Example 1
Determine the reaction at point A.

Problem F1-6
Determine the reactions at point A .

Example 3:

Determine the reactions at point C .

Example 1-1
Determine the resultant internal loadings acting on the cross section at C of the cantilevered beam.

(a)

Example 1-3

Determine the resultant internal loadings acting on the cross section at G of the beam shown below. Each joint is a pin connection.

Problem 1-3 (8 $8^{\text {th }} \mathrm{ed}$)
Determine the resultant internal torque acting on the cross section through points B and C .

Problem 1-28

The brace and drill bit is used to drill a hole at 0 . If the drill bit jams when the brace is subjected to the forces shown, determine the resultant internal loadings acting on the cross section of the drill bit at A .

Problem 1-34

The built-up shaft consists of a pipe $A B$ and solid rod $B C$. The pipe has an inner diameter of 20 mm and an outer diameter of 28 mm . The rod has a diameter of 12 mm . Determine the average normal stress at D and E and represent the stress on a volume element located at each of these points.

Problem 1-35

If the turnbuckle is subjected to an axial force of $\mathrm{P}=900 \mathrm{lb}$, determine the average normal stress developed in section a-a and in each bolt shanks at B and C. Each bolt shank has a diameter of 0.5 in .

Problem 1.71

The joint is fastened together using two bolts. Determine the required diameter of the bolts if the failure shear stress for the bolts is $\tau_{\text {fail }}=350 \mathrm{MPa}$. Use a factor of safety for shear of $\mathrm{FS}=2.5$.

Problem 1-52

IF the joint is subjected to an axial force of $P=9 \mathrm{kN}$, determine the average shear stress developed in each of the $6-\mathrm{mm}$ diameter bolts between the plates and the members and along each of the four shaded shear planes.

Problem 1.65

Determine the maximum vertical force P that can be applied to the bell crank so that the average normal stress developed in the 10 mm diameter rod, $C D$, and the average shear stress developed in the 6 mm diameter double sheared pin B not
 exceed 175 MPa and 75 MPa , respectively.

Problem 1.99

To the nearest $1 / 16^{\prime \prime}$, determine the required thickness of member BC and the diameter of the pins at A and B if the allowable normal stress for member $B C$ is $\sigma_{\text {Allow }}=29 \mathrm{ksi}$ and the allowable shear stress for the pins is $\tau_{\text {Allow }}=10$ ksi.

