a better understanding of the computational power of various
complexity classes [5], and also might lead to proofs of separation results in complexity theory
(see, for e.g. , Buhrman et al. [4].)

In Glaßer et al. [9, 10] we studied autoreducibility and mitoticity [4, 6, 7]. A set is r-autoreducible
if the set reduces to itself under the reduction r without querying on the input string. Intuitively,
autoreducible sets contain a certain amount of redundant information. The information about
whether a string is in A can be retrieved from the membership of other strings in A. It was
known that the Turing-complete (T ) sets for many complexity classes are T -autoreducible [2, 4].
Glaßer et al. [9] proved similar results for the much stronger many-one (m) reductions. They
showed that many-one complete sets of NP, PSPACE, all levels of the Polynomial Hierarchy,
and all levels of the Boolean Hierarchy over NP are many-one autoreducible. The proofs are
totally different from those used previously and involve clever applications of the so-called “left-
set” technique introduced by Ogiwara and Watanabe [23]. However, the scenarios for the more
general truth-table (tt) reductions, which have strength between the many-one reductions and
the Turing reductions, remain much unknown and are interesting open problems for further
research. In particular, we do not know whether tt-complete sets for NP are tt-autoreducible.

An NP-complete set L is mitotic if it can be partitioned by a set in P into two parts L1 and
L2 such that L1 and L2 are both NP-complete. Notice that the parts L1 and L2 have the same
information as does the original set. Glaßer et al. [10] proved that complete sets for complexity
classes are m-mitotic. This is a surprising result and the proof is anything but straightforward.
No direct proof is known. Instead we proved that m-autoreducible implies m-mitotic, and then
apply the results described above.

In general, a set is r-mitotic if the set can be easily partitioned into two subsets that are equivalent
under the reduction r. One can easily prove that r-mitoticity implies r-autoreducibility for any
reduction r. The problem is whether autoreducibility implies mitoticity. Glaßer et al. [10]
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showed that autoreducibility and mitoticity coincides for many-one reductions, which are the
same reductions we use to define NP-complete sets. This solves an open problem in Buhrman
and Torenvliet [5] in a very surprising way as intuitively and by definition, mitoticity seems to
imply much more redundancy than autoreducibility. The key idea of the proof is a novel labeling
algorithm using log-distances between two strings. The proof is complicated and involves a
combinatorial argument. By combining the results in both papers [9, 10], we conclude that every
NP-complete set can be easily split into two NP-complete sets. The same holds for many-one
complete sets of many other complexity classes also: PSPACE, the Polynomial Hierarchy, EXP,
etc. These are the most compelling and unexpected results we obtained.

In the same paper [10] the authors also showed that mitoticity coincides with autoreducibility
for 1-tt reductions but not for any reduction weaker than 3-tt, where 3-tt is a weaker reduction
than 1-tt, which in turn is weaker than the many-one reduction. This left the case for 2-tt as
an interesting open problem. In a new paper with Glaßer et al. [15], I solved this open problem
by proving that 2-tt autoreducibility does not imply 2-tt mitoticity. This result completes the
picture as to for which reductions the two notions, autoreducibility and mitoticity, are or are not
equivalent.

Future Work

I would certainly like to continue my research in the area of computational complexity, specif-
ically on disjoint NP-pairs and structural properties of complete sets. Disjoint NP-pairs is a
concept that researchers just started studying in complexity theory and provides us with a new
perspective of looking at previously studied unsolved problems. Study of structural properties of
complete sets has always been an important component of computational complexity research.
Results in the area of structural properties of complete sets always bring about a new and better
understanding of complexity classes. Both areas are very active and have many interesting and
important open problems [13, 7].

I am also interested in applications of theoretical computer science. Computational complexity
has close relations with areas such as cryptography [16, 17] or computer security where tools
and concepts of computational complexity can and indeed need to be applied. I would like to
explore these areas and will look to get applicable results by exploiting ideas and solutions from
the computational complexity sector.

Another area I would like to explore as part of my future research is the design and analysis
of algorithms. This is an area in theoretical computer science that is directly connected with
tangible applications. The rapidly developing field of computer technology and industry gives rise
to many practical problems that need algorithms that are grounded in theoretical concepts. As
closely related areas, research in algorithm and complexity have collaborated on many new ideas
and techniques in the last decades such as randomization [21], derandomization [22, 20, 19], and
algebraic methods [3]. I plan to build upon my solid background in complexity theory and my
early experience in algorithmic research [27, 26] to eventually work on the frontier of algorithmic
research in the near future.

I will certainly enjoy collaborating with experts in all areas of computer science and conduct
mutually beneficial research.
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