Inside Wind Tunnel 2

The Bernoulli equation relates the pressure, elevation, and velocity of a fluid along a streamline. For an incompressible fluid, this equation is:

$$\frac{P_1}{\gamma} + \frac{{v_1}^2}{2g} + z_1 = \frac{P_2}{\gamma} + \frac{{v_2}^2}{2g} + z_2$$

For the following experiment, $z_1=z_2$ and therefore cancels. Also, $\gamma=\rho g$, which means g can be canceled from the remaining equation. Thus,

$$\frac{P_1}{\rho} + \frac{v_1^2}{2} = \frac{P_2}{\rho} + \frac{v_2^2}{2}$$

Now if we assume that the air starts outside of the duct at zero velocity ($V_1=0$) and that density remains fairly constant, we can calculate the velocity achieved inside the duct by the change in the pressure. Therefore,

$$\frac{P_1 - P_2}{\rho} = \frac{v_2^2}{2}$$

and in rearranging to get velocity,

v =

$$v = \sqrt{\frac{2\Delta P}{\rho}}$$

This allows us to find the velocity of the air inside the duct using the density of the air (ρ = 0.00233 $\frac{slug}{ft^3}$ at 70 °F, 29.92 in_{Hg}). Also, since the manometers used are in W.C., we will substitute ΔP =pgh (note that this ρ is for H₂O).

$$v = \sqrt{\frac{2\rho_{H20}gh}{\rho}} = \sqrt{\frac{2 \cdot 1.93 \frac{slug}{ft^3} \cdot 32.174 \frac{ft}{s^2} \cdot h(in) \cdot \frac{1}{12} \frac{ft}{in}}{0.00233 \frac{slug}{ft^3}}}$$

$$66.65\sqrt{h} \left(\frac{ft}{s}\right) \quad \text{or} \qquad v = 3998.8\sqrt{h} \left(\frac{ft}{min}\right) \qquad \text{(where h is in inches)}$$

Once we have the velocity, the volumetric flow rate can be calculated with

$$Q = v_{avg}A$$

Procedure:

- 1. Turn off the fan & power if necessary.
- 2. Install the straight duct as shown.
- 3. Zero manometer 5.
- 4. Connect the hoses to the appropriate manometer shown.
- 5. Insert the probe and center it.
- 6. Set the fan to each speed in the following table and record the pressures. <u>When taking</u> <u>the readings, it is important to not shake or bump the table as well as to not walk near</u> <u>the inlet or exit of the wind tunnel.</u>

Fan Speed Setting	Velocity Pressure (in _{H20})	Velocity (ft/s)	Volumetric Flow Rate (ft ³ /s)
20			
40			
60			
80			

7. Next, leave the fan at the same speed (80) and move the probe up and down in 2 cm steps taking readings at each of these points.

Distance from Centerline (cm)	Velocity Pressure (in _{H20})	Velocity (ft/s)	Volumetric Flow Rate (ft ³ /s)
-10.2	0	0	-
-10			
-8			
-6			
-4			
-2			
0			
2			
4			
6			
8			
10			
10.2	0	0	-

- 8. Calculate the velocity and volumetric flow rate for each measurement.
- 9. Graphically represent how distance from the centerline and fan speed effect velocity.
- 10. Answer the following questions in your conclusions/discussion section.

Questions:

- 1. Based on Bernoulli's equation, if the air velocity is tripled, by what factor would the pressure (ΔP) change? Compare this to the data in the first table.
- 2. What are the peak and average air velocities (in ft/s) based on the data in the second table?
- 3. Assuming that the duct is 8" deep, how much air (in ft³/min [cfm]) is flowing through the section measured? How much air is flowing in the intake grill?